Properties

Label 675.2.a.q.1.2
Level 675675
Weight 22
Character 675.1
Self dual yes
Analytic conductor 5.3905.390
Analytic rank 00
Dimension 22
CM discriminant -15
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(1,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 675=3352 675 = 3^{3} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 675.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 5.389902136445.38990213644
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ10)+\Q(\zeta_{10})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x1 x^{2} - x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 135)
Fricke sign: 1-1
Sato-Tate group: N(U(1))N(\mathrm{U}(1))

Embedding invariants

Embedding label 1.2
Root 1.618031.61803 of defining polynomial
Character χ\chi == 675.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.61803q2+4.85410q4+7.47214q8+9.85410q16+3.76393q178.70820q191.47214q23+2.70820q31+10.8541q32+9.85410q3422.7984q383.85410q468.94427q477.00000q49+14.2361q5314.4164q61+7.09017q62+8.70820q64+18.2705q6842.2705q7614.7082q79+11.9443q837.14590q9223.4164q9418.3262q98+O(q100)q+2.61803 q^{2} +4.85410 q^{4} +7.47214 q^{8} +9.85410 q^{16} +3.76393 q^{17} -8.70820 q^{19} -1.47214 q^{23} +2.70820 q^{31} +10.8541 q^{32} +9.85410 q^{34} -22.7984 q^{38} -3.85410 q^{46} -8.94427 q^{47} -7.00000 q^{49} +14.2361 q^{53} -14.4164 q^{61} +7.09017 q^{62} +8.70820 q^{64} +18.2705 q^{68} -42.2705 q^{76} -14.7082 q^{79} +11.9443 q^{83} -7.14590 q^{92} -23.4164 q^{94} -18.3262 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+3q2+3q4+6q8+13q16+12q174q19+6q238q31+15q32+13q3421q38q4614q49+24q532q61+3q62+4q64+3q68+21q98+O(q100) 2 q + 3 q^{2} + 3 q^{4} + 6 q^{8} + 13 q^{16} + 12 q^{17} - 4 q^{19} + 6 q^{23} - 8 q^{31} + 15 q^{32} + 13 q^{34} - 21 q^{38} - q^{46} - 14 q^{49} + 24 q^{53} - 2 q^{61} + 3 q^{62} + 4 q^{64} + 3 q^{68}+ \cdots - 21 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.61803 1.85123 0.925615 0.378467i 0.123549π-0.123549\pi
0.925615 + 0.378467i 0.123549π0.123549\pi
33 0 0
44 4.85410 2.42705
55 0 0
66 0 0
77 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
88 7.47214 2.64180
99 0 0
1010 0 0
1111 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1212 0 0
1313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1414 0 0
1515 0 0
1616 9.85410 2.46353
1717 3.76393 0.912888 0.456444 0.889752i 0.349123π-0.349123\pi
0.456444 + 0.889752i 0.349123π0.349123\pi
1818 0 0
1919 −8.70820 −1.99780 −0.998899 0.0469020i 0.985065π-0.985065\pi
−0.998899 + 0.0469020i 0.985065π0.985065\pi
2020 0 0
2121 0 0
2222 0 0
2323 −1.47214 −0.306962 −0.153481 0.988152i 0.549048π-0.549048\pi
−0.153481 + 0.988152i 0.549048π0.549048\pi
2424 0 0
2525 0 0
2626 0 0
2727 0 0
2828 0 0
2929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3030 0 0
3131 2.70820 0.486408 0.243204 0.969975i 0.421802π-0.421802\pi
0.243204 + 0.969975i 0.421802π0.421802\pi
3232 10.8541 1.91875
3333 0 0
3434 9.85410 1.68996
3535 0 0
3636 0 0
3737 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3838 −22.7984 −3.69838
3939 0 0
4040 0 0
4141 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4242 0 0
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 0 0
4545 0 0
4646 −3.85410 −0.568256
4747 −8.94427 −1.30466 −0.652328 0.757937i 0.726208π-0.726208\pi
−0.652328 + 0.757937i 0.726208π0.726208\pi
4848 0 0
4949 −7.00000 −1.00000
5050 0 0
5151 0 0
5252 0 0
5353 14.2361 1.95547 0.977737 0.209833i 0.0672922π-0.0672922\pi
0.977737 + 0.209833i 0.0672922π0.0672922\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 0 0
6161 −14.4164 −1.84583 −0.922916 0.385002i 0.874201π-0.874201\pi
−0.922916 + 0.385002i 0.874201π0.874201\pi
6262 7.09017 0.900452
6363 0 0
6464 8.70820 1.08853
6565 0 0
6666 0 0
6767 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6868 18.2705 2.21562
6969 0 0
7070 0 0
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 0 0
7373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7474 0 0
7575 0 0
7676 −42.2705 −4.84876
7777 0 0
7878 0 0
7979 −14.7082 −1.65480 −0.827401 0.561611i 0.810182π-0.810182\pi
−0.827401 + 0.561611i 0.810182π0.810182\pi
8080 0 0
8181 0 0
8282 0 0
8383 11.9443 1.31105 0.655527 0.755172i 0.272447π-0.272447\pi
0.655527 + 0.755172i 0.272447π0.272447\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9090 0 0
9191 0 0
9292 −7.14590 −0.745011
9393 0 0
9494 −23.4164 −2.41522
9595 0 0
9696 0 0
9797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9898 −18.3262 −1.85123
9999 0 0
100100 0 0
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
104104 0 0
105105 0 0
106106 37.2705 3.62003
107107 17.8885 1.72935 0.864675 0.502331i 0.167524π-0.167524\pi
0.864675 + 0.502331i 0.167524π0.167524\pi
108108 0 0
109109 20.4164 1.95554 0.977769 0.209687i 0.0672444π-0.0672444\pi
0.977769 + 0.209687i 0.0672444π0.0672444\pi
110110 0 0
111111 0 0
112112 0 0
113113 −4.47214 −0.420703 −0.210352 0.977626i 0.567461π-0.567461\pi
−0.210352 + 0.977626i 0.567461π0.567461\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −11.0000 −1.00000
122122 −37.7426 −3.41706
123123 0 0
124124 13.1459 1.18054
125125 0 0
126126 0 0
127127 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
128128 1.09017 0.0963583
129129 0 0
130130 0 0
131131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 28.1246 2.41167
137137 17.1803 1.46782 0.733908 0.679249i 0.237694π-0.237694\pi
0.733908 + 0.679249i 0.237694π0.237694\pi
138138 0 0
139139 4.00000 0.339276 0.169638 0.985506i 0.445740π-0.445740\pi
0.169638 + 0.985506i 0.445740π0.445740\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
150150 0 0
151151 8.00000 0.651031 0.325515 0.945537i 0.394462π-0.394462\pi
0.325515 + 0.945537i 0.394462π0.394462\pi
152152 −65.0689 −5.27778
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
158158 −38.5066 −3.06342
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
164164 0 0
165165 0 0
166166 31.2705 2.42706
167167 −16.5279 −1.27896 −0.639482 0.768806i 0.720851π-0.720851\pi
−0.639482 + 0.768806i 0.720851π0.720851\pi
168168 0 0
169169 −13.0000 −1.00000
170170 0 0
171171 0 0
172172 0 0
173173 0.819660 0.0623176 0.0311588 0.999514i 0.490080π-0.490080\pi
0.0311588 + 0.999514i 0.490080π0.490080\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 −2.41641 −0.179610 −0.0898051 0.995959i 0.528624π-0.528624\pi
−0.0898051 + 0.995959i 0.528624π0.528624\pi
182182 0 0
183183 0 0
184184 −11.0000 −0.810931
185185 0 0
186186 0 0
187187 0 0
188188 −43.4164 −3.16647
189189 0 0
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 0 0
193193 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
194194 0 0
195195 0 0
196196 −33.9787 −2.42705
197197 21.7639 1.55062 0.775308 0.631583i 0.217595π-0.217595\pi
0.775308 + 0.631583i 0.217595π0.217595\pi
198198 0 0
199199 16.0000 1.13421 0.567105 0.823646i 0.308063π-0.308063\pi
0.567105 + 0.823646i 0.308063π0.308063\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 20.7082 1.42561 0.712806 0.701361i 0.247424π-0.247424\pi
0.712806 + 0.701361i 0.247424π0.247424\pi
212212 69.1033 4.74604
213213 0 0
214214 46.8328 3.20143
215215 0 0
216216 0 0
217217 0 0
218218 53.4508 3.62015
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
224224 0 0
225225 0 0
226226 −11.7082 −0.778818
227227 −29.9443 −1.98747 −0.993736 0.111757i 0.964352π-0.964352\pi
−0.993736 + 0.111757i 0.964352π0.964352\pi
228228 0 0
229229 26.4164 1.74565 0.872823 0.488037i 0.162287π-0.162287\pi
0.872823 + 0.488037i 0.162287π0.162287\pi
230230 0 0
231231 0 0
232232 0 0
233233 22.3607 1.46490 0.732448 0.680823i 0.238378π-0.238378\pi
0.732448 + 0.680823i 0.238378π0.238378\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 0 0
241241 25.8328 1.66404 0.832019 0.554747i 0.187185π-0.187185\pi
0.832019 + 0.554747i 0.187185π0.187185\pi
242242 −28.7984 −1.85123
243243 0 0
244244 −69.9787 −4.47993
245245 0 0
246246 0 0
247247 0 0
248248 20.2361 1.28499
249249 0 0
250250 0 0
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 −14.5623 −0.910144
257257 −9.65248 −0.602105 −0.301052 0.953608i 0.597338π-0.597338\pi
−0.301052 + 0.953608i 0.597338π0.597338\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 8.94427 0.551527 0.275764 0.961225i 0.411069π-0.411069\pi
0.275764 + 0.961225i 0.411069π0.411069\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
270270 0 0
271271 −9.29180 −0.564436 −0.282218 0.959350i 0.591070π-0.591070\pi
−0.282218 + 0.959350i 0.591070π0.591070\pi
272272 37.0902 2.24892
273273 0 0
274274 44.9787 2.71726
275275 0 0
276276 0 0
277277 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
278278 10.4721 0.628077
279279 0 0
280280 0 0
281281 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
282282 0 0
283283 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −2.83282 −0.166636
290290 0 0
291291 0 0
292292 0 0
293293 27.6525 1.61547 0.807737 0.589542i 0.200692π-0.200692\pi
0.807737 + 0.589542i 0.200692π0.200692\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 20.9443 1.20521
303303 0 0
304304 −85.8115 −4.92163
305305 0 0
306306 0 0
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
314314 0 0
315315 0 0
316316 −71.3951 −4.01629
317317 35.1803 1.97592 0.987962 0.154694i 0.0494393π-0.0494393\pi
0.987962 + 0.154694i 0.0494393π0.0494393\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 −32.7771 −1.82377
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 −28.0000 −1.53902 −0.769510 0.638635i 0.779499π-0.779499\pi
−0.769510 + 0.638635i 0.779499π0.779499\pi
332332 57.9787 3.18200
333333 0 0
334334 −43.2705 −2.36766
335335 0 0
336336 0 0
337337 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
338338 −34.0344 −1.85123
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 2.14590 0.115364
347347 −35.7771 −1.92061 −0.960307 0.278944i 0.910016π-0.910016\pi
−0.960307 + 0.278944i 0.910016π0.910016\pi
348348 0 0
349349 −3.58359 −0.191825 −0.0959126 0.995390i 0.530577π-0.530577\pi
−0.0959126 + 0.995390i 0.530577π0.530577\pi
350350 0 0
351351 0 0
352352 0 0
353353 −31.3050 −1.66619 −0.833097 0.553127i 0.813435π-0.813435\pi
−0.833097 + 0.553127i 0.813435π0.813435\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0 0
361361 56.8328 2.99120
362362 −6.32624 −0.332500
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
368368 −14.5066 −0.756208
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
374374 0 0
375375 0 0
376376 −66.8328 −3.44664
377377 0 0
378378 0 0
379379 31.5410 1.62015 0.810077 0.586324i 0.199425π-0.199425\pi
0.810077 + 0.586324i 0.199425π0.199425\pi
380380 0 0
381381 0 0
382382 0 0
383383 −37.4721 −1.91474 −0.957368 0.288870i 0.906720π-0.906720\pi
−0.957368 + 0.288870i 0.906720π0.906720\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
390390 0 0
391391 −5.54102 −0.280221
392392 −52.3050 −2.64180
393393 0 0
394394 56.9787 2.87055
395395 0 0
396396 0 0
397397 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
398398 41.8885 2.09968
399399 0 0
400400 0 0
401401 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 −13.8328 −0.683989 −0.341994 0.939702i 0.611102π-0.611102\pi
−0.341994 + 0.939702i 0.611102π0.611102\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 −32.4164 −1.57988 −0.789940 0.613185i 0.789888π-0.789888\pi
−0.789940 + 0.613185i 0.789888π0.789888\pi
422422 54.2148 2.63913
423423 0 0
424424 106.374 5.16597
425425 0 0
426426 0 0
427427 0 0
428428 86.8328 4.19722
429429 0 0
430430 0 0
431431 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
432432 0 0
433433 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
434434 0 0
435435 0 0
436436 99.1033 4.74619
437437 12.8197 0.613248
438438 0 0
439439 25.5410 1.21901 0.609503 0.792784i 0.291369π-0.291369\pi
0.609503 + 0.792784i 0.291369π0.291369\pi
440440 0 0
441441 0 0
442442 0 0
443443 −24.0557 −1.14292 −0.571461 0.820629i 0.693623π-0.693623\pi
−0.571461 + 0.820629i 0.693623π0.693623\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
450450 0 0
451451 0 0
452452 −21.7082 −1.02107
453453 0 0
454454 −78.3951 −3.67927
455455 0 0
456456 0 0
457457 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
458458 69.1591 3.23159
459459 0 0
460460 0 0
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 0 0
465465 0 0
466466 58.5410 2.71186
467467 −3.11146 −0.143981 −0.0719905 0.997405i 0.522935π-0.522935\pi
−0.0719905 + 0.997405i 0.522935π0.522935\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 0 0
482482 67.6312 3.08052
483483 0 0
484484 −53.3951 −2.42705
485485 0 0
486486 0 0
487487 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
488488 −107.721 −4.87632
489489 0 0
490490 0 0
491491 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 26.6869 1.19828
497497 0 0
498498 0 0
499499 15.2918 0.684555 0.342277 0.939599i 0.388802π-0.388802\pi
0.342277 + 0.939599i 0.388802π0.388802\pi
500500 0 0
501501 0 0
502502 0 0
503503 25.3607 1.13078 0.565388 0.824825i 0.308726π-0.308726\pi
0.565388 + 0.824825i 0.308726π0.308726\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
510510 0 0
511511 0 0
512512 −40.3050 −1.78124
513513 0 0
514514 −25.2705 −1.11463
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
522522 0 0
523523 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
524524 0 0
525525 0 0
526526 23.4164 1.02100
527527 10.1935 0.444036
528528 0 0
529529 −20.8328 −0.905775
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 2.00000 0.0859867 0.0429934 0.999075i 0.486311π-0.486311\pi
0.0429934 + 0.999075i 0.486311π0.486311\pi
542542 −24.3262 −1.04490
543543 0 0
544544 40.8541 1.75161
545545 0 0
546546 0 0
547547 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
548548 83.3951 3.56246
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 19.4164 0.823439
557557 −22.3607 −0.947452 −0.473726 0.880672i 0.657091π-0.657091\pi
−0.473726 + 0.880672i 0.657091π0.657091\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 35.7771 1.50782 0.753912 0.656975i 0.228164π-0.228164\pi
0.753912 + 0.656975i 0.228164π0.228164\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
570570 0 0
571571 −19.5410 −0.817766 −0.408883 0.912587i 0.634082π-0.634082\pi
−0.408883 + 0.912587i 0.634082π0.634082\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
578578 −7.41641 −0.308482
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 72.3951 2.99061
587587 −47.9443 −1.97887 −0.989436 0.144971i 0.953691π-0.953691\pi
−0.989436 + 0.144971i 0.953691π0.953691\pi
588588 0 0
589589 −23.5836 −0.971745
590590 0 0
591591 0 0
592592 0 0
593593 −39.7639 −1.63291 −0.816454 0.577410i 0.804064π-0.804064\pi
−0.816454 + 0.577410i 0.804064π0.804064\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 7.83282 0.319507 0.159754 0.987157i 0.448930π-0.448930\pi
0.159754 + 0.987157i 0.448930π0.448930\pi
602602 0 0
603603 0 0
604604 38.8328 1.58008
605605 0 0
606606 0 0
607607 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
608608 −94.5197 −3.83328
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
614614 0 0
615615 0 0
616616 0 0
617617 30.5967 1.23178 0.615889 0.787833i 0.288797π-0.288797\pi
0.615889 + 0.787833i 0.288797π0.288797\pi
618618 0 0
619619 −44.0000 −1.76851 −0.884255 0.467005i 0.845333π-0.845333\pi
−0.884255 + 0.467005i 0.845333π0.845333\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0 0
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 −49.5410 −1.97220 −0.986098 0.166162i 0.946862π-0.946862\pi
−0.986098 + 0.166162i 0.946862π0.946862\pi
632632 −109.902 −4.37165
633633 0 0
634634 92.1033 3.65789
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
642642 0 0
643643 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
644644 0 0
645645 0 0
646646 −85.8115 −3.37621
647647 −43.3607 −1.70468 −0.852342 0.522985i 0.824819π-0.824819\pi
−0.852342 + 0.522985i 0.824819π0.824819\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 −12.5967 −0.492949 −0.246474 0.969149i 0.579272π-0.579272\pi
−0.246474 + 0.969149i 0.579272π0.579272\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
660660 0 0
661661 −22.0000 −0.855701 −0.427850 0.903850i 0.640729π-0.640729\pi
−0.427850 + 0.903850i 0.640729π0.640729\pi
662662 −73.3050 −2.84908
663663 0 0
664664 89.2492 3.46354
665665 0 0
666666 0 0
667667 0 0
668668 −80.2279 −3.10411
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
674674 0 0
675675 0 0
676676 −63.1033 −2.42705
677677 31.3050 1.20315 0.601574 0.798817i 0.294541π-0.294541\pi
0.601574 + 0.798817i 0.294541π0.294541\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 −50.8885 −1.94720 −0.973598 0.228269i 0.926693π-0.926693\pi
−0.973598 + 0.228269i 0.926693π0.926693\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 32.7082 1.24428 0.622139 0.782907i 0.286264π-0.286264\pi
0.622139 + 0.782907i 0.286264π0.286264\pi
692692 3.97871 0.151248
693693 0 0
694694 −93.6656 −3.55550
695695 0 0
696696 0 0
697697 0 0
698698 −9.38197 −0.355113
699699 0 0
700700 0 0
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 −81.9574 −3.08451
707707 0 0
708708 0 0
709709 −26.0000 −0.976450 −0.488225 0.872718i 0.662356π-0.662356\pi
−0.488225 + 0.872718i 0.662356π0.662356\pi
710710 0 0
711711 0 0
712712 0 0
713713 −3.98684 −0.149308
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 0 0
722722 148.790 5.53740
723723 0 0
724724 −11.7295 −0.435923
725725 0 0
726726 0 0
727727 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
734734 0 0
735735 0 0
736736 −15.9787 −0.588983
737737 0 0
738738 0 0
739739 −48.9574 −1.80093 −0.900464 0.434930i 0.856773π-0.856773\pi
−0.900464 + 0.434930i 0.856773π0.856773\pi
740740 0 0
741741 0 0
742742 0 0
743743 −44.7214 −1.64067 −0.820334 0.571885i 0.806212π-0.806212\pi
−0.820334 + 0.571885i 0.806212π0.806212\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 42.9574 1.56754 0.783769 0.621052i 0.213294π-0.213294\pi
0.783769 + 0.621052i 0.213294π0.213294\pi
752752 −88.1378 −3.21405
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
758758 82.5755 2.99928
759759 0 0
760760 0 0
761761 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 −98.1033 −3.54462
767767 0 0
768768 0 0
769769 −49.8328 −1.79702 −0.898509 0.438956i 0.855348π-0.855348\pi
−0.898509 + 0.438956i 0.855348π0.855348\pi
770770 0 0
771771 0 0
772772 0 0
773773 50.2361 1.80687 0.903433 0.428730i 0.141039π-0.141039\pi
0.903433 + 0.428730i 0.141039π0.141039\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 −14.5066 −0.518754
783783 0 0
784784 −68.9787 −2.46353
785785 0 0
786786 0 0
787787 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
788788 105.644 3.76342
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 77.6656 2.75279
797797 48.5967 1.72139 0.860693 0.509125i 0.170031π-0.170031\pi
0.860693 + 0.509125i 0.170031π0.170031\pi
798798 0 0
799799 −33.6656 −1.19100
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
810810 0 0
811811 −52.0000 −1.82597 −0.912983 0.407997i 0.866228π-0.866228\pi
−0.912983 + 0.407997i 0.866228π0.866228\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 −36.2148 −1.26622
819819 0 0
820820 0 0
821821 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
822822 0 0
823823 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
824824 0 0
825825 0 0
826826 0 0
827827 −21.1115 −0.734117 −0.367059 0.930198i 0.619635π-0.619635\pi
−0.367059 + 0.930198i 0.619635π0.619635\pi
828828 0 0
829829 34.0000 1.18087 0.590434 0.807086i 0.298956π-0.298956\pi
0.590434 + 0.807086i 0.298956π0.298956\pi
830830 0 0
831831 0 0
832832 0 0
833833 −26.3475 −0.912888
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 −29.0000 −1.00000
842842 −84.8673 −2.92472
843843 0 0
844844 100.520 3.46003
845845 0 0
846846 0 0
847847 0 0
848848 140.284 4.81736
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
854854 0 0
855855 0 0
856856 133.666 4.56860
857857 −23.0689 −0.788018 −0.394009 0.919107i 0.628912π-0.628912\pi
−0.394009 + 0.919107i 0.628912π0.628912\pi
858858 0 0
859859 55.5410 1.89504 0.947518 0.319704i 0.103583π-0.103583\pi
0.947518 + 0.319704i 0.103583π0.103583\pi
860860 0 0
861861 0 0
862862 0 0
863863 −10.6393 −0.362167 −0.181083 0.983468i 0.557960π-0.557960\pi
−0.181083 + 0.983468i 0.557960π0.557960\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 152.554 5.16614
873873 0 0
874874 33.5623 1.13526
875875 0 0
876876 0 0
877877 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
878878 66.8673 2.25666
879879 0 0
880880 0 0
881881 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
882882 0 0
883883 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
884884 0 0
885885 0 0
886886 −62.9787 −2.11581
887887 55.4721 1.86257 0.931286 0.364289i 0.118688π-0.118688\pi
0.931286 + 0.364289i 0.118688π0.118688\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 77.8885 2.60644
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 53.5836 1.78513
902902 0 0
903903 0 0
904904 −33.4164 −1.11141
905905 0 0
906906 0 0
907907 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
908908 −145.353 −4.82369
909909 0 0
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 128.228 4.23677
917917 0 0
918918 0 0
919919 −56.0000 −1.84727 −0.923635 0.383274i 0.874797π-0.874797\pi
−0.923635 + 0.383274i 0.874797π0.874797\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
930930 0 0
931931 60.9574 1.99780
932932 108.541 3.55538
933933 0 0
934934 −8.14590 −0.266542
935935 0 0
936936 0 0
937937 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 42.0557 1.36663 0.683314 0.730125i 0.260538π-0.260538\pi
0.683314 + 0.730125i 0.260538π0.260538\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 −58.1378 −1.88327 −0.941634 0.336640i 0.890710π-0.890710\pi
−0.941634 + 0.336640i 0.890710π0.890710\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −23.6656 −0.763407
962962 0 0
963963 0 0
964964 125.395 4.03870
965965 0 0
966966 0 0
967967 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
968968 −82.1935 −2.64180
969969 0 0
970970 0 0
971971 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 −142.061 −4.54725
977977 4.47214 0.143076 0.0715382 0.997438i 0.477209π-0.477209\pi
0.0715382 + 0.997438i 0.477209π0.477209\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 −28.3050 −0.902788 −0.451394 0.892325i 0.649073π-0.649073\pi
−0.451394 + 0.892325i 0.649073π0.649073\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 30.9574 0.983395 0.491698 0.870766i 0.336377π-0.336377\pi
0.491698 + 0.870766i 0.336377π0.336377\pi
992992 29.3951 0.933296
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
998998 40.0344 1.26727
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.a.q.1.2 2
3.2 odd 2 675.2.a.j.1.1 2
5.2 odd 4 135.2.b.a.109.4 yes 4
5.3 odd 4 135.2.b.a.109.1 4
5.4 even 2 675.2.a.j.1.1 2
15.2 even 4 135.2.b.a.109.1 4
15.8 even 4 135.2.b.a.109.4 yes 4
15.14 odd 2 CM 675.2.a.q.1.2 2
20.3 even 4 2160.2.f.j.1729.1 4
20.7 even 4 2160.2.f.j.1729.4 4
45.2 even 12 405.2.j.h.109.1 8
45.7 odd 12 405.2.j.h.109.4 8
45.13 odd 12 405.2.j.h.379.4 8
45.22 odd 12 405.2.j.h.379.1 8
45.23 even 12 405.2.j.h.379.1 8
45.32 even 12 405.2.j.h.379.4 8
45.38 even 12 405.2.j.h.109.4 8
45.43 odd 12 405.2.j.h.109.1 8
60.23 odd 4 2160.2.f.j.1729.4 4
60.47 odd 4 2160.2.f.j.1729.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.b.a.109.1 4 5.3 odd 4
135.2.b.a.109.1 4 15.2 even 4
135.2.b.a.109.4 yes 4 5.2 odd 4
135.2.b.a.109.4 yes 4 15.8 even 4
405.2.j.h.109.1 8 45.2 even 12
405.2.j.h.109.1 8 45.43 odd 12
405.2.j.h.109.4 8 45.7 odd 12
405.2.j.h.109.4 8 45.38 even 12
405.2.j.h.379.1 8 45.22 odd 12
405.2.j.h.379.1 8 45.23 even 12
405.2.j.h.379.4 8 45.13 odd 12
405.2.j.h.379.4 8 45.32 even 12
675.2.a.j.1.1 2 3.2 odd 2
675.2.a.j.1.1 2 5.4 even 2
675.2.a.q.1.2 2 1.1 even 1 trivial
675.2.a.q.1.2 2 15.14 odd 2 CM
2160.2.f.j.1729.1 4 20.3 even 4
2160.2.f.j.1729.1 4 60.47 odd 4
2160.2.f.j.1729.4 4 20.7 even 4
2160.2.f.j.1729.4 4 60.23 odd 4