Defining parameters
Level: | \( N \) | \(=\) | \( 672 = 2^{5} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 672.i (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 168 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(512\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(672, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 400 | 100 | 300 |
Cusp forms | 368 | 92 | 276 |
Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(672, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
672.4.i.a | $4$ | $39.649$ | \(\Q(\sqrt{2}, \sqrt{-3})\) | \(\Q(\sqrt{-6}) \) | \(0\) | \(0\) | \(0\) | \(68\) | \(q-\beta _{2}q^{3}+2\beta _{2}q^{5}+(17+\beta _{3})q^{7}-3^{3}q^{9}+\cdots\) |
672.4.i.b | $8$ | $39.649$ | 8.0.\(\cdots\).11 | \(\Q(\sqrt{-14}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta _{3}+\beta _{5}+\beta _{6})q^{3}+(2\beta _{3}+3\beta _{5}-2\beta _{6}+\cdots)q^{5}+\cdots\) |
672.4.i.c | $80$ | $39.649$ | None | \(0\) | \(0\) | \(0\) | \(-64\) |
Decomposition of \(S_{4}^{\mathrm{old}}(672, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(672, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 3}\)