Properties

Label 675.2.ba.a.518.7
Level $675$
Weight $2$
Character 675.518
Analytic conductor $5.390$
Analytic rank $0$
Dimension $144$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(32,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([10, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.32");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.ba (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(12\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 518.7
Character \(\chi\) \(=\) 675.518
Dual form 675.2.ba.a.632.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0777805 + 0.00680491i) q^{2} +(1.54232 + 0.788185i) q^{3} +(-1.96361 - 0.346238i) q^{4} +(0.114599 + 0.0718008i) q^{6} +(-1.14874 - 0.804356i) q^{7} +(-0.301209 - 0.0807087i) q^{8} +(1.75753 + 2.43127i) q^{9} +(-1.25188 + 3.43951i) q^{11} +(-2.75563 - 2.08170i) q^{12} +(0.326983 + 3.73743i) q^{13} +(-0.0838760 - 0.0703803i) q^{14} +(3.72443 + 1.35558i) q^{16} +(-4.17846 + 1.11962i) q^{17} +(0.120157 + 0.201066i) q^{18} +(-1.40048 + 0.808565i) q^{19} +(-1.13775 - 2.14600i) q^{21} +(-0.120777 + 0.259008i) q^{22} +(3.27482 + 4.67693i) q^{23} +(-0.400948 - 0.361887i) q^{24} +0.292925i q^{26} +(0.794382 + 5.13507i) q^{27} +(1.97718 + 1.97718i) q^{28} +(3.26399 - 2.73881i) q^{29} +(0.336874 - 1.91051i) q^{31} +(0.845700 + 0.394356i) q^{32} +(-4.64178 + 4.31813i) q^{33} +(-0.332622 + 0.0586502i) q^{34} +(-2.60930 - 5.38260i) q^{36} +(2.07996 + 7.76253i) q^{37} +(-0.114432 + 0.0533605i) q^{38} +(-2.44148 + 6.02206i) q^{39} +(-2.08450 + 2.48421i) q^{41} +(-0.0738912 - 0.174659i) q^{42} +(-0.347912 - 0.746099i) q^{43} +(3.64909 - 6.32042i) q^{44} +(0.222891 + 0.386059i) q^{46} +(-0.661922 + 0.945323i) q^{47} +(4.67583 + 5.02629i) q^{48} +(-1.72153 - 4.72986i) q^{49} +(-7.32701 - 1.56659i) q^{51} +(0.651973 - 7.45209i) q^{52} +(-7.50182 + 7.50182i) q^{53} +(0.0268437 + 0.404814i) q^{54} +(0.281092 + 0.334993i) q^{56} +(-2.79729 + 0.143235i) q^{57} +(0.272512 - 0.190815i) q^{58} +(9.85710 - 3.58769i) q^{59} +(-1.72247 - 9.76861i) q^{61} +(0.0392030 - 0.146308i) q^{62} +(-0.0633310 - 4.20658i) q^{63} +(-6.80182 - 3.92703i) q^{64} +(-0.390424 + 0.304279i) q^{66} +(-14.7353 + 1.28917i) q^{67} +(8.59253 - 0.751749i) q^{68} +(1.36455 + 9.79451i) q^{69} +(8.12470 + 4.69080i) q^{71} +(-0.333158 - 0.874169i) q^{72} +(0.0713724 - 0.266365i) q^{73} +(0.108957 + 0.617928i) q^{74} +(3.02995 - 1.10281i) q^{76} +(4.20468 - 2.94415i) q^{77} +(-0.230879 + 0.451785i) q^{78} +(-7.24149 - 8.63007i) q^{79} +(-2.82219 + 8.54607i) q^{81} +(-0.179038 + 0.179038i) q^{82} +(1.48834 - 17.0118i) q^{83} +(1.49107 + 4.60784i) q^{84} +(-0.0219836 - 0.0603995i) q^{86} +(7.19282 - 1.65151i) q^{87} +(0.654676 - 0.934974i) q^{88} +(6.77753 + 11.7390i) q^{89} +(2.63061 - 4.55635i) q^{91} +(-4.81115 - 10.3175i) q^{92} +(2.02540 - 2.68110i) q^{93} +(-0.0579174 + 0.0690233i) q^{94} +(0.993517 + 1.27479i) q^{96} +(12.5700 - 5.86150i) q^{97} +(-0.101715 - 0.379605i) q^{98} +(-10.5626 + 3.00137i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 12 q^{6} - 48 q^{21} + 84 q^{36} + 36 q^{41} - 84 q^{51} - 324 q^{56} + 36 q^{61} - 288 q^{66} - 144 q^{71} - 216 q^{76} - 132 q^{81} - 288 q^{86} + 36 q^{91} + 132 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0777805 + 0.00680491i 0.0549991 + 0.00481180i 0.114622 0.993409i \(-0.463434\pi\)
−0.0596230 + 0.998221i \(0.518990\pi\)
\(3\) 1.54232 + 0.788185i 0.890461 + 0.455059i
\(4\) −1.96361 0.346238i −0.981806 0.173119i
\(5\) 0 0
\(6\) 0.114599 + 0.0718008i 0.0467849 + 0.0293126i
\(7\) −1.14874 0.804356i −0.434183 0.304018i 0.335976 0.941871i \(-0.390934\pi\)
−0.770158 + 0.637853i \(0.779823\pi\)
\(8\) −0.301209 0.0807087i −0.106493 0.0285348i
\(9\) 1.75753 + 2.43127i 0.585843 + 0.810425i
\(10\) 0 0
\(11\) −1.25188 + 3.43951i −0.377456 + 1.03705i 0.594951 + 0.803762i \(0.297171\pi\)
−0.972407 + 0.233290i \(0.925051\pi\)
\(12\) −2.75563 2.08170i −0.795481 0.600935i
\(13\) 0.326983 + 3.73743i 0.0906888 + 1.03658i 0.896097 + 0.443858i \(0.146390\pi\)
−0.805408 + 0.592720i \(0.798054\pi\)
\(14\) −0.0838760 0.0703803i −0.0224168 0.0188099i
\(15\) 0 0
\(16\) 3.72443 + 1.35558i 0.931109 + 0.338896i
\(17\) −4.17846 + 1.11962i −1.01343 + 0.271547i −0.727060 0.686574i \(-0.759114\pi\)
−0.286366 + 0.958120i \(0.592447\pi\)
\(18\) 0.120157 + 0.201066i 0.0283212 + 0.0473916i
\(19\) −1.40048 + 0.808565i −0.321291 + 0.185498i −0.651968 0.758246i \(-0.726056\pi\)
0.330677 + 0.943744i \(0.392723\pi\)
\(20\) 0 0
\(21\) −1.13775 2.14600i −0.248277 0.468295i
\(22\) −0.120777 + 0.259008i −0.0257498 + 0.0552207i
\(23\) 3.27482 + 4.67693i 0.682847 + 0.975207i 0.999643 + 0.0267134i \(0.00850416\pi\)
−0.316796 + 0.948494i \(0.602607\pi\)
\(24\) −0.400948 0.361887i −0.0818432 0.0738699i
\(25\) 0 0
\(26\) 0.292925i 0.0574472i
\(27\) 0.794382 + 5.13507i 0.152879 + 0.988245i
\(28\) 1.97718 + 1.97718i 0.373652 + 0.373652i
\(29\) 3.26399 2.73881i 0.606107 0.508584i −0.287295 0.957842i \(-0.592756\pi\)
0.893402 + 0.449258i \(0.148312\pi\)
\(30\) 0 0
\(31\) 0.336874 1.91051i 0.0605043 0.343137i −0.939496 0.342561i \(-0.888706\pi\)
1.00000 0.000575745i \(-0.000183265\pi\)
\(32\) 0.845700 + 0.394356i 0.149500 + 0.0697130i
\(33\) −4.64178 + 4.31813i −0.808029 + 0.751689i
\(34\) −0.332622 + 0.0586502i −0.0570441 + 0.0100584i
\(35\) 0 0
\(36\) −2.60930 5.38260i −0.434884 0.897100i
\(37\) 2.07996 + 7.76253i 0.341944 + 1.27615i 0.896142 + 0.443768i \(0.146358\pi\)
−0.554198 + 0.832385i \(0.686975\pi\)
\(38\) −0.114432 + 0.0533605i −0.0185633 + 0.00865621i
\(39\) −2.44148 + 6.02206i −0.390949 + 0.964301i
\(40\) 0 0
\(41\) −2.08450 + 2.48421i −0.325544 + 0.387968i −0.903848 0.427853i \(-0.859270\pi\)
0.578304 + 0.815821i \(0.303715\pi\)
\(42\) −0.0738912 0.174659i −0.0114017 0.0269505i
\(43\) −0.347912 0.746099i −0.0530561 0.113779i 0.877992 0.478674i \(-0.158883\pi\)
−0.931049 + 0.364895i \(0.881105\pi\)
\(44\) 3.64909 6.32042i 0.550122 0.952839i
\(45\) 0 0
\(46\) 0.222891 + 0.386059i 0.0328635 + 0.0569212i
\(47\) −0.661922 + 0.945323i −0.0965513 + 0.137889i −0.864521 0.502597i \(-0.832378\pi\)
0.767970 + 0.640486i \(0.221267\pi\)
\(48\) 4.67583 + 5.02629i 0.674899 + 0.725483i
\(49\) −1.72153 4.72986i −0.245932 0.675694i
\(50\) 0 0
\(51\) −7.32701 1.56659i −1.02599 0.219367i
\(52\) 0.651973 7.45209i 0.0904124 1.03342i
\(53\) −7.50182 + 7.50182i −1.03045 + 1.03045i −0.0309335 + 0.999521i \(0.509848\pi\)
−0.999521 + 0.0309335i \(0.990152\pi\)
\(54\) 0.0268437 + 0.404814i 0.00365297 + 0.0550882i
\(55\) 0 0
\(56\) 0.281092 + 0.334993i 0.0375625 + 0.0447653i
\(57\) −2.79729 + 0.143235i −0.370510 + 0.0189719i
\(58\) 0.272512 0.190815i 0.0357826 0.0250552i
\(59\) 9.85710 3.58769i 1.28328 0.467077i 0.391767 0.920064i \(-0.371864\pi\)
0.891517 + 0.452987i \(0.149642\pi\)
\(60\) 0 0
\(61\) −1.72247 9.76861i −0.220540 1.25074i −0.871031 0.491228i \(-0.836548\pi\)
0.650491 0.759514i \(-0.274563\pi\)
\(62\) 0.0392030 0.146308i 0.00497879 0.0185811i
\(63\) −0.0633310 4.20658i −0.00797896 0.529979i
\(64\) −6.80182 3.92703i −0.850227 0.490879i
\(65\) 0 0
\(66\) −0.390424 + 0.304279i −0.0480579 + 0.0374542i
\(67\) −14.7353 + 1.28917i −1.80020 + 0.157497i −0.937447 0.348128i \(-0.886817\pi\)
−0.862753 + 0.505625i \(0.831262\pi\)
\(68\) 8.59253 0.751749i 1.04200 0.0911630i
\(69\) 1.36455 + 9.79451i 0.164272 + 1.17912i
\(70\) 0 0
\(71\) 8.12470 + 4.69080i 0.964224 + 0.556695i 0.897471 0.441074i \(-0.145403\pi\)
0.0667536 + 0.997769i \(0.478736\pi\)
\(72\) −0.333158 0.874169i −0.0392630 0.103022i
\(73\) 0.0713724 0.266365i 0.00835350 0.0311757i −0.961623 0.274373i \(-0.911530\pi\)
0.969977 + 0.243197i \(0.0781963\pi\)
\(74\) 0.108957 + 0.617928i 0.0126660 + 0.0718326i
\(75\) 0 0
\(76\) 3.02995 1.10281i 0.347559 0.126501i
\(77\) 4.20468 2.94415i 0.479167 0.335517i
\(78\) −0.230879 + 0.451785i −0.0261419 + 0.0511545i
\(79\) −7.24149 8.63007i −0.814732 0.970959i 0.185199 0.982701i \(-0.440707\pi\)
−0.999931 + 0.0117417i \(0.996262\pi\)
\(80\) 0 0
\(81\) −2.82219 + 8.54607i −0.313577 + 0.949563i
\(82\) −0.179038 + 0.179038i −0.0197715 + 0.0197715i
\(83\) 1.48834 17.0118i 0.163366 1.86728i −0.265758 0.964040i \(-0.585622\pi\)
0.429125 0.903245i \(-0.358822\pi\)
\(84\) 1.49107 + 4.60784i 0.162689 + 0.502756i
\(85\) 0 0
\(86\) −0.0219836 0.0603995i −0.00237055 0.00651304i
\(87\) 7.19282 1.65151i 0.771151 0.177060i
\(88\) 0.654676 0.934974i 0.0697886 0.0996685i
\(89\) 6.77753 + 11.7390i 0.718417 + 1.24433i 0.961627 + 0.274360i \(0.0884662\pi\)
−0.243210 + 0.969974i \(0.578201\pi\)
\(90\) 0 0
\(91\) 2.63061 4.55635i 0.275763 0.477635i
\(92\) −4.81115 10.3175i −0.501597 1.07568i
\(93\) 2.02540 2.68110i 0.210024 0.278017i
\(94\) −0.0579174 + 0.0690233i −0.00597373 + 0.00711921i
\(95\) 0 0
\(96\) 0.993517 + 1.27479i 0.101400 + 0.130108i
\(97\) 12.5700 5.86150i 1.27629 0.595145i 0.338051 0.941128i \(-0.390232\pi\)
0.938241 + 0.345983i \(0.112454\pi\)
\(98\) −0.101715 0.379605i −0.0102748 0.0383459i
\(99\) −10.5626 + 3.00137i −1.06158 + 0.301649i
\(100\) 0 0
\(101\) 6.29402 1.10980i 0.626278 0.110430i 0.148503 0.988912i \(-0.452555\pi\)
0.477775 + 0.878482i \(0.341443\pi\)
\(102\) −0.559238 0.171710i −0.0553728 0.0170018i
\(103\) −5.42718 2.53074i −0.534756 0.249361i 0.136430 0.990650i \(-0.456437\pi\)
−0.671186 + 0.741289i \(0.734215\pi\)
\(104\) 0.203153 1.15214i 0.0199208 0.112977i
\(105\) 0 0
\(106\) −0.634545 + 0.532446i −0.0616324 + 0.0517158i
\(107\) 9.48052 + 9.48052i 0.916517 + 0.916517i 0.996774 0.0802575i \(-0.0255743\pi\)
−0.0802575 + 0.996774i \(0.525574\pi\)
\(108\) 0.218097 10.3583i 0.0209864 0.996731i
\(109\) 10.7098i 1.02581i −0.858444 0.512907i \(-0.828569\pi\)
0.858444 0.512907i \(-0.171431\pi\)
\(110\) 0 0
\(111\) −2.91034 + 13.6117i −0.276237 + 1.29197i
\(112\) −3.18803 4.55299i −0.301241 0.430217i
\(113\) −1.87900 + 4.02953i −0.176762 + 0.379067i −0.974649 0.223740i \(-0.928173\pi\)
0.797887 + 0.602807i \(0.205951\pi\)
\(114\) −0.218549 0.00789441i −0.0204690 0.000739379i
\(115\) 0 0
\(116\) −7.35749 + 4.24785i −0.683125 + 0.394403i
\(117\) −8.51205 + 7.36363i −0.786939 + 0.680768i
\(118\) 0.791104 0.211976i 0.0728270 0.0195139i
\(119\) 5.70054 + 2.07483i 0.522567 + 0.190199i
\(120\) 0 0
\(121\) −1.83654 1.54104i −0.166958 0.140095i
\(122\) −0.0675000 0.771528i −0.00611116 0.0698509i
\(123\) −5.17299 + 2.18848i −0.466433 + 0.197329i
\(124\) −1.32298 + 3.63485i −0.118807 + 0.326419i
\(125\) 0 0
\(126\) 0.0236995 0.327621i 0.00211132 0.0291868i
\(127\) 19.7795 + 5.29991i 1.75515 + 0.470291i 0.985713 0.168434i \(-0.0538709\pi\)
0.769436 + 0.638724i \(0.220538\pi\)
\(128\) −2.03107 1.42217i −0.179523 0.125703i
\(129\) 0.0514717 1.42495i 0.00453183 0.125460i
\(130\) 0 0
\(131\) 19.0340 + 3.35621i 1.66301 + 0.293233i 0.924549 0.381064i \(-0.124442\pi\)
0.738460 + 0.674297i \(0.235553\pi\)
\(132\) 10.6097 6.87197i 0.923460 0.598128i
\(133\) 2.25916 + 0.197651i 0.195894 + 0.0171385i
\(134\) −1.15489 −0.0997672
\(135\) 0 0
\(136\) 1.34895 0.115672
\(137\) −8.99783 0.787208i −0.768736 0.0672557i −0.303961 0.952684i \(-0.598309\pi\)
−0.464775 + 0.885429i \(0.653865\pi\)
\(138\) 0.0394845 + 0.771107i 0.00336114 + 0.0656410i
\(139\) −5.38293 0.949156i −0.456574 0.0805063i −0.0593688 0.998236i \(-0.518909\pi\)
−0.397205 + 0.917730i \(0.630020\pi\)
\(140\) 0 0
\(141\) −1.76599 + 0.936277i −0.148723 + 0.0788487i
\(142\) 0.600022 + 0.420140i 0.0503528 + 0.0352574i
\(143\) −13.2643 3.55416i −1.10922 0.297213i
\(144\) 3.25000 + 11.4376i 0.270833 + 0.953133i
\(145\) 0 0
\(146\) 0.00736397 0.0202323i 0.000609446 0.00167444i
\(147\) 1.07285 8.65185i 0.0884872 0.713593i
\(148\) −1.39656 15.9628i −0.114797 1.31213i
\(149\) −0.505618 0.424264i −0.0414218 0.0347570i 0.621842 0.783143i \(-0.286385\pi\)
−0.663264 + 0.748386i \(0.730829\pi\)
\(150\) 0 0
\(151\) 0.0862252 + 0.0313834i 0.00701691 + 0.00255395i 0.345526 0.938409i \(-0.387700\pi\)
−0.338509 + 0.940963i \(0.609923\pi\)
\(152\) 0.487094 0.130516i 0.0395085 0.0105863i
\(153\) −10.0659 8.19123i −0.813776 0.662222i
\(154\) 0.347076 0.200385i 0.0279682 0.0161475i
\(155\) 0 0
\(156\) 6.87918 10.9797i 0.550775 0.879076i
\(157\) −6.46880 + 13.8724i −0.516266 + 1.10714i 0.459471 + 0.888193i \(0.348039\pi\)
−0.975737 + 0.218944i \(0.929739\pi\)
\(158\) −0.504520 0.720529i −0.0401374 0.0573222i
\(159\) −17.4831 + 5.65742i −1.38650 + 0.448662i
\(160\) 0 0
\(161\) 8.00670i 0.631016i
\(162\) −0.277667 + 0.645512i −0.0218156 + 0.0507162i
\(163\) −5.11206 5.11206i −0.400408 0.400408i 0.477969 0.878377i \(-0.341373\pi\)
−0.878377 + 0.477969i \(0.841373\pi\)
\(164\) 4.95328 4.15629i 0.386786 0.324552i
\(165\) 0 0
\(166\) 0.231527 1.31306i 0.0179700 0.101913i
\(167\) 13.2408 + 6.17428i 1.02460 + 0.477780i 0.860924 0.508734i \(-0.169886\pi\)
0.163679 + 0.986514i \(0.447664\pi\)
\(168\) 0.169499 + 0.738220i 0.0130771 + 0.0569549i
\(169\) −1.05900 + 0.186730i −0.0814615 + 0.0143639i
\(170\) 0 0
\(171\) −4.42722 1.98387i −0.338558 0.151710i
\(172\) 0.424836 + 1.58551i 0.0323934 + 0.120894i
\(173\) 8.77812 4.09330i 0.667388 0.311208i −0.0592355 0.998244i \(-0.518866\pi\)
0.726623 + 0.687036i \(0.241089\pi\)
\(174\) 0.570699 0.0795085i 0.0432646 0.00602753i
\(175\) 0 0
\(176\) −9.32509 + 11.1132i −0.702905 + 0.837689i
\(177\) 18.0306 + 2.23584i 1.35526 + 0.168056i
\(178\) 0.447276 + 0.959187i 0.0335248 + 0.0718941i
\(179\) 9.40526 16.2904i 0.702982 1.21760i −0.264433 0.964404i \(-0.585185\pi\)
0.967415 0.253197i \(-0.0814820\pi\)
\(180\) 0 0
\(181\) −5.53790 9.59192i −0.411629 0.712962i 0.583439 0.812157i \(-0.301707\pi\)
−0.995068 + 0.0991950i \(0.968373\pi\)
\(182\) 0.235616 0.336494i 0.0174650 0.0249426i
\(183\) 5.04287 16.4240i 0.372780 1.21410i
\(184\) −0.608936 1.67304i −0.0448914 0.123338i
\(185\) 0 0
\(186\) 0.175781 0.194755i 0.0128889 0.0142801i
\(187\) 1.38000 15.7735i 0.100916 1.15347i
\(188\) 1.62706 1.62706i 0.118666 0.118666i
\(189\) 3.21789 6.53783i 0.234067 0.475557i
\(190\) 0 0
\(191\) 4.33436 + 5.16549i 0.313623 + 0.373762i 0.899711 0.436486i \(-0.143777\pi\)
−0.586088 + 0.810247i \(0.699333\pi\)
\(192\) −7.39538 11.4179i −0.533716 0.824012i
\(193\) 1.13686 0.796040i 0.0818332 0.0573002i −0.531944 0.846780i \(-0.678538\pi\)
0.613777 + 0.789479i \(0.289649\pi\)
\(194\) 1.01759 0.370372i 0.0730586 0.0265912i
\(195\) 0 0
\(196\) 1.74276 + 9.88366i 0.124483 + 0.705976i
\(197\) −5.85076 + 21.8353i −0.416849 + 1.55570i 0.364253 + 0.931300i \(0.381324\pi\)
−0.781102 + 0.624403i \(0.785342\pi\)
\(198\) −0.841989 + 0.161571i −0.0598375 + 0.0114823i
\(199\) 5.40542 + 3.12082i 0.383180 + 0.221229i 0.679201 0.733952i \(-0.262326\pi\)
−0.296021 + 0.955181i \(0.595660\pi\)
\(200\) 0 0
\(201\) −23.7427 9.62581i −1.67468 0.678952i
\(202\) 0.497104 0.0434909i 0.0349761 0.00306001i
\(203\) −5.95245 + 0.520772i −0.417780 + 0.0365510i
\(204\) 13.8450 + 5.61307i 0.969343 + 0.392993i
\(205\) 0 0
\(206\) −0.404908 0.233773i −0.0282112 0.0162878i
\(207\) −5.61531 + 16.1818i −0.390291 + 1.12471i
\(208\) −3.84858 + 14.3631i −0.266851 + 0.995901i
\(209\) −1.02784 5.82918i −0.0710973 0.403213i
\(210\) 0 0
\(211\) 0.707308 0.257439i 0.0486931 0.0177228i −0.317559 0.948239i \(-0.602863\pi\)
0.366252 + 0.930516i \(0.380641\pi\)
\(212\) 17.3281 12.1333i 1.19010 0.833316i
\(213\) 8.83370 + 13.6385i 0.605275 + 0.934494i
\(214\) 0.672885 + 0.801914i 0.0459975 + 0.0548177i
\(215\) 0 0
\(216\) 0.175170 1.61084i 0.0119188 0.109604i
\(217\) −1.92371 + 1.92371i −0.130590 + 0.130590i
\(218\) 0.0728793 0.833014i 0.00493601 0.0564188i
\(219\) 0.320025 0.354567i 0.0216253 0.0239594i
\(220\) 0 0
\(221\) −5.55078 15.2506i −0.373386 1.02587i
\(222\) −0.318994 + 1.03892i −0.0214095 + 0.0697280i
\(223\) 2.77332 3.96071i 0.185715 0.265229i −0.715489 0.698624i \(-0.753796\pi\)
0.901204 + 0.433396i \(0.142685\pi\)
\(224\) −0.654286 1.13326i −0.0437163 0.0757189i
\(225\) 0 0
\(226\) −0.173570 + 0.300633i −0.0115457 + 0.0199978i
\(227\) −5.43745 11.6607i −0.360896 0.773945i −0.999988 0.00481463i \(-0.998467\pi\)
0.639092 0.769130i \(-0.279310\pi\)
\(228\) 5.54238 + 0.687269i 0.367053 + 0.0455155i
\(229\) 0.424504 0.505904i 0.0280520 0.0334311i −0.751836 0.659350i \(-0.770832\pi\)
0.779888 + 0.625919i \(0.215276\pi\)
\(230\) 0 0
\(231\) 8.80551 1.22676i 0.579360 0.0807151i
\(232\) −1.20419 + 0.561522i −0.0790588 + 0.0368657i
\(233\) −2.52986 9.44157i −0.165737 0.618538i −0.997945 0.0640748i \(-0.979590\pi\)
0.832208 0.554463i \(-0.187076\pi\)
\(234\) −0.712180 + 0.514823i −0.0465567 + 0.0336550i
\(235\) 0 0
\(236\) −20.5977 + 3.63193i −1.34080 + 0.236419i
\(237\) −4.36663 19.0180i −0.283643 1.23535i
\(238\) 0.429271 + 0.200173i 0.0278255 + 0.0129753i
\(239\) −3.56341 + 20.2091i −0.230498 + 1.30722i 0.621392 + 0.783499i \(0.286567\pi\)
−0.851891 + 0.523720i \(0.824544\pi\)
\(240\) 0 0
\(241\) 3.96082 3.32352i 0.255139 0.214087i −0.506243 0.862391i \(-0.668966\pi\)
0.761381 + 0.648304i \(0.224522\pi\)
\(242\) −0.132360 0.132360i −0.00850845 0.00850845i
\(243\) −11.0886 + 10.9564i −0.711335 + 0.702853i
\(244\) 19.7781i 1.26617i
\(245\) 0 0
\(246\) −0.417250 + 0.135020i −0.0266029 + 0.00860854i
\(247\) −3.47989 4.96980i −0.221420 0.316221i
\(248\) −0.255664 + 0.548272i −0.0162347 + 0.0348153i
\(249\) 15.7039 25.0646i 0.995196 1.58840i
\(250\) 0 0
\(251\) −6.01963 + 3.47543i −0.379955 + 0.219367i −0.677799 0.735247i \(-0.737066\pi\)
0.297843 + 0.954615i \(0.403733\pi\)
\(252\) −1.33212 + 8.28202i −0.0839157 + 0.521718i
\(253\) −20.1860 + 5.40883i −1.26908 + 0.340050i
\(254\) 1.50240 + 0.546827i 0.0942687 + 0.0343110i
\(255\) 0 0
\(256\) 11.8848 + 9.97255i 0.742802 + 0.623285i
\(257\) −2.15005 24.5752i −0.134117 1.53296i −0.703385 0.710809i \(-0.748329\pi\)
0.569268 0.822152i \(-0.307227\pi\)
\(258\) 0.0137001 0.110483i 0.000852933 0.00687835i
\(259\) 3.85451 10.5902i 0.239507 0.658041i
\(260\) 0 0
\(261\) 12.3954 + 3.12211i 0.767253 + 0.193254i
\(262\) 1.45764 + 0.390572i 0.0900530 + 0.0241296i
\(263\) 8.76805 + 6.13946i 0.540661 + 0.378575i 0.811773 0.583973i \(-0.198502\pi\)
−0.271112 + 0.962548i \(0.587391\pi\)
\(264\) 1.74665 0.926027i 0.107499 0.0569930i
\(265\) 0 0
\(266\) 0.174373 + 0.0307467i 0.0106915 + 0.00188520i
\(267\) 1.20062 + 23.4473i 0.0734767 + 1.43495i
\(268\) 29.3807 + 2.57048i 1.79471 + 0.157017i
\(269\) −25.6878 −1.56621 −0.783106 0.621888i \(-0.786366\pi\)
−0.783106 + 0.621888i \(0.786366\pi\)
\(270\) 0 0
\(271\) −3.84439 −0.233530 −0.116765 0.993160i \(-0.537252\pi\)
−0.116765 + 0.993160i \(0.537252\pi\)
\(272\) −17.0801 1.49432i −1.03564 0.0906064i
\(273\) 7.64850 4.95396i 0.462909 0.299827i
\(274\) −0.694499 0.122459i −0.0419562 0.00739801i
\(275\) 0 0
\(276\) 0.711784 19.7051i 0.0428444 1.18611i
\(277\) −17.6146 12.3338i −1.05836 0.741069i −0.0913494 0.995819i \(-0.529118\pi\)
−0.967007 + 0.254750i \(0.918007\pi\)
\(278\) −0.412228 0.110456i −0.0247238 0.00662472i
\(279\) 5.23703 2.53873i 0.313533 0.151990i
\(280\) 0 0
\(281\) 4.61880 12.6900i 0.275534 0.757024i −0.722320 0.691558i \(-0.756924\pi\)
0.997855 0.0654659i \(-0.0208534\pi\)
\(282\) −0.143731 + 0.0608067i −0.00855904 + 0.00362098i
\(283\) −1.82816 20.8960i −0.108673 1.24214i −0.833232 0.552923i \(-0.813512\pi\)
0.724560 0.689212i \(-0.242043\pi\)
\(284\) −14.3296 12.0240i −0.850307 0.713492i
\(285\) 0 0
\(286\) −1.00752 0.366706i −0.0595757 0.0216838i
\(287\) 4.39274 1.17703i 0.259295 0.0694779i
\(288\) 0.527552 + 2.74922i 0.0310863 + 0.161999i
\(289\) 1.48357 0.856540i 0.0872689 0.0503847i
\(290\) 0 0
\(291\) 24.0070 + 0.867178i 1.40731 + 0.0508349i
\(292\) −0.232373 + 0.498326i −0.0135986 + 0.0291623i
\(293\) 16.2974 + 23.2751i 0.952105 + 1.35975i 0.932980 + 0.359929i \(0.117199\pi\)
0.0191252 + 0.999817i \(0.493912\pi\)
\(294\) 0.142322 0.665645i 0.00830038 0.0388212i
\(295\) 0 0
\(296\) 2.50602i 0.145659i
\(297\) −18.6566 3.69620i −1.08257 0.214475i
\(298\) −0.0364401 0.0364401i −0.00211092 0.00211092i
\(299\) −16.4089 + 13.7687i −0.948952 + 0.796265i
\(300\) 0 0
\(301\) −0.200470 + 1.13692i −0.0115549 + 0.0655309i
\(302\) 0.00649308 + 0.00302777i 0.000373634 + 0.000174229i
\(303\) 10.5821 + 3.24917i 0.607928 + 0.186660i
\(304\) −6.31206 + 1.11299i −0.362021 + 0.0638342i
\(305\) 0 0
\(306\) −0.727186 0.705615i −0.0415705 0.0403373i
\(307\) 6.71325 + 25.0542i 0.383146 + 1.42992i 0.841069 + 0.540927i \(0.181927\pi\)
−0.457924 + 0.888991i \(0.651407\pi\)
\(308\) −9.27573 + 4.32534i −0.528534 + 0.246459i
\(309\) −6.37579 8.18085i −0.362706 0.465392i
\(310\) 0 0
\(311\) −14.3581 + 17.1114i −0.814176 + 0.970297i −0.999924 0.0123005i \(-0.996085\pi\)
0.185749 + 0.982597i \(0.440529\pi\)
\(312\) 1.22143 1.61685i 0.0691497 0.0915361i
\(313\) 11.3289 + 24.2949i 0.640346 + 1.37323i 0.911744 + 0.410760i \(0.134737\pi\)
−0.271397 + 0.962467i \(0.587486\pi\)
\(314\) −0.597547 + 1.03498i −0.0337215 + 0.0584074i
\(315\) 0 0
\(316\) 11.2314 + 19.4534i 0.631817 + 1.09434i
\(317\) −11.9984 + 17.1355i −0.673896 + 0.962423i 0.325959 + 0.945384i \(0.394313\pi\)
−0.999855 + 0.0170391i \(0.994576\pi\)
\(318\) −1.39834 + 0.321066i −0.0784150 + 0.0180045i
\(319\) 5.33405 + 14.6552i 0.298649 + 0.820533i
\(320\) 0 0
\(321\) 7.14963 + 22.0944i 0.399053 + 1.23319i
\(322\) 0.0544849 0.622765i 0.00303632 0.0347053i
\(323\) 4.94655 4.94655i 0.275234 0.275234i
\(324\) 8.50066 15.8040i 0.472259 0.878000i
\(325\) 0 0
\(326\) −0.362832 0.432406i −0.0200954 0.0239487i
\(327\) 8.44132 16.5180i 0.466806 0.913448i
\(328\) 0.828367 0.580029i 0.0457389 0.0320267i
\(329\) 1.52075 0.553509i 0.0838418 0.0305159i
\(330\) 0 0
\(331\) 2.07689 + 11.7786i 0.114156 + 0.647411i 0.987165 + 0.159706i \(0.0510547\pi\)
−0.873009 + 0.487705i \(0.837834\pi\)
\(332\) −8.81264 + 32.8892i −0.483656 + 1.80503i
\(333\) −15.2173 + 18.6998i −0.833901 + 1.02474i
\(334\) 0.987859 + 0.570341i 0.0540533 + 0.0312077i
\(335\) 0 0
\(336\) −1.32839 9.53494i −0.0724694 0.520174i
\(337\) −18.9713 + 1.65977i −1.03343 + 0.0904136i −0.591231 0.806502i \(-0.701358\pi\)
−0.442201 + 0.896916i \(0.645802\pi\)
\(338\) −0.0836401 + 0.00731756i −0.00454942 + 0.000398023i
\(339\) −6.07405 + 4.73385i −0.329897 + 0.257107i
\(340\) 0 0
\(341\) 6.14948 + 3.55040i 0.333013 + 0.192265i
\(342\) −0.330851 0.184433i −0.0178904 0.00997299i
\(343\) −4.36759 + 16.3001i −0.235828 + 0.880121i
\(344\) 0.0445774 + 0.252811i 0.00240345 + 0.0136307i
\(345\) 0 0
\(346\) 0.710621 0.258645i 0.0382032 0.0139048i
\(347\) 16.8906 11.8269i 0.906735 0.634903i −0.0243506 0.999703i \(-0.507752\pi\)
0.931086 + 0.364801i \(0.118863\pi\)
\(348\) −14.6957 + 0.752494i −0.787773 + 0.0403379i
\(349\) 22.8800 + 27.2673i 1.22474 + 1.45959i 0.845234 + 0.534396i \(0.179461\pi\)
0.379503 + 0.925190i \(0.376095\pi\)
\(350\) 0 0
\(351\) −18.9322 + 4.64803i −1.01053 + 0.248094i
\(352\) −2.41511 + 2.41511i −0.128726 + 0.128726i
\(353\) −1.01031 + 11.5479i −0.0537734 + 0.614632i 0.920721 + 0.390221i \(0.127601\pi\)
−0.974495 + 0.224411i \(0.927954\pi\)
\(354\) 1.38721 + 0.296601i 0.0737296 + 0.0157642i
\(355\) 0 0
\(356\) −9.24394 25.3975i −0.489928 1.34607i
\(357\) 7.15673 + 7.69313i 0.378774 + 0.407164i
\(358\) 0.842400 1.20307i 0.0445222 0.0635844i
\(359\) 8.36957 + 14.4965i 0.441729 + 0.765097i 0.997818 0.0660256i \(-0.0210319\pi\)
−0.556089 + 0.831123i \(0.687699\pi\)
\(360\) 0 0
\(361\) −8.19244 + 14.1897i −0.431181 + 0.746828i
\(362\) −0.365468 0.783749i −0.0192086 0.0411929i
\(363\) −1.61792 3.82432i −0.0849185 0.200725i
\(364\) −6.74308 + 8.03609i −0.353433 + 0.421206i
\(365\) 0 0
\(366\) 0.504001 1.24315i 0.0263445 0.0649805i
\(367\) 7.42555 3.46259i 0.387611 0.180746i −0.219037 0.975716i \(-0.570292\pi\)
0.606648 + 0.794971i \(0.292514\pi\)
\(368\) 5.85689 + 21.8582i 0.305312 + 1.13944i
\(369\) −9.70336 0.701923i −0.505137 0.0365407i
\(370\) 0 0
\(371\) 14.6518 2.58351i 0.760683 0.134129i
\(372\) −4.90540 + 4.56337i −0.254333 + 0.236600i
\(373\) 2.33425 + 1.08848i 0.120863 + 0.0563592i 0.482109 0.876111i \(-0.339871\pi\)
−0.361246 + 0.932470i \(0.617649\pi\)
\(374\) 0.214674 1.21748i 0.0111005 0.0629543i
\(375\) 0 0
\(376\) 0.275673 0.231317i 0.0142167 0.0119292i
\(377\) 11.3034 + 11.3034i 0.582155 + 0.582155i
\(378\) 0.294778 0.486618i 0.0151618 0.0250289i
\(379\) 9.64972i 0.495673i −0.968802 0.247836i \(-0.920280\pi\)
0.968802 0.247836i \(-0.0797195\pi\)
\(380\) 0 0
\(381\) 26.3291 + 23.7641i 1.34888 + 1.21747i
\(382\) 0.301978 + 0.431269i 0.0154505 + 0.0220656i
\(383\) −6.52445 + 13.9917i −0.333384 + 0.714944i −0.999523 0.0308834i \(-0.990168\pi\)
0.666139 + 0.745828i \(0.267946\pi\)
\(384\) −2.01163 3.79431i −0.102656 0.193627i
\(385\) 0 0
\(386\) 0.0938427 0.0541801i 0.00477647 0.00275770i
\(387\) 1.20251 2.15716i 0.0611269 0.109655i
\(388\) −26.7121 + 7.15749i −1.35610 + 0.363366i
\(389\) −9.45615 3.44176i −0.479446 0.174504i 0.0909807 0.995853i \(-0.471000\pi\)
−0.570426 + 0.821349i \(0.693222\pi\)
\(390\) 0 0
\(391\) −18.9201 15.8758i −0.956829 0.802875i
\(392\) 0.136799 + 1.56362i 0.00690938 + 0.0789746i
\(393\) 26.7113 + 20.1787i 1.34741 + 1.01788i
\(394\) −0.603662 + 1.65855i −0.0304121 + 0.0835565i
\(395\) 0 0
\(396\) 21.7801 2.23636i 1.09449 0.112381i
\(397\) 2.60816 + 0.698855i 0.130900 + 0.0350745i 0.323674 0.946169i \(-0.395082\pi\)
−0.192774 + 0.981243i \(0.561748\pi\)
\(398\) 0.399199 + 0.279522i 0.0200100 + 0.0140112i
\(399\) 3.32857 + 2.08548i 0.166637 + 0.104404i
\(400\) 0 0
\(401\) 31.5922 + 5.57055i 1.57764 + 0.278180i 0.892778 0.450496i \(-0.148753\pi\)
0.684858 + 0.728676i \(0.259864\pi\)
\(402\) −1.78121 0.910267i −0.0888389 0.0454000i
\(403\) 7.25054 + 0.634340i 0.361175 + 0.0315987i
\(404\) −12.7433 −0.634001
\(405\) 0 0
\(406\) −0.466528 −0.0231534
\(407\) −29.3032 2.56370i −1.45250 0.127078i
\(408\) 2.08052 + 1.06322i 0.103001 + 0.0526375i
\(409\) 32.0488 + 5.65107i 1.58471 + 0.279427i 0.895476 0.445110i \(-0.146836\pi\)
0.689235 + 0.724538i \(0.257947\pi\)
\(410\) 0 0
\(411\) −13.2571 8.30609i −0.653925 0.409709i
\(412\) 9.78065 + 6.84848i 0.481858 + 0.337401i
\(413\) −14.2090 3.80730i −0.699180 0.187345i
\(414\) −0.546877 + 1.22042i −0.0268776 + 0.0599803i
\(415\) 0 0
\(416\) −1.19735 + 3.28969i −0.0587050 + 0.161291i
\(417\) −7.55411 5.70665i −0.369926 0.279456i
\(418\) −0.0402790 0.460391i −0.00197011 0.0225184i
\(419\) −17.2393 14.4655i −0.842197 0.706687i 0.115860 0.993266i \(-0.463038\pi\)
−0.958057 + 0.286578i \(0.907482\pi\)
\(420\) 0 0
\(421\) −28.8586 10.5037i −1.40648 0.511918i −0.476388 0.879235i \(-0.658054\pi\)
−0.930096 + 0.367316i \(0.880277\pi\)
\(422\) 0.0567666 0.0152106i 0.00276336 0.000740439i
\(423\) −3.46169 + 0.0521164i −0.168313 + 0.00253399i
\(424\) 2.86508 1.65415i 0.139141 0.0803328i
\(425\) 0 0
\(426\) 0.594281 + 1.12092i 0.0287930 + 0.0543088i
\(427\) −5.87877 + 12.6071i −0.284494 + 0.610099i
\(428\) −15.3336 21.8986i −0.741175 1.05851i
\(429\) −17.6565 15.9364i −0.852464 0.769416i
\(430\) 0 0
\(431\) 17.0982i 0.823592i −0.911276 0.411796i \(-0.864902\pi\)
0.911276 0.411796i \(-0.135098\pi\)
\(432\) −4.00239 + 20.2021i −0.192565 + 0.971973i
\(433\) 7.53063 + 7.53063i 0.361899 + 0.361899i 0.864512 0.502613i \(-0.167628\pi\)
−0.502613 + 0.864512i \(0.667628\pi\)
\(434\) −0.162718 + 0.136536i −0.00781069 + 0.00655395i
\(435\) 0 0
\(436\) −3.70814 + 21.0299i −0.177588 + 1.00715i
\(437\) −8.36791 3.90202i −0.400292 0.186659i
\(438\) 0.0273045 0.0254007i 0.00130466 0.00121369i
\(439\) 12.4586 2.19679i 0.594617 0.104847i 0.131763 0.991281i \(-0.457936\pi\)
0.462855 + 0.886434i \(0.346825\pi\)
\(440\) 0 0
\(441\) 8.47395 12.4984i 0.403521 0.595160i
\(442\) −0.327963 1.22397i −0.0155996 0.0582185i
\(443\) 28.9199 13.4856i 1.37403 0.640719i 0.411375 0.911466i \(-0.365049\pi\)
0.962650 + 0.270747i \(0.0872708\pi\)
\(444\) 10.4277 25.7205i 0.494875 1.22064i
\(445\) 0 0
\(446\) 0.242662 0.289194i 0.0114904 0.0136937i
\(447\) −0.445428 1.05287i −0.0210680 0.0497992i
\(448\) 4.65479 + 9.98223i 0.219918 + 0.471616i
\(449\) −13.3782 + 23.1718i −0.631358 + 1.09354i 0.355916 + 0.934518i \(0.384169\pi\)
−0.987274 + 0.159026i \(0.949165\pi\)
\(450\) 0 0
\(451\) −5.93492 10.2796i −0.279465 0.484047i
\(452\) 5.08481 7.26186i 0.239169 0.341569i
\(453\) 0.108251 + 0.116365i 0.00508609 + 0.00546730i
\(454\) −0.343578 0.943973i −0.0161249 0.0443028i
\(455\) 0 0
\(456\) 0.854128 + 0.182622i 0.0399982 + 0.00855205i
\(457\) 1.87432 21.4236i 0.0876772 1.00215i −0.817164 0.576405i \(-0.804455\pi\)
0.904841 0.425750i \(-0.139990\pi\)
\(458\) 0.0364607 0.0364607i 0.00170370 0.00170370i
\(459\) −9.06860 20.5673i −0.423286 0.959999i
\(460\) 0 0
\(461\) −15.4953 18.4666i −0.721687 0.860073i 0.273107 0.961984i \(-0.411949\pi\)
−0.994794 + 0.101911i \(0.967504\pi\)
\(462\) 0.693244 0.0354976i 0.0322527 0.00165150i
\(463\) 21.4684 15.0323i 0.997720 0.698611i 0.0439142 0.999035i \(-0.486017\pi\)
0.953806 + 0.300424i \(0.0971283\pi\)
\(464\) 15.8692 5.77592i 0.736709 0.268140i
\(465\) 0 0
\(466\) −0.132525 0.751585i −0.00613909 0.0348165i
\(467\) 3.07154 11.4631i 0.142134 0.530451i −0.857732 0.514096i \(-0.828127\pi\)
0.999866 0.0163543i \(-0.00520595\pi\)
\(468\) 19.2639 11.5121i 0.890475 0.532148i
\(469\) 17.9640 + 10.3715i 0.829498 + 0.478911i
\(470\) 0 0
\(471\) −20.9110 + 16.2971i −0.963528 + 0.750931i
\(472\) −3.25860 + 0.285091i −0.149989 + 0.0131224i
\(473\) 3.00176 0.262620i 0.138021 0.0120753i
\(474\) −0.210223 1.50894i −0.00965585 0.0693081i
\(475\) 0 0
\(476\) −10.4753 6.04789i −0.480133 0.277205i
\(477\) −31.4237 5.05433i −1.43879 0.231422i
\(478\) −0.414685 + 1.54763i −0.0189673 + 0.0707868i
\(479\) 2.62132 + 14.8663i 0.119771 + 0.679256i 0.984277 + 0.176633i \(0.0565206\pi\)
−0.864506 + 0.502623i \(0.832368\pi\)
\(480\) 0 0
\(481\) −28.3319 + 10.3120i −1.29182 + 0.470184i
\(482\) 0.330691 0.231552i 0.0150625 0.0105469i
\(483\) 6.31076 12.3489i 0.287150 0.561896i
\(484\) 3.07269 + 3.66189i 0.139668 + 0.166449i
\(485\) 0 0
\(486\) −0.937035 + 0.776736i −0.0425048 + 0.0352335i
\(487\) 17.5079 17.5079i 0.793360 0.793360i −0.188679 0.982039i \(-0.560421\pi\)
0.982039 + 0.188679i \(0.0604207\pi\)
\(488\) −0.269588 + 3.08141i −0.0122037 + 0.139489i
\(489\) −3.85521 11.9137i −0.174338 0.538757i
\(490\) 0 0
\(491\) −14.3755 39.4964i −0.648758 1.78245i −0.622274 0.782799i \(-0.713791\pi\)
−0.0264842 0.999649i \(-0.508431\pi\)
\(492\) 10.9155 2.50625i 0.492108 0.112990i
\(493\) −10.5720 + 15.0984i −0.476140 + 0.679999i
\(494\) −0.236849 0.410234i −0.0106563 0.0184573i
\(495\) 0 0
\(496\) 3.84451 6.65889i 0.172624 0.298993i
\(497\) −5.56009 11.9237i −0.249404 0.534849i
\(498\) 1.39202 1.84267i 0.0623780 0.0825721i
\(499\) 14.9078 17.7664i 0.667366 0.795336i −0.321057 0.947060i \(-0.604038\pi\)
0.988423 + 0.151724i \(0.0484826\pi\)
\(500\) 0 0
\(501\) 15.5551 + 19.9589i 0.694951 + 0.891700i
\(502\) −0.491859 + 0.229358i −0.0219528 + 0.0102367i
\(503\) −6.80105 25.3819i −0.303244 1.13172i −0.934447 0.356103i \(-0.884105\pi\)
0.631203 0.775618i \(-0.282561\pi\)
\(504\) −0.320432 + 1.27217i −0.0142732 + 0.0566670i
\(505\) 0 0
\(506\) −1.60689 + 0.283337i −0.0714348 + 0.0125959i
\(507\) −1.78050 0.546689i −0.0790747 0.0242793i
\(508\) −37.0043 17.2554i −1.64180 0.765584i
\(509\) −7.00772 + 39.7428i −0.310612 + 1.76157i 0.285224 + 0.958461i \(0.407932\pi\)
−0.595836 + 0.803106i \(0.703179\pi\)
\(510\) 0 0
\(511\) −0.296241 + 0.248576i −0.0131049 + 0.0109963i
\(512\) 4.36306 + 4.36306i 0.192822 + 0.192822i
\(513\) −5.26455 6.54924i −0.232436 0.289156i
\(514\) 1.92610i 0.0849568i
\(515\) 0 0
\(516\) −0.594441 + 2.78022i −0.0261688 + 0.122392i
\(517\) −2.42280 3.46012i −0.106555 0.152176i
\(518\) 0.371870 0.797479i 0.0163390 0.0350392i
\(519\) 16.7650 + 0.605583i 0.735901 + 0.0265821i
\(520\) 0 0
\(521\) 18.5284 10.6974i 0.811746 0.468662i −0.0358161 0.999358i \(-0.511403\pi\)
0.847562 + 0.530697i \(0.178070\pi\)
\(522\) 0.942871 + 0.327189i 0.0412683 + 0.0143207i
\(523\) 25.2654 6.76985i 1.10478 0.296025i 0.340071 0.940400i \(-0.389549\pi\)
0.764710 + 0.644375i \(0.222882\pi\)
\(524\) −36.2134 13.1806i −1.58199 0.575796i
\(525\) 0 0
\(526\) 0.640205 + 0.537196i 0.0279143 + 0.0234228i
\(527\) 0.731418 + 8.36014i 0.0318611 + 0.364173i
\(528\) −23.1416 + 9.79027i −1.00711 + 0.426067i
\(529\) −3.28275 + 9.01929i −0.142728 + 0.392143i
\(530\) 0 0
\(531\) 26.0468 + 17.6598i 1.13033 + 0.766372i
\(532\) −4.36767 1.17031i −0.189363 0.0507396i
\(533\) −9.96617 6.97839i −0.431683 0.302267i
\(534\) −0.0661722 + 1.83191i −0.00286355 + 0.0792747i
\(535\) 0 0
\(536\) 4.54244 + 0.800955i 0.196204 + 0.0345960i
\(537\) 27.3458 17.7120i 1.18006 0.764328i
\(538\) −1.99801 0.174803i −0.0861403 0.00753630i
\(539\) 18.4235 0.793558
\(540\) 0 0
\(541\) −8.34293 −0.358691 −0.179345 0.983786i \(-0.557398\pi\)
−0.179345 + 0.983786i \(0.557398\pi\)
\(542\) −0.299018 0.0261607i −0.0128439 0.00112370i
\(543\) −0.981022 19.1587i −0.0420997 0.822180i
\(544\) −3.97525 0.700944i −0.170437 0.0300527i
\(545\) 0 0
\(546\) 0.628616 0.333274i 0.0269023 0.0142628i
\(547\) −0.804110 0.563044i −0.0343812 0.0240740i 0.556259 0.831009i \(-0.312236\pi\)
−0.590641 + 0.806935i \(0.701125\pi\)
\(548\) 17.3957 + 4.66116i 0.743107 + 0.199115i
\(549\) 20.7229 21.3564i 0.884431 0.911469i
\(550\) 0 0
\(551\) −2.35663 + 6.47479i −0.100396 + 0.275835i
\(552\) 0.379488 3.06032i 0.0161521 0.130256i
\(553\) 1.37694 + 15.7385i 0.0585533 + 0.669267i
\(554\) −1.28614 1.07920i −0.0546428 0.0458507i
\(555\) 0 0
\(556\) 10.2414 + 3.72755i 0.434330 + 0.158083i
\(557\) 4.49123 1.20342i 0.190299 0.0509906i −0.162411 0.986723i \(-0.551927\pi\)
0.352710 + 0.935733i \(0.385260\pi\)
\(558\) 0.424614 0.161826i 0.0179754 0.00685066i
\(559\) 2.67474 1.54426i 0.113129 0.0653152i
\(560\) 0 0
\(561\) 14.5608 23.2401i 0.614759 0.981199i
\(562\) 0.445607 0.955607i 0.0187968 0.0403098i
\(563\) 4.48288 + 6.40221i 0.188931 + 0.269821i 0.902431 0.430833i \(-0.141780\pi\)
−0.713501 + 0.700654i \(0.752891\pi\)
\(564\) 3.79189 1.22703i 0.159667 0.0516674i
\(565\) 0 0
\(566\) 1.63774i 0.0688392i
\(567\) 10.1160 7.54716i 0.424834 0.316951i
\(568\) −2.06864 2.06864i −0.0867983 0.0867983i
\(569\) −13.8060 + 11.5846i −0.578776 + 0.485651i −0.884545 0.466455i \(-0.845531\pi\)
0.305769 + 0.952106i \(0.401087\pi\)
\(570\) 0 0
\(571\) 3.14824 17.8546i 0.131750 0.747190i −0.845318 0.534263i \(-0.820589\pi\)
0.977068 0.212927i \(-0.0682997\pi\)
\(572\) 24.8153 + 11.5716i 1.03758 + 0.483832i
\(573\) 2.61362 + 11.3831i 0.109186 + 0.475537i
\(574\) 0.349679 0.0616578i 0.0145953 0.00257355i
\(575\) 0 0
\(576\) −2.40669 23.4390i −0.100279 0.976623i
\(577\) −1.79688 6.70605i −0.0748051 0.279177i 0.918384 0.395691i \(-0.129495\pi\)
−0.993189 + 0.116514i \(0.962828\pi\)
\(578\) 0.121222 0.0565265i 0.00504215 0.00235119i
\(579\) 2.38084 0.331693i 0.0989443 0.0137847i
\(580\) 0 0
\(581\) −15.3932 + 18.3450i −0.638619 + 0.761077i
\(582\) 1.86137 + 0.230815i 0.0771564 + 0.00956759i
\(583\) −16.4112 35.1940i −0.679683 1.45759i
\(584\) −0.0429960 + 0.0744712i −0.00177919 + 0.00308164i
\(585\) 0 0
\(586\) 1.10924 + 1.92125i 0.0458221 + 0.0793662i
\(587\) 16.0612 22.9378i 0.662918 0.946745i −0.337068 0.941480i \(-0.609435\pi\)
0.999986 0.00526447i \(-0.00167574\pi\)
\(588\) −5.10226 + 16.6174i −0.210414 + 0.685291i
\(589\) 1.07298 + 2.94800i 0.0442116 + 0.121470i
\(590\) 0 0
\(591\) −26.2341 + 29.0657i −1.07913 + 1.19560i
\(592\) −2.77607 + 31.7306i −0.114096 + 1.30412i
\(593\) −16.2602 + 16.2602i −0.667726 + 0.667726i −0.957189 0.289463i \(-0.906523\pi\)
0.289463 + 0.957189i \(0.406523\pi\)
\(594\) −1.42597 0.414449i −0.0585081 0.0170050i
\(595\) 0 0
\(596\) 0.845941 + 1.00815i 0.0346511 + 0.0412956i
\(597\) 5.87712 + 9.07379i 0.240535 + 0.371365i
\(598\) −1.36999 + 0.959276i −0.0560230 + 0.0392277i
\(599\) 7.68065 2.79553i 0.313823 0.114222i −0.180307 0.983610i \(-0.557709\pi\)
0.494130 + 0.869388i \(0.335487\pi\)
\(600\) 0 0
\(601\) 0.950433 + 5.39018i 0.0387690 + 0.219870i 0.998037 0.0626279i \(-0.0199481\pi\)
−0.959268 + 0.282498i \(0.908837\pi\)
\(602\) −0.0233292 + 0.0870659i −0.000950829 + 0.00354854i
\(603\) −29.0320 33.5597i −1.18227 1.36666i
\(604\) −0.158447 0.0914792i −0.00644710 0.00372224i
\(605\) 0 0
\(606\) 0.800974 + 0.324733i 0.0325373 + 0.0131914i
\(607\) −4.31710 + 0.377697i −0.175226 + 0.0153303i −0.174431 0.984669i \(-0.555809\pi\)
−0.000794827 1.00000i \(0.500253\pi\)
\(608\) −1.50324 + 0.131517i −0.0609646 + 0.00533371i
\(609\) −9.59108 3.88844i −0.388650 0.157567i
\(610\) 0 0
\(611\) −3.74952 2.16479i −0.151689 0.0875779i
\(612\) 16.9293 + 19.5696i 0.684327 + 0.791053i
\(613\) 9.89430 36.9260i 0.399627 1.49143i −0.414127 0.910219i \(-0.635913\pi\)
0.813754 0.581209i \(-0.197420\pi\)
\(614\) 0.351668 + 1.99441i 0.0141922 + 0.0804879i
\(615\) 0 0
\(616\) −1.50410 + 0.547449i −0.0606021 + 0.0220573i
\(617\) −12.9164 + 9.04416i −0.519995 + 0.364104i −0.803915 0.594744i \(-0.797254\pi\)
0.283921 + 0.958848i \(0.408365\pi\)
\(618\) −0.440242 0.679697i −0.0177091 0.0273414i
\(619\) −13.8731 16.5333i −0.557608 0.664531i 0.411431 0.911441i \(-0.365029\pi\)
−0.969038 + 0.246910i \(0.920585\pi\)
\(620\) 0 0
\(621\) −21.4149 + 20.5317i −0.859351 + 0.823909i
\(622\) −1.23322 + 1.23322i −0.0494478 + 0.0494478i
\(623\) 1.65674 18.9366i 0.0663759 0.758680i
\(624\) −17.2565 + 19.1191i −0.690814 + 0.765378i
\(625\) 0 0
\(626\) 0.715842 + 1.96676i 0.0286108 + 0.0786075i
\(627\) 3.00921 9.80061i 0.120176 0.391399i
\(628\) 17.5054 25.0002i 0.698540 0.997618i
\(629\) −17.3821 30.1067i −0.693070 1.20043i
\(630\) 0 0
\(631\) −6.83945 + 11.8463i −0.272274 + 0.471593i −0.969444 0.245314i \(-0.921109\pi\)
0.697170 + 0.716906i \(0.254442\pi\)
\(632\) 1.48468 + 3.18391i 0.0590574 + 0.126649i
\(633\) 1.29381 + 0.160435i 0.0514243 + 0.00637673i
\(634\) −1.04984 + 1.25116i −0.0416947 + 0.0496897i
\(635\) 0 0
\(636\) 36.2888 5.05567i 1.43894 0.200470i
\(637\) 17.1146 7.98068i 0.678106 0.316206i
\(638\) 0.315158 + 1.17618i 0.0124772 + 0.0465656i
\(639\) 2.87477 + 27.9976i 0.113724 + 1.10757i
\(640\) 0 0
\(641\) 13.5589 2.39080i 0.535545 0.0944310i 0.100667 0.994920i \(-0.467902\pi\)
0.434878 + 0.900489i \(0.356791\pi\)
\(642\) 0.405751 + 1.76717i 0.0160137 + 0.0697446i
\(643\) 16.5953 + 7.73851i 0.654455 + 0.305177i 0.721338 0.692584i \(-0.243528\pi\)
−0.0668830 + 0.997761i \(0.521305\pi\)
\(644\) −2.77222 + 15.7221i −0.109241 + 0.619536i
\(645\) 0 0
\(646\) 0.418406 0.351084i 0.0164620 0.0138132i
\(647\) −1.94056 1.94056i −0.0762913 0.0762913i 0.667931 0.744223i \(-0.267180\pi\)
−0.744223 + 0.667931i \(0.767180\pi\)
\(648\) 1.53981 2.34638i 0.0604895 0.0921743i
\(649\) 38.3949i 1.50713i
\(650\) 0 0
\(651\) −4.48322 + 1.45074i −0.175711 + 0.0568591i
\(652\) 8.26812 + 11.8081i 0.323805 + 0.462441i
\(653\) 1.44008 3.08827i 0.0563549 0.120853i −0.876114 0.482105i \(-0.839873\pi\)
0.932469 + 0.361251i \(0.117650\pi\)
\(654\) 0.768973 1.22734i 0.0300692 0.0479926i
\(655\) 0 0
\(656\) −11.1311 + 6.42656i −0.434598 + 0.250915i
\(657\) 0.773046 0.294619i 0.0301594 0.0114942i
\(658\) 0.122051 0.0327036i 0.00475806 0.00127492i
\(659\) 35.1988 + 12.8113i 1.37115 + 0.499058i 0.919484 0.393128i \(-0.128607\pi\)
0.451668 + 0.892186i \(0.350829\pi\)
\(660\) 0 0
\(661\) 17.3498 + 14.5582i 0.674830 + 0.566250i 0.914491 0.404607i \(-0.132592\pi\)
−0.239661 + 0.970857i \(0.577036\pi\)
\(662\) 0.0813889 + 0.930279i 0.00316327 + 0.0361563i
\(663\) 3.45923 27.8965i 0.134345 1.08341i
\(664\) −1.82130 + 5.00398i −0.0706801 + 0.194192i
\(665\) 0 0
\(666\) −1.31086 + 1.35093i −0.0507946 + 0.0523475i
\(667\) 23.4982 + 6.29633i 0.909854 + 0.243795i
\(668\) −23.8620 16.7084i −0.923248 0.646466i
\(669\) 7.39913 3.92281i 0.286067 0.151665i
\(670\) 0 0
\(671\) 35.7556 + 6.30467i 1.38033 + 0.243389i
\(672\) −0.115905 2.26355i −0.00447113 0.0873182i
\(673\) −28.7132 2.51208i −1.10681 0.0968335i −0.480936 0.876756i \(-0.659703\pi\)
−0.625876 + 0.779922i \(0.715258\pi\)
\(674\) −1.48689 −0.0572729
\(675\) 0 0
\(676\) 2.14412 0.0824660
\(677\) 31.1016 + 2.72104i 1.19533 + 0.104578i 0.667393 0.744705i \(-0.267410\pi\)
0.527937 + 0.849283i \(0.322966\pi\)
\(678\) −0.504656 + 0.326867i −0.0193812 + 0.0125533i
\(679\) −19.1544 3.37744i −0.735079 0.129614i
\(680\) 0 0
\(681\) 0.804443 22.2702i 0.0308263 0.853397i
\(682\) 0.454149 + 0.317999i 0.0173903 + 0.0121768i
\(683\) −13.2286 3.54459i −0.506178 0.135630i −0.00331227 0.999995i \(-0.501054\pi\)
−0.502866 + 0.864365i \(0.667721\pi\)
\(684\) 8.00645 + 5.42841i 0.306134 + 0.207561i
\(685\) 0 0
\(686\) −0.450634 + 1.23811i −0.0172053 + 0.0472711i
\(687\) 1.05347 0.445680i 0.0401923 0.0170038i
\(688\) −0.284375 3.25042i −0.0108417 0.123921i
\(689\) −30.4906 25.5846i −1.16160 0.974696i
\(690\) 0 0
\(691\) 22.4334 + 8.16509i 0.853407 + 0.310615i 0.731429 0.681918i \(-0.238854\pi\)
0.121978 + 0.992533i \(0.461076\pi\)
\(692\) −18.6541 + 4.99834i −0.709122 + 0.190009i
\(693\) 14.5479 + 5.04830i 0.552628 + 0.191769i
\(694\) 1.39424 0.804965i 0.0529246 0.0305561i
\(695\) 0 0
\(696\) −2.29983 0.0830743i −0.0871749 0.00314892i
\(697\) 5.92864 12.7140i 0.224563 0.481578i
\(698\) 1.59407 + 2.27656i 0.0603363 + 0.0861691i
\(699\) 3.53984 16.5560i 0.133889 0.626204i
\(700\) 0 0
\(701\) 30.4193i 1.14892i 0.818532 + 0.574461i \(0.194788\pi\)
−0.818532 + 0.574461i \(0.805212\pi\)
\(702\) −1.50419 + 0.232694i −0.0567719 + 0.00878247i
\(703\) −9.18946 9.18946i −0.346587 0.346587i
\(704\) 22.0221 18.4788i 0.829990 0.696444i
\(705\) 0 0
\(706\) −0.157165 + 0.891326i −0.00591497 + 0.0335455i
\(707\) −8.12286 3.78775i −0.305492 0.142453i
\(708\) −34.6310 10.6332i −1.30151 0.399620i
\(709\) 16.6287 2.93209i 0.624503 0.110117i 0.147563 0.989053i \(-0.452857\pi\)
0.476940 + 0.878936i \(0.341746\pi\)
\(710\) 0 0
\(711\) 8.25496 32.7737i 0.309585 1.22911i
\(712\) −1.09401 4.08290i −0.0409998 0.153013i
\(713\) 10.0385 4.68103i 0.375945 0.175306i
\(714\) 0.504303 + 0.647076i 0.0188730 + 0.0242162i
\(715\) 0 0
\(716\) −24.1086 + 28.7315i −0.900982 + 1.07375i
\(717\) −21.4245 + 28.3604i −0.800112 + 1.05914i
\(718\) 0.552342 + 1.18450i 0.0206132 + 0.0442052i
\(719\) −5.81196 + 10.0666i −0.216749 + 0.375421i −0.953812 0.300403i \(-0.902879\pi\)
0.737063 + 0.675824i \(0.236212\pi\)
\(720\) 0 0
\(721\) 4.19881 + 7.27255i 0.156372 + 0.270844i
\(722\) −0.733772 + 1.04794i −0.0273082 + 0.0390001i
\(723\) 8.72842 2.00409i 0.324613 0.0745328i
\(724\) 7.55320 + 20.7522i 0.280712 + 0.771251i
\(725\) 0 0
\(726\) −0.0998181 0.308467i −0.00370460 0.0114483i
\(727\) 2.70998 30.9752i 0.100508 1.14881i −0.763666 0.645612i \(-0.776602\pi\)
0.864173 0.503194i \(-0.167842\pi\)
\(728\) −1.16010 + 1.16010i −0.0429962 + 0.0429962i
\(729\) −25.7379 + 8.15842i −0.953256 + 0.302164i
\(730\) 0 0
\(731\) 2.28908 + 2.72802i 0.0846647 + 0.100899i
\(732\) −15.5888 + 30.5043i −0.576180 + 1.12747i
\(733\) −23.6376 + 16.5512i −0.873073 + 0.611332i −0.921880 0.387476i \(-0.873347\pi\)
0.0488066 + 0.998808i \(0.484458\pi\)
\(734\) 0.601125 0.218792i 0.0221879 0.00807575i
\(735\) 0 0
\(736\) 0.925139 + 5.24672i 0.0341011 + 0.193397i
\(737\) 14.0127 52.2960i 0.516164 1.92635i
\(738\) −0.749956 0.120626i −0.0276062 0.00444032i
\(739\) −10.6803 6.16626i −0.392881 0.226830i 0.290527 0.956867i \(-0.406169\pi\)
−0.683408 + 0.730037i \(0.739503\pi\)
\(740\) 0 0
\(741\) −1.45000 10.4078i −0.0532670 0.382342i
\(742\) 1.15720 0.101242i 0.0424823 0.00371672i
\(743\) 17.8818 1.56446i 0.656020 0.0573943i 0.245714 0.969342i \(-0.420977\pi\)
0.410306 + 0.911948i \(0.365422\pi\)
\(744\) −0.826457 + 0.644104i −0.0302994 + 0.0236140i
\(745\) 0 0
\(746\) 0.174152 + 0.100547i 0.00637615 + 0.00368127i
\(747\) 43.9761 26.2801i 1.60900 0.961539i
\(748\) −8.17116 + 30.4952i −0.298767 + 1.11501i
\(749\) −3.26494 18.5164i −0.119298 0.676574i
\(750\) 0 0
\(751\) 47.0846 17.1374i 1.71814 0.625352i 0.720464 0.693492i \(-0.243929\pi\)
0.997676 + 0.0681401i \(0.0217065\pi\)
\(752\) −3.74675 + 2.62350i −0.136630 + 0.0956693i
\(753\) −12.0235 + 0.615663i −0.438161 + 0.0224360i
\(754\) 0.802265 + 0.956102i 0.0292168 + 0.0348192i
\(755\) 0 0
\(756\) −8.58233 + 11.7236i −0.312136 + 0.426383i
\(757\) −30.6375 + 30.6375i −1.11354 + 1.11354i −0.120869 + 0.992668i \(0.538568\pi\)
−0.992668 + 0.120869i \(0.961432\pi\)
\(758\) 0.0656655 0.750560i 0.00238508 0.0272616i
\(759\) −35.3966 7.56816i −1.28481 0.274707i
\(760\) 0 0
\(761\) −16.5112 45.3641i −0.598530 1.64445i −0.754205 0.656638i \(-0.771978\pi\)
0.155676 0.987808i \(-0.450244\pi\)
\(762\) 1.88618 + 2.02755i 0.0683291 + 0.0734504i
\(763\) −8.61450 + 12.3028i −0.311866 + 0.445391i
\(764\) −6.72251 11.6437i −0.243212 0.421256i
\(765\) 0 0
\(766\) −0.602688 + 1.04389i −0.0217760 + 0.0377171i
\(767\) 16.6319 + 35.6671i 0.600542 + 1.28787i
\(768\) 10.4700 + 24.7484i 0.377805 + 0.893029i
\(769\) −18.0088 + 21.4621i −0.649414 + 0.773942i −0.985826 0.167773i \(-0.946342\pi\)
0.336411 + 0.941715i \(0.390787\pi\)
\(770\) 0 0
\(771\) 16.0538 39.5976i 0.578162 1.42607i
\(772\) −2.50798 + 1.16949i −0.0902641 + 0.0420908i
\(773\) −1.04175 3.88787i −0.0374692 0.139837i 0.944657 0.328059i \(-0.106394\pi\)
−0.982127 + 0.188222i \(0.939728\pi\)
\(774\) 0.108211 0.159602i 0.00388956 0.00573677i
\(775\) 0 0
\(776\) −4.25927 + 0.751025i −0.152899 + 0.0269602i
\(777\) 14.2919 13.2954i 0.512719 0.476970i
\(778\) −0.712083 0.332050i −0.0255294 0.0119046i
\(779\) 0.910646 5.16453i 0.0326273 0.185039i
\(780\) 0 0
\(781\) −26.3052 + 22.0727i −0.941273 + 0.789822i
\(782\) −1.36358 1.36358i −0.0487615 0.0487615i
\(783\) 16.6568 + 14.5851i 0.595267 + 0.521231i
\(784\) 19.9497i 0.712490i
\(785\) 0 0
\(786\) 1.94030 + 1.75128i 0.0692083 + 0.0624659i
\(787\) −7.13138 10.1847i −0.254206 0.363044i 0.671683 0.740838i \(-0.265572\pi\)
−0.925890 + 0.377794i \(0.876683\pi\)
\(788\) 19.0488 40.8504i 0.678587 1.45523i
\(789\) 8.68415 + 16.3799i 0.309164 + 0.583139i
\(790\) 0 0
\(791\) 5.39967 3.11750i 0.191990 0.110846i
\(792\) 3.42379 0.0515459i 0.121659 0.00183160i
\(793\) 35.9463 9.63179i 1.27649 0.342035i
\(794\) 0.198109 + 0.0721056i 0.00703061 + 0.00255893i
\(795\) 0 0
\(796\) −9.53360 7.99964i −0.337909 0.283540i
\(797\) −0.644697 7.36893i −0.0228364 0.261021i −0.999027 0.0441058i \(-0.985956\pi\)
0.976191 0.216915i \(-0.0695994\pi\)
\(798\) 0.244706 + 0.184860i 0.00866250 + 0.00654397i
\(799\) 1.70742 4.69109i 0.0604041 0.165959i
\(800\) 0 0
\(801\) −16.6291 + 37.1097i −0.587560 + 1.31121i
\(802\) 2.41935 + 0.648262i 0.0854301 + 0.0228909i
\(803\) 0.826817 + 0.578943i 0.0291777 + 0.0204305i
\(804\) 43.2886 + 27.1220i 1.52667 + 0.956518i
\(805\) 0 0
\(806\) 0.559634 + 0.0986785i 0.0197123 + 0.00347580i
\(807\) −39.6189 20.2467i −1.39465 0.712719i
\(808\) −1.98538 0.173699i −0.0698456 0.00611070i
\(809\) 16.5770 0.582817 0.291408 0.956599i \(-0.405876\pi\)
0.291408 + 0.956599i \(0.405876\pi\)
\(810\) 0 0
\(811\) 16.0416 0.563298 0.281649 0.959518i \(-0.409119\pi\)
0.281649 + 0.959518i \(0.409119\pi\)
\(812\) 11.8686 + 1.03837i 0.416507 + 0.0364396i
\(813\) −5.92929 3.03009i −0.207949 0.106270i
\(814\) −2.26177 0.398811i −0.0792750 0.0139783i
\(815\) 0 0
\(816\) −25.1653 15.7670i −0.880962 0.551957i
\(817\) 1.09051 + 0.763585i 0.0381522 + 0.0267145i
\(818\) 2.45432 + 0.657632i 0.0858131 + 0.0229936i
\(819\) 15.7011 1.61218i 0.548641 0.0563340i
\(820\) 0 0
\(821\) −5.82610 + 16.0071i −0.203332 + 0.558651i −0.998884 0.0472350i \(-0.984959\pi\)
0.795551 + 0.605886i \(0.207181\pi\)
\(822\) −0.974622 0.736265i −0.0339938 0.0256802i
\(823\) 3.22849 + 36.9018i 0.112538 + 1.28632i 0.817026 + 0.576601i \(0.195621\pi\)
−0.704488 + 0.709716i \(0.748823\pi\)
\(824\) 1.43046 + 1.20030i 0.0498326 + 0.0418145i
\(825\) 0 0
\(826\) −1.07928 0.392824i −0.0375528 0.0136681i
\(827\) −22.3705 + 5.99415i −0.777897 + 0.208437i −0.625858 0.779937i \(-0.715251\pi\)
−0.152040 + 0.988374i \(0.548584\pi\)
\(828\) 16.6291 29.8306i 0.577899 1.03668i
\(829\) −11.9738 + 6.91310i −0.415868 + 0.240102i −0.693308 0.720641i \(-0.743847\pi\)
0.277440 + 0.960743i \(0.410514\pi\)
\(830\) 0 0
\(831\) −17.4460 32.9063i −0.605195 1.14151i
\(832\) 12.4529 26.7054i 0.431728 0.925844i
\(833\) 12.4890 + 17.8361i 0.432717 + 0.617983i
\(834\) −0.548729 0.495271i −0.0190009 0.0171498i
\(835\) 0 0
\(836\) 11.8021i 0.408185i
\(837\) 10.0782 + 0.212198i 0.348353 + 0.00733465i
\(838\) −1.24245 1.24245i −0.0429196 0.0429196i
\(839\) 15.9236 13.3615i 0.549744 0.461290i −0.325110 0.945676i \(-0.605401\pi\)
0.874854 + 0.484386i \(0.160957\pi\)
\(840\) 0 0
\(841\) −1.88327 + 10.6805i −0.0649402 + 0.368294i
\(842\) −2.17316 1.01336i −0.0748921 0.0349228i
\(843\) 17.1258 15.9317i 0.589843 0.548717i
\(844\) −1.47801 + 0.260614i −0.0508753 + 0.00897069i
\(845\) 0 0
\(846\) −0.269606 0.0195028i −0.00926925 0.000670521i
\(847\) 0.870162 + 3.24749i 0.0298991 + 0.111585i
\(848\) −38.1094 + 17.7707i −1.30868 + 0.610249i
\(849\) 13.6503 33.6693i 0.468476 1.15553i
\(850\) 0 0
\(851\) −29.4933 + 35.1488i −1.01102 + 1.20488i
\(852\) −12.6238 29.8393i −0.432484 1.02228i
\(853\) −11.3440 24.3274i −0.388413 0.832954i −0.999154 0.0411237i \(-0.986906\pi\)
0.610741 0.791830i \(-0.290872\pi\)
\(854\) −0.543044 + 0.940580i −0.0185826 + 0.0321860i
\(855\) 0 0
\(856\) −2.09046 3.62078i −0.0714503 0.123756i
\(857\) −9.01794 + 12.8789i −0.308047 + 0.439936i −0.943089 0.332541i \(-0.892094\pi\)
0.635042 + 0.772478i \(0.280983\pi\)
\(858\) −1.26489 1.35969i −0.0431825 0.0464191i
\(859\) −16.8242 46.2242i −0.574035 1.57715i −0.798068 0.602567i \(-0.794144\pi\)
0.224033 0.974582i \(-0.428078\pi\)
\(860\) 0 0
\(861\) 7.70274 + 1.64693i 0.262509 + 0.0561272i
\(862\) 0.116352 1.32991i 0.00396296 0.0452968i
\(863\) −5.61483 + 5.61483i −0.191131 + 0.191131i −0.796185 0.605054i \(-0.793152\pi\)
0.605054 + 0.796185i \(0.293152\pi\)
\(864\) −1.35324 + 4.65600i −0.0460381 + 0.158400i
\(865\) 0 0
\(866\) 0.534491 + 0.636981i 0.0181627 + 0.0216455i
\(867\) 2.96326 0.151734i 0.100638 0.00515314i
\(868\) 4.44347 3.11135i 0.150821 0.105606i
\(869\) 38.7487 14.1034i 1.31446 0.478424i
\(870\) 0 0
\(871\) −9.63637 54.6506i −0.326516 1.85176i
\(872\) −0.864375 + 3.22589i −0.0292714 + 0.109242i
\(873\) 36.3431 + 20.2594i 1.23003 + 0.685678i
\(874\) −0.624307 0.360444i −0.0211175 0.0121922i
\(875\) 0 0
\(876\) −0.751169 + 0.585427i −0.0253796 + 0.0197798i
\(877\) 16.1776 1.41536i 0.546279 0.0477932i 0.189324 0.981915i \(-0.439370\pi\)
0.356955 + 0.934122i \(0.383815\pi\)
\(878\) 0.983986 0.0860876i 0.0332079 0.00290532i
\(879\) 6.79078 + 48.7431i 0.229047 + 1.64407i
\(880\) 0 0
\(881\) −23.5094 13.5731i −0.792051 0.457291i 0.0486330 0.998817i \(-0.484514\pi\)
−0.840684 + 0.541526i \(0.817847\pi\)
\(882\) 0.744158 0.914464i 0.0250571 0.0307916i
\(883\) 8.38602 31.2970i 0.282212 1.05323i −0.668641 0.743586i \(-0.733124\pi\)
0.950853 0.309644i \(-0.100210\pi\)
\(884\) 5.61923 + 31.8682i 0.188995 + 1.07184i
\(885\) 0 0
\(886\) 2.34117 0.852117i 0.0786532 0.0286274i
\(887\) −24.1100 + 16.8820i −0.809534 + 0.566842i −0.903428 0.428740i \(-0.858957\pi\)
0.0938937 + 0.995582i \(0.470069\pi\)
\(888\) 1.97520 3.86509i 0.0662835 0.129704i
\(889\) −18.4585 21.9980i −0.619079 0.737789i
\(890\) 0 0
\(891\) −25.8612 20.4056i −0.866384 0.683613i
\(892\) −6.81707 + 6.81707i −0.228252 + 0.228252i
\(893\) 0.162651 1.85911i 0.00544291 0.0622127i
\(894\) −0.0274809 0.0849240i −0.000919099 0.00284028i
\(895\) 0 0
\(896\) 1.18924 + 3.26741i 0.0397297 + 0.109156i
\(897\) −36.1601 + 8.30255i −1.20735 + 0.277214i
\(898\) −1.19825 + 1.71127i −0.0399860 + 0.0571060i
\(899\) −4.13296 7.15850i −0.137842 0.238749i
\(900\) 0 0
\(901\) 22.9469 39.7452i 0.764473 1.32411i
\(902\) −0.391669 0.839938i −0.0130412 0.0279669i
\(903\) −1.20529 + 1.59549i −0.0401096 + 0.0530946i
\(904\) 0.891191 1.06208i 0.0296406 0.0353242i
\(905\) 0 0
\(906\) 0.00762798 + 0.00978755i 0.000253423 + 0.000325170i
\(907\) −28.5940 + 13.3336i −0.949447 + 0.442735i −0.834727 0.550663i \(-0.814375\pi\)
−0.114720 + 0.993398i \(0.536597\pi\)
\(908\) 6.63969 + 24.7797i 0.220346 + 0.822342i
\(909\) 13.7601 + 13.3520i 0.456395 + 0.442857i
\(910\) 0 0
\(911\) −4.44253 + 0.783337i −0.147187 + 0.0259531i −0.246756 0.969078i \(-0.579365\pi\)
0.0995689 + 0.995031i \(0.468254\pi\)
\(912\) −10.6125 3.25849i −0.351414 0.107899i
\(913\) 56.6490 + 26.4158i 1.87481 + 0.874237i
\(914\) 0.291572 1.65359i 0.00964433 0.0546957i
\(915\) 0 0
\(916\) −1.00872 + 0.846419i −0.0333292 + 0.0279665i
\(917\) −19.1655 19.1655i −0.632902 0.632902i
\(918\) −0.565402 1.66145i −0.0186610 0.0548359i
\(919\) 42.2613i 1.39407i −0.717036 0.697037i \(-0.754502\pi\)
0.717036 0.697037i \(-0.245498\pi\)
\(920\) 0 0
\(921\) −9.39334 + 43.9330i −0.309521 + 1.44764i
\(922\) −1.07957 1.54178i −0.0355536 0.0507759i
\(923\) −14.8749 + 31.8993i −0.489613 + 1.04998i
\(924\) −17.7153 0.639912i −0.582792 0.0210516i
\(925\) 0 0
\(926\) 1.77211 1.02313i 0.0582353 0.0336222i
\(927\) −3.38551 17.6428i −0.111195 0.579466i
\(928\) 3.84042 1.02904i 0.126068 0.0337798i
\(929\) 12.2132 + 4.44523i 0.400701 + 0.145843i 0.534507 0.845164i \(-0.320497\pi\)
−0.133805 + 0.991008i \(0.542720\pi\)
\(930\) 0 0
\(931\) 6.23535 + 5.23208i 0.204355 + 0.171475i
\(932\) 1.69864 + 19.4155i 0.0556407 + 0.635976i
\(933\) −35.6318 + 15.0744i −1.16653 + 0.493514i
\(934\) 0.316911 0.870707i 0.0103697 0.0284904i
\(935\) 0 0
\(936\) 3.15821 1.53099i 0.103229 0.0500421i
\(937\) −20.7151 5.55061i −0.676734 0.181330i −0.0959478 0.995386i \(-0.530588\pi\)
−0.580786 + 0.814056i \(0.697255\pi\)
\(938\) 1.32667 + 0.928943i 0.0433172 + 0.0303311i
\(939\) −1.67605 + 46.3998i −0.0546958 + 1.51420i
\(940\) 0 0
\(941\) 56.2257 + 9.91411i 1.83291 + 0.323191i 0.980019 0.198904i \(-0.0637383\pi\)
0.852887 + 0.522095i \(0.174849\pi\)
\(942\) −1.73737 + 1.12530i −0.0566065 + 0.0366642i
\(943\) −18.4448 1.61371i −0.600647 0.0525498i
\(944\) 41.5755 1.35317
\(945\) 0 0
\(946\) 0.235265 0.00764914
\(947\) 24.4864 + 2.14228i 0.795702 + 0.0696149i 0.477754 0.878493i \(-0.341451\pi\)
0.317947 + 0.948108i \(0.397006\pi\)
\(948\) 1.98961 + 38.8559i 0.0646197 + 1.26198i
\(949\) 1.01886 + 0.179653i 0.0330736 + 0.00583177i
\(950\) 0 0
\(951\) −32.0113 + 16.9715i −1.03804 + 0.550338i
\(952\) −1.54960 1.08504i −0.0502227 0.0351663i
\(953\) 18.6903 + 5.00806i 0.605439 + 0.162227i 0.548500 0.836151i \(-0.315199\pi\)
0.0569395 + 0.998378i \(0.481866\pi\)
\(954\) −2.40975 0.606964i −0.0780186 0.0196512i
\(955\) 0 0
\(956\) 13.9943 38.4491i 0.452609 1.24353i
\(957\) −3.32417 + 26.8073i −0.107455 + 0.866556i
\(958\) 0.102724 + 1.17414i 0.00331887 + 0.0379348i
\(959\) 9.70297 + 8.14176i 0.313325 + 0.262911i
\(960\) 0 0
\(961\) 25.5939 + 9.31543i 0.825610 + 0.300498i
\(962\) −2.27384 + 0.609273i −0.0733114 + 0.0196437i
\(963\) −6.38747 + 39.7120i −0.205833 + 1.27970i
\(964\) −8.92824 + 5.15472i −0.287559 + 0.166022i
\(965\) 0 0
\(966\) 0.574887 0.917561i 0.0184967 0.0295220i
\(967\) −15.5485 + 33.3438i −0.500005 + 1.07226i 0.480720 + 0.876874i \(0.340375\pi\)
−0.980726 + 0.195390i \(0.937403\pi\)
\(968\) 0.428807 + 0.612400i 0.0137824 + 0.0196833i
\(969\) 11.5280 3.73039i 0.370332 0.119837i
\(970\) 0 0
\(971\) 31.1249i 0.998846i 0.866358 + 0.499423i \(0.166455\pi\)
−0.866358 + 0.499423i \(0.833545\pi\)
\(972\) 25.5673 17.6748i 0.820070 0.566920i
\(973\) 5.42013 + 5.42013i 0.173761 + 0.173761i
\(974\) 1.48091 1.24263i 0.0474515 0.0398166i
\(975\) 0 0
\(976\) 6.82694 38.7175i 0.218525 1.23932i
\(977\) −43.0480 20.0736i −1.37723 0.642211i −0.413845 0.910347i \(-0.635815\pi\)
−0.963381 + 0.268136i \(0.913592\pi\)
\(978\) −0.218788 0.952889i −0.00699607 0.0304700i
\(979\) −48.8611 + 8.61554i −1.56161 + 0.275354i
\(980\) 0 0
\(981\) 26.0385 18.8228i 0.831345 0.600965i
\(982\) −0.849365 3.16987i −0.0271043 0.101155i
\(983\) 2.95806 1.37937i 0.0943476 0.0439950i −0.374872 0.927077i \(-0.622313\pi\)
0.469219 + 0.883082i \(0.344535\pi\)
\(984\) 1.73478 0.241686i 0.0553028 0.00770466i
\(985\) 0 0
\(986\) −0.925041 + 1.10242i −0.0294593 + 0.0351082i
\(987\) 2.78176 + 0.344945i 0.0885444 + 0.0109797i
\(988\) 5.11243 + 10.9636i 0.162648 + 0.348800i
\(989\) 2.35011 4.07050i 0.0747290 0.129434i
\(990\) 0 0
\(991\) −14.1507 24.5098i −0.449513 0.778579i 0.548841 0.835927i \(-0.315069\pi\)
−0.998354 + 0.0573473i \(0.981736\pi\)
\(992\) 1.03831 1.48287i 0.0329665 0.0470810i
\(993\) −6.08050 + 19.8034i −0.192959 + 0.628442i
\(994\) −0.351327 0.965264i −0.0111434 0.0306163i
\(995\) 0 0
\(996\) −39.5147 + 43.7798i −1.25207 + 1.38722i
\(997\) −4.65748 + 53.2353i −0.147504 + 1.68598i 0.457071 + 0.889430i \(0.348899\pi\)
−0.604575 + 0.796548i \(0.706657\pi\)
\(998\) 1.28044 1.28044i 0.0405315 0.0405315i
\(999\) −38.2089 + 16.8472i −1.20888 + 0.533021i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.ba.a.518.7 yes 144
5.2 odd 4 inner 675.2.ba.a.32.6 144
5.3 odd 4 inner 675.2.ba.a.32.7 yes 144
5.4 even 2 inner 675.2.ba.a.518.6 yes 144
27.11 odd 18 inner 675.2.ba.a.443.6 yes 144
135.38 even 36 inner 675.2.ba.a.632.6 yes 144
135.92 even 36 inner 675.2.ba.a.632.7 yes 144
135.119 odd 18 inner 675.2.ba.a.443.7 yes 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.ba.a.32.6 144 5.2 odd 4 inner
675.2.ba.a.32.7 yes 144 5.3 odd 4 inner
675.2.ba.a.443.6 yes 144 27.11 odd 18 inner
675.2.ba.a.443.7 yes 144 135.119 odd 18 inner
675.2.ba.a.518.6 yes 144 5.4 even 2 inner
675.2.ba.a.518.7 yes 144 1.1 even 1 trivial
675.2.ba.a.632.6 yes 144 135.38 even 36 inner
675.2.ba.a.632.7 yes 144 135.92 even 36 inner