Properties

Label 672.4.p
Level $672$
Weight $4$
Character orbit 672.p
Rep. character $\chi_{672}(559,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $1$
Sturm bound $512$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 672.p (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 56 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(512\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(672, [\chi])\).

Total New Old
Modular forms 400 48 352
Cusp forms 368 48 320
Eisenstein series 32 0 32

Trace form

\( 48 q - 432 q^{9} + 40 q^{11} + 1200 q^{25} + 456 q^{35} + 808 q^{43} + 360 q^{49} + 336 q^{57} + 4104 q^{67} + 3888 q^{81} - 104 q^{91} - 360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(672, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
672.4.p.a 672.p 56.e $48$ $39.649$ None 168.4.p.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{4}^{\mathrm{old}}(672, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(672, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 2}\)