Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [672,4,Mod(209,672)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(672, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 1, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("672.209");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 672 = 2^{5} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 672.i (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(39.6492835239\) |
Analytic rank: | \(0\) |
Dimension: | \(80\) |
Twist minimal: | no (minimal twist has level 168) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
209.1 | 0 | −5.19433 | − | 0.137767i | 0 | − | 6.83655i | 0 | −13.6972 | + | 12.4654i | 0 | 26.9620 | + | 1.43121i | 0 | |||||||||||
209.2 | 0 | −5.19433 | − | 0.137767i | 0 | − | 6.83655i | 0 | −13.6972 | − | 12.4654i | 0 | 26.9620 | + | 1.43121i | 0 | |||||||||||
209.3 | 0 | −5.19433 | + | 0.137767i | 0 | 6.83655i | 0 | −13.6972 | − | 12.4654i | 0 | 26.9620 | − | 1.43121i | 0 | ||||||||||||
209.4 | 0 | −5.19433 | + | 0.137767i | 0 | 6.83655i | 0 | −13.6972 | + | 12.4654i | 0 | 26.9620 | − | 1.43121i | 0 | ||||||||||||
209.5 | 0 | −5.10794 | − | 0.953394i | 0 | − | 17.0023i | 0 | 5.04990 | − | 17.8185i | 0 | 25.1821 | + | 9.73975i | 0 | |||||||||||
209.6 | 0 | −5.10794 | − | 0.953394i | 0 | − | 17.0023i | 0 | 5.04990 | + | 17.8185i | 0 | 25.1821 | + | 9.73975i | 0 | |||||||||||
209.7 | 0 | −5.10794 | + | 0.953394i | 0 | 17.0023i | 0 | 5.04990 | + | 17.8185i | 0 | 25.1821 | − | 9.73975i | 0 | ||||||||||||
209.8 | 0 | −5.10794 | + | 0.953394i | 0 | 17.0023i | 0 | 5.04990 | − | 17.8185i | 0 | 25.1821 | − | 9.73975i | 0 | ||||||||||||
209.9 | 0 | −4.74822 | − | 2.11055i | 0 | 15.5059i | 0 | 14.6158 | + | 11.3745i | 0 | 18.0912 | + | 20.0427i | 0 | ||||||||||||
209.10 | 0 | −4.74822 | − | 2.11055i | 0 | 15.5059i | 0 | 14.6158 | − | 11.3745i | 0 | 18.0912 | + | 20.0427i | 0 | ||||||||||||
209.11 | 0 | −4.74822 | + | 2.11055i | 0 | − | 15.5059i | 0 | 14.6158 | − | 11.3745i | 0 | 18.0912 | − | 20.0427i | 0 | |||||||||||
209.12 | 0 | −4.74822 | + | 2.11055i | 0 | − | 15.5059i | 0 | 14.6158 | + | 11.3745i | 0 | 18.0912 | − | 20.0427i | 0 | |||||||||||
209.13 | 0 | −4.72061 | − | 2.17161i | 0 | − | 2.27823i | 0 | 13.7109 | − | 12.4503i | 0 | 17.5682 | + | 20.5026i | 0 | |||||||||||
209.14 | 0 | −4.72061 | − | 2.17161i | 0 | − | 2.27823i | 0 | 13.7109 | + | 12.4503i | 0 | 17.5682 | + | 20.5026i | 0 | |||||||||||
209.15 | 0 | −4.72061 | + | 2.17161i | 0 | 2.27823i | 0 | 13.7109 | + | 12.4503i | 0 | 17.5682 | − | 20.5026i | 0 | ||||||||||||
209.16 | 0 | −4.72061 | + | 2.17161i | 0 | 2.27823i | 0 | 13.7109 | − | 12.4503i | 0 | 17.5682 | − | 20.5026i | 0 | ||||||||||||
209.17 | 0 | −4.05635 | − | 3.24747i | 0 | 13.2397i | 0 | −18.4748 | − | 1.29729i | 0 | 5.90788 | + | 26.3457i | 0 | ||||||||||||
209.18 | 0 | −4.05635 | − | 3.24747i | 0 | 13.2397i | 0 | −18.4748 | + | 1.29729i | 0 | 5.90788 | + | 26.3457i | 0 | ||||||||||||
209.19 | 0 | −4.05635 | + | 3.24747i | 0 | − | 13.2397i | 0 | −18.4748 | + | 1.29729i | 0 | 5.90788 | − | 26.3457i | 0 | |||||||||||
209.20 | 0 | −4.05635 | + | 3.24747i | 0 | − | 13.2397i | 0 | −18.4748 | − | 1.29729i | 0 | 5.90788 | − | 26.3457i | 0 | |||||||||||
See all 80 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
8.b | even | 2 | 1 | inner |
21.c | even | 2 | 1 | inner |
24.h | odd | 2 | 1 | inner |
56.h | odd | 2 | 1 | inner |
168.i | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 672.4.i.c | 80 | |
3.b | odd | 2 | 1 | inner | 672.4.i.c | 80 | |
4.b | odd | 2 | 1 | 168.4.i.c | ✓ | 80 | |
7.b | odd | 2 | 1 | inner | 672.4.i.c | 80 | |
8.b | even | 2 | 1 | inner | 672.4.i.c | 80 | |
8.d | odd | 2 | 1 | 168.4.i.c | ✓ | 80 | |
12.b | even | 2 | 1 | 168.4.i.c | ✓ | 80 | |
21.c | even | 2 | 1 | inner | 672.4.i.c | 80 | |
24.f | even | 2 | 1 | 168.4.i.c | ✓ | 80 | |
24.h | odd | 2 | 1 | inner | 672.4.i.c | 80 | |
28.d | even | 2 | 1 | 168.4.i.c | ✓ | 80 | |
56.e | even | 2 | 1 | 168.4.i.c | ✓ | 80 | |
56.h | odd | 2 | 1 | inner | 672.4.i.c | 80 | |
84.h | odd | 2 | 1 | 168.4.i.c | ✓ | 80 | |
168.e | odd | 2 | 1 | 168.4.i.c | ✓ | 80 | |
168.i | even | 2 | 1 | inner | 672.4.i.c | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
168.4.i.c | ✓ | 80 | 4.b | odd | 2 | 1 | |
168.4.i.c | ✓ | 80 | 8.d | odd | 2 | 1 | |
168.4.i.c | ✓ | 80 | 12.b | even | 2 | 1 | |
168.4.i.c | ✓ | 80 | 24.f | even | 2 | 1 | |
168.4.i.c | ✓ | 80 | 28.d | even | 2 | 1 | |
168.4.i.c | ✓ | 80 | 56.e | even | 2 | 1 | |
168.4.i.c | ✓ | 80 | 84.h | odd | 2 | 1 | |
168.4.i.c | ✓ | 80 | 168.e | odd | 2 | 1 | |
672.4.i.c | 80 | 1.a | even | 1 | 1 | trivial | |
672.4.i.c | 80 | 3.b | odd | 2 | 1 | inner | |
672.4.i.c | 80 | 7.b | odd | 2 | 1 | inner | |
672.4.i.c | 80 | 8.b | even | 2 | 1 | inner | |
672.4.i.c | 80 | 21.c | even | 2 | 1 | inner | |
672.4.i.c | 80 | 24.h | odd | 2 | 1 | inner | |
672.4.i.c | 80 | 56.h | odd | 2 | 1 | inner | |
672.4.i.c | 80 | 168.i | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{20} + 1372 T_{5}^{18} + 782932 T_{5}^{16} + 239880544 T_{5}^{14} + 42479046160 T_{5}^{12} + \cdots + 39\!\cdots\!12 \) acting on \(S_{4}^{\mathrm{new}}(672, [\chi])\).