Properties

Label 672.4.i
Level $672$
Weight $4$
Character orbit 672.i
Rep. character $\chi_{672}(209,\cdot)$
Character field $\Q$
Dimension $92$
Newform subspaces $3$
Sturm bound $512$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 672.i (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 168 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(512\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(672, [\chi])\).

Total New Old
Modular forms 400 100 300
Cusp forms 368 92 276
Eisenstein series 32 8 24

Trace form

\( 92 q + 4 q^{7} - 4 q^{9} - 104 q^{15} - 1908 q^{25} + 112 q^{39} - 364 q^{49} - 112 q^{57} + 708 q^{63} + 488 q^{79} - 1236 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(672, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
672.4.i.a 672.i 168.i $4$ $39.649$ \(\Q(\sqrt{2}, \sqrt{-3})\) \(\Q(\sqrt{-6}) \) 168.4.i.a \(0\) \(0\) \(0\) \(68\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{2}q^{3}+2\beta _{2}q^{5}+(17+\beta _{3})q^{7}-3^{3}q^{9}+\cdots\)
672.4.i.b 672.i 168.i $8$ $39.649$ 8.0.\(\cdots\).11 \(\Q(\sqrt{-14}) \) 168.4.i.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(\beta _{3}+\beta _{5}+\beta _{6})q^{3}+(2\beta _{3}+3\beta _{5}-2\beta _{6}+\cdots)q^{5}+\cdots\)
672.4.i.c 672.i 168.i $80$ $39.649$ None 168.4.i.c \(0\) \(0\) \(0\) \(-64\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{4}^{\mathrm{old}}(672, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(672, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 3}\)