Properties

Label 675.2.l.g.76.5
Level $675$
Weight $2$
Character 675.76
Analytic conductor $5.390$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(76,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.76");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.l (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 76.5
Character \(\chi\) \(=\) 675.76
Dual form 675.2.l.g.151.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.211903 + 0.177808i) q^{2} +(0.483303 + 1.66326i) q^{3} +(-0.334009 + 1.89426i) q^{4} +(-0.398153 - 0.266514i) q^{6} +(-0.293371 - 1.66379i) q^{7} +(-0.542656 - 0.939908i) q^{8} +(-2.53284 + 1.60771i) q^{9} +(-4.65944 - 1.69590i) q^{11} +(-3.31206 + 0.359958i) q^{12} +(2.87084 + 2.40892i) q^{13} +(0.358001 + 0.300398i) q^{14} +(-3.33285 - 1.21306i) q^{16} +(-3.15798 + 5.46979i) q^{17} +(0.250852 - 0.791037i) q^{18} +(-3.42671 - 5.93524i) q^{19} +(2.62552 - 1.29206i) q^{21} +(1.28889 - 0.469119i) q^{22} +(-1.12343 + 6.37131i) q^{23} +(1.30104 - 1.35684i) q^{24} -1.03667 q^{26} +(-3.89816 - 3.43574i) q^{27} +3.24964 q^{28} +(-0.115261 + 0.0967151i) q^{29} +(-1.06440 + 6.03653i) q^{31} +(2.96165 - 1.07795i) q^{32} +(0.568791 - 8.56948i) q^{33} +(-0.303384 - 1.72058i) q^{34} +(-2.19943 - 5.33484i) q^{36} +(1.23541 - 2.13979i) q^{37} +(1.78146 + 0.648400i) q^{38} +(-2.61917 + 5.93918i) q^{39} +(-3.02499 - 2.53826i) q^{41} +(-0.326617 + 0.740630i) q^{42} +(6.57849 + 2.39437i) q^{43} +(4.76877 - 8.25975i) q^{44} +(-0.894809 - 1.54985i) q^{46} +(-1.07632 - 6.10414i) q^{47} +(0.406850 - 6.12965i) q^{48} +(3.89572 - 1.41793i) q^{49} +(-10.6239 - 2.60897i) q^{51} +(-5.52201 + 4.63352i) q^{52} +0.373453 q^{53} +(1.43693 + 0.0349210i) q^{54} +(-1.40461 + 1.17861i) q^{56} +(8.21568 - 8.56802i) q^{57} +(0.00722737 - 0.0409885i) q^{58} +(0.342887 - 0.124801i) q^{59} +(1.07271 + 6.08365i) q^{61} +(-0.847791 - 1.46842i) q^{62} +(3.41795 + 3.74245i) q^{63} +(3.11083 - 5.38811i) q^{64} +(1.40319 + 1.91703i) q^{66} +(-0.475424 - 0.398928i) q^{67} +(-9.30640 - 7.80900i) q^{68} +(-11.1401 + 1.21071i) q^{69} +(-3.39814 + 5.88576i) q^{71} +(2.88556 + 1.50820i) q^{72} +(2.27683 + 3.94359i) q^{73} +(0.118685 + 0.673094i) q^{74} +(12.3874 - 4.50866i) q^{76} +(-1.45467 + 8.24986i) q^{77} +(-0.501023 - 1.72424i) q^{78} +(-12.4889 + 10.4794i) q^{79} +(3.83053 - 8.14414i) q^{81} +1.09233 q^{82} +(-8.56544 + 7.18726i) q^{83} +(1.57056 + 5.40498i) q^{84} +(-1.81974 + 0.662331i) q^{86} +(-0.216568 - 0.144965i) q^{87} +(0.934487 + 5.29974i) q^{88} +(4.58274 + 7.93753i) q^{89} +(3.16572 - 5.48319i) q^{91} +(-11.6937 - 4.25615i) q^{92} +(-10.5547 + 1.14710i) q^{93} +(1.31344 + 1.10211i) q^{94} +(3.22429 + 4.40501i) q^{96} +(12.9391 + 4.70945i) q^{97} +(-0.573397 + 0.993152i) q^{98} +(14.5281 - 3.19561i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q + 6 q^{2} - 6 q^{6} + 6 q^{7} + 12 q^{8} - 6 q^{9} + 15 q^{11} + 18 q^{12} + 15 q^{14} + 18 q^{16} + 30 q^{17} - 12 q^{18} + 12 q^{19} + 12 q^{21} - 45 q^{22} + 36 q^{23} - 39 q^{24} + 6 q^{26} + 51 q^{27}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.211903 + 0.177808i −0.149838 + 0.125729i −0.714625 0.699508i \(-0.753403\pi\)
0.564787 + 0.825237i \(0.308958\pi\)
\(3\) 0.483303 + 1.66326i 0.279035 + 0.960281i
\(4\) −0.334009 + 1.89426i −0.167005 + 0.947130i
\(5\) 0 0
\(6\) −0.398153 0.266514i −0.162545 0.108804i
\(7\) −0.293371 1.66379i −0.110884 0.628853i −0.988706 0.149867i \(-0.952115\pi\)
0.877822 0.478986i \(-0.158996\pi\)
\(8\) −0.542656 0.939908i −0.191858 0.332308i
\(9\) −2.53284 + 1.60771i −0.844279 + 0.535904i
\(10\) 0 0
\(11\) −4.65944 1.69590i −1.40488 0.511333i −0.475254 0.879849i \(-0.657644\pi\)
−0.929621 + 0.368516i \(0.879866\pi\)
\(12\) −3.31206 + 0.359958i −0.956111 + 0.103911i
\(13\) 2.87084 + 2.40892i 0.796229 + 0.668115i 0.947279 0.320411i \(-0.103821\pi\)
−0.151050 + 0.988526i \(0.548265\pi\)
\(14\) 0.358001 + 0.300398i 0.0956798 + 0.0802849i
\(15\) 0 0
\(16\) −3.33285 1.21306i −0.833212 0.303264i
\(17\) −3.15798 + 5.46979i −0.765923 + 1.32662i 0.173834 + 0.984775i \(0.444385\pi\)
−0.939757 + 0.341843i \(0.888949\pi\)
\(18\) 0.250852 0.791037i 0.0591265 0.186449i
\(19\) −3.42671 5.93524i −0.786142 1.36164i −0.928314 0.371796i \(-0.878742\pi\)
0.142172 0.989842i \(-0.454591\pi\)
\(20\) 0 0
\(21\) 2.62552 1.29206i 0.572935 0.281952i
\(22\) 1.28889 0.469119i 0.274793 0.100017i
\(23\) −1.12343 + 6.37131i −0.234252 + 1.32851i 0.609931 + 0.792454i \(0.291197\pi\)
−0.844183 + 0.536055i \(0.819914\pi\)
\(24\) 1.30104 1.35684i 0.265574 0.276963i
\(25\) 0 0
\(26\) −1.03667 −0.203307
\(27\) −3.89816 3.43574i −0.750202 0.661209i
\(28\) 3.24964 0.614124
\(29\) −0.115261 + 0.0967151i −0.0214034 + 0.0179596i −0.653427 0.756990i \(-0.726669\pi\)
0.632023 + 0.774949i \(0.282225\pi\)
\(30\) 0 0
\(31\) −1.06440 + 6.03653i −0.191172 + 1.08419i 0.726593 + 0.687068i \(0.241103\pi\)
−0.917765 + 0.397124i \(0.870008\pi\)
\(32\) 2.96165 1.07795i 0.523551 0.190557i
\(33\) 0.568791 8.56948i 0.0990138 1.49175i
\(34\) −0.303384 1.72058i −0.0520300 0.295077i
\(35\) 0 0
\(36\) −2.19943 5.33484i −0.366572 0.889140i
\(37\) 1.23541 2.13979i 0.203100 0.351780i −0.746426 0.665469i \(-0.768232\pi\)
0.949526 + 0.313689i \(0.101565\pi\)
\(38\) 1.78146 + 0.648400i 0.288992 + 0.105184i
\(39\) −2.61917 + 5.93918i −0.419403 + 0.951031i
\(40\) 0 0
\(41\) −3.02499 2.53826i −0.472423 0.396410i 0.375254 0.926922i \(-0.377555\pi\)
−0.847678 + 0.530512i \(0.822000\pi\)
\(42\) −0.326617 + 0.740630i −0.0503980 + 0.114282i
\(43\) 6.57849 + 2.39437i 1.00321 + 0.365139i 0.790822 0.612047i \(-0.209654\pi\)
0.212388 + 0.977185i \(0.431876\pi\)
\(44\) 4.76877 8.25975i 0.718919 1.24520i
\(45\) 0 0
\(46\) −0.894809 1.54985i −0.131932 0.228514i
\(47\) −1.07632 6.10414i −0.156998 0.890380i −0.956936 0.290298i \(-0.906246\pi\)
0.799938 0.600082i \(-0.204865\pi\)
\(48\) 0.406850 6.12965i 0.0587238 0.884739i
\(49\) 3.89572 1.41793i 0.556531 0.202561i
\(50\) 0 0
\(51\) −10.6239 2.60897i −1.48765 0.365329i
\(52\) −5.52201 + 4.63352i −0.765766 + 0.642554i
\(53\) 0.373453 0.0512977 0.0256488 0.999671i \(-0.491835\pi\)
0.0256488 + 0.999671i \(0.491835\pi\)
\(54\) 1.43693 + 0.0349210i 0.195542 + 0.00475215i
\(55\) 0 0
\(56\) −1.40461 + 1.17861i −0.187699 + 0.157498i
\(57\) 8.21568 8.56802i 1.08819 1.13486i
\(58\) 0.00722737 0.0409885i 0.000949001 0.00538205i
\(59\) 0.342887 0.124801i 0.0446401 0.0162477i −0.319604 0.947551i \(-0.603550\pi\)
0.364244 + 0.931304i \(0.381328\pi\)
\(60\) 0 0
\(61\) 1.07271 + 6.08365i 0.137347 + 0.778931i 0.973197 + 0.229974i \(0.0738640\pi\)
−0.835850 + 0.548958i \(0.815025\pi\)
\(62\) −0.847791 1.46842i −0.107670 0.186489i
\(63\) 3.41795 + 3.74245i 0.430622 + 0.471505i
\(64\) 3.11083 5.38811i 0.388854 0.673514i
\(65\) 0 0
\(66\) 1.40319 + 1.91703i 0.172721 + 0.235971i
\(67\) −0.475424 0.398928i −0.0580823 0.0487369i 0.613284 0.789862i \(-0.289848\pi\)
−0.671367 + 0.741125i \(0.734292\pi\)
\(68\) −9.30640 7.80900i −1.12857 0.946980i
\(69\) −11.1401 + 1.21071i −1.34111 + 0.145753i
\(70\) 0 0
\(71\) −3.39814 + 5.88576i −0.403285 + 0.698511i −0.994120 0.108282i \(-0.965465\pi\)
0.590835 + 0.806793i \(0.298799\pi\)
\(72\) 2.88556 + 1.50820i 0.340067 + 0.177743i
\(73\) 2.27683 + 3.94359i 0.266483 + 0.461563i 0.967951 0.251138i \(-0.0808049\pi\)
−0.701468 + 0.712701i \(0.747472\pi\)
\(74\) 0.118685 + 0.673094i 0.0137968 + 0.0782456i
\(75\) 0 0
\(76\) 12.3874 4.50866i 1.42094 0.517179i
\(77\) −1.45467 + 8.24986i −0.165775 + 0.940159i
\(78\) −0.501023 1.72424i −0.0567297 0.195232i
\(79\) −12.4889 + 10.4794i −1.40511 + 1.17903i −0.446338 + 0.894864i \(0.647272\pi\)
−0.958775 + 0.284166i \(0.908283\pi\)
\(80\) 0 0
\(81\) 3.83053 8.14414i 0.425614 0.904905i
\(82\) 1.09233 0.120627
\(83\) −8.56544 + 7.18726i −0.940179 + 0.788904i −0.977616 0.210395i \(-0.932525\pi\)
0.0374374 + 0.999299i \(0.488081\pi\)
\(84\) 1.57056 + 5.40498i 0.171362 + 0.589731i
\(85\) 0 0
\(86\) −1.81974 + 0.662331i −0.196228 + 0.0714210i
\(87\) −0.216568 0.144965i −0.0232185 0.0155419i
\(88\) 0.934487 + 5.29974i 0.0996167 + 0.564954i
\(89\) 4.58274 + 7.93753i 0.485769 + 0.841377i 0.999866 0.0163553i \(-0.00520627\pi\)
−0.514097 + 0.857732i \(0.671873\pi\)
\(90\) 0 0
\(91\) 3.16572 5.48319i 0.331858 0.574794i
\(92\) −11.6937 4.25615i −1.21915 0.443734i
\(93\) −10.5547 + 1.14710i −1.09447 + 0.118948i
\(94\) 1.31344 + 1.10211i 0.135471 + 0.113674i
\(95\) 0 0
\(96\) 3.22429 + 4.40501i 0.329077 + 0.449584i
\(97\) 12.9391 + 4.70945i 1.31377 + 0.478172i 0.901456 0.432871i \(-0.142499\pi\)
0.412312 + 0.911043i \(0.364721\pi\)
\(98\) −0.573397 + 0.993152i −0.0579218 + 0.100324i
\(99\) 14.5281 3.19561i 1.46013 0.321171i
\(100\) 0 0
\(101\) 1.98385 + 11.2510i 0.197400 + 1.11951i 0.908959 + 0.416886i \(0.136879\pi\)
−0.711558 + 0.702627i \(0.752010\pi\)
\(102\) 2.71514 1.33617i 0.268838 0.132300i
\(103\) 8.62703 3.13998i 0.850046 0.309392i 0.119987 0.992775i \(-0.461715\pi\)
0.730059 + 0.683384i \(0.239492\pi\)
\(104\) 0.706286 4.00555i 0.0692571 0.392776i
\(105\) 0 0
\(106\) −0.0791358 + 0.0664028i −0.00768635 + 0.00644961i
\(107\) 1.09015 0.105389 0.0526946 0.998611i \(-0.483219\pi\)
0.0526946 + 0.998611i \(0.483219\pi\)
\(108\) 7.81021 6.23656i 0.751538 0.600113i
\(109\) −0.574982 −0.0550733 −0.0275366 0.999621i \(-0.508766\pi\)
−0.0275366 + 0.999621i \(0.508766\pi\)
\(110\) 0 0
\(111\) 4.15610 + 1.02063i 0.394480 + 0.0968744i
\(112\) −1.04051 + 5.90104i −0.0983191 + 0.557595i
\(113\) −16.5549 + 6.02550i −1.55736 + 0.566832i −0.970129 0.242590i \(-0.922003\pi\)
−0.587228 + 0.809421i \(0.699781\pi\)
\(114\) −0.217468 + 3.27640i −0.0203678 + 0.306863i
\(115\) 0 0
\(116\) −0.144705 0.250637i −0.0134356 0.0232711i
\(117\) −11.1442 1.48592i −1.03028 0.137374i
\(118\) −0.0504683 + 0.0874136i −0.00464598 + 0.00804708i
\(119\) 10.0270 + 3.64954i 0.919177 + 0.334553i
\(120\) 0 0
\(121\) 10.4079 + 8.73323i 0.946169 + 0.793930i
\(122\) −1.30903 1.09841i −0.118514 0.0994451i
\(123\) 2.75980 6.25807i 0.248843 0.564272i
\(124\) −11.0792 4.03251i −0.994944 0.362130i
\(125\) 0 0
\(126\) −1.38971 0.185298i −0.123805 0.0165077i
\(127\) 3.97850 + 6.89096i 0.353035 + 0.611474i 0.986780 0.162068i \(-0.0518164\pi\)
−0.633745 + 0.773542i \(0.718483\pi\)
\(128\) 1.39344 + 7.90257i 0.123164 + 0.698496i
\(129\) −0.803054 + 12.0989i −0.0707050 + 1.06525i
\(130\) 0 0
\(131\) 1.46844 8.32796i 0.128298 0.727617i −0.850995 0.525173i \(-0.824001\pi\)
0.979294 0.202444i \(-0.0648883\pi\)
\(132\) 16.0428 + 3.93972i 1.39635 + 0.342909i
\(133\) −8.86970 + 7.44256i −0.769100 + 0.645352i
\(134\) 0.171676 0.0148306
\(135\) 0 0
\(136\) 6.85480 0.587794
\(137\) −0.303815 + 0.254931i −0.0259567 + 0.0217802i −0.655674 0.755044i \(-0.727615\pi\)
0.629717 + 0.776825i \(0.283171\pi\)
\(138\) 2.14534 2.23734i 0.182624 0.190455i
\(139\) −0.813377 + 4.61289i −0.0689897 + 0.391260i 0.930687 + 0.365818i \(0.119211\pi\)
−0.999676 + 0.0254426i \(0.991901\pi\)
\(140\) 0 0
\(141\) 9.63255 4.74035i 0.811207 0.399209i
\(142\) −0.326456 1.85143i −0.0273956 0.155368i
\(143\) −9.29124 16.0929i −0.776973 1.34576i
\(144\) 10.3918 2.28578i 0.865984 0.190482i
\(145\) 0 0
\(146\) −1.18367 0.430821i −0.0979612 0.0356550i
\(147\) 4.24118 + 5.79429i 0.349807 + 0.477905i
\(148\) 3.64069 + 3.05490i 0.299263 + 0.251111i
\(149\) −17.6585 14.8172i −1.44664 1.21387i −0.934987 0.354682i \(-0.884589\pi\)
−0.511653 0.859192i \(-0.670967\pi\)
\(150\) 0 0
\(151\) −4.86203 1.76963i −0.395666 0.144011i 0.136522 0.990637i \(-0.456408\pi\)
−0.532188 + 0.846626i \(0.678630\pi\)
\(152\) −3.71906 + 6.44159i −0.301655 + 0.522482i
\(153\) −0.795184 18.9312i −0.0642868 1.53050i
\(154\) −1.15864 2.00682i −0.0933659 0.161714i
\(155\) 0 0
\(156\) −10.3755 6.94513i −0.830707 0.556055i
\(157\) −13.0179 + 4.73812i −1.03894 + 0.378143i −0.804478 0.593982i \(-0.797555\pi\)
−0.234462 + 0.972125i \(0.575333\pi\)
\(158\) 0.783113 4.44125i 0.0623011 0.353327i
\(159\) 0.180491 + 0.621147i 0.0143138 + 0.0492602i
\(160\) 0 0
\(161\) 10.9301 0.861412
\(162\) 0.636392 + 2.40687i 0.0499997 + 0.189101i
\(163\) −2.98083 −0.233477 −0.116738 0.993163i \(-0.537244\pi\)
−0.116738 + 0.993163i \(0.537244\pi\)
\(164\) 5.81850 4.88231i 0.454349 0.381244i
\(165\) 0 0
\(166\) 0.537093 3.04600i 0.0416865 0.236416i
\(167\) 17.6335 6.41805i 1.36452 0.496644i 0.447070 0.894499i \(-0.352468\pi\)
0.917448 + 0.397855i \(0.130245\pi\)
\(168\) −2.63918 1.76660i −0.203617 0.136296i
\(169\) 0.181402 + 1.02878i 0.0139540 + 0.0791371i
\(170\) 0 0
\(171\) 18.2215 + 9.52383i 1.39343 + 0.728306i
\(172\) −6.73284 + 11.6616i −0.513374 + 0.889190i
\(173\) 7.89065 + 2.87196i 0.599915 + 0.218351i 0.624085 0.781357i \(-0.285472\pi\)
−0.0241697 + 0.999708i \(0.507694\pi\)
\(174\) 0.0716673 0.00778887i 0.00543308 0.000590473i
\(175\) 0 0
\(176\) 13.4720 + 11.3043i 1.01549 + 0.852097i
\(177\) 0.373294 + 0.509992i 0.0280585 + 0.0383334i
\(178\) −2.38245 0.867141i −0.178572 0.0649950i
\(179\) 11.7123 20.2863i 0.875420 1.51627i 0.0191052 0.999817i \(-0.493918\pi\)
0.856315 0.516454i \(-0.172748\pi\)
\(180\) 0 0
\(181\) 4.02049 + 6.96369i 0.298841 + 0.517607i 0.975871 0.218348i \(-0.0700667\pi\)
−0.677030 + 0.735955i \(0.736733\pi\)
\(182\) 0.304128 + 1.72479i 0.0225434 + 0.127850i
\(183\) −9.60022 + 4.72444i −0.709668 + 0.349240i
\(184\) 6.59808 2.40151i 0.486417 0.177041i
\(185\) 0 0
\(186\) 2.03261 2.11978i 0.149038 0.155430i
\(187\) 23.9906 20.1305i 1.75437 1.47209i
\(188\) 11.9223 0.869525
\(189\) −4.57275 + 7.49367i −0.332618 + 0.545084i
\(190\) 0 0
\(191\) 2.02875 1.70232i 0.146795 0.123176i −0.566433 0.824108i \(-0.691677\pi\)
0.713228 + 0.700932i \(0.247232\pi\)
\(192\) 10.4653 + 2.57001i 0.755267 + 0.185475i
\(193\) −2.39096 + 13.5598i −0.172105 + 0.976055i 0.769328 + 0.638854i \(0.220591\pi\)
−0.941433 + 0.337201i \(0.890520\pi\)
\(194\) −3.57921 + 1.30273i −0.256973 + 0.0935304i
\(195\) 0 0
\(196\) 1.38471 + 7.85310i 0.0989081 + 0.560936i
\(197\) 5.44000 + 9.42236i 0.387584 + 0.671315i 0.992124 0.125260i \(-0.0399764\pi\)
−0.604540 + 0.796575i \(0.706643\pi\)
\(198\) −2.51035 + 3.26037i −0.178403 + 0.231705i
\(199\) 9.58456 16.6009i 0.679431 1.17681i −0.295721 0.955274i \(-0.595560\pi\)
0.975152 0.221535i \(-0.0711068\pi\)
\(200\) 0 0
\(201\) 0.433746 0.983555i 0.0305941 0.0693747i
\(202\) −2.42089 2.03137i −0.170334 0.142927i
\(203\) 0.194728 + 0.163396i 0.0136672 + 0.0114682i
\(204\) 8.49055 19.2530i 0.594457 1.34798i
\(205\) 0 0
\(206\) −1.26978 + 2.19932i −0.0884698 + 0.153234i
\(207\) −7.39775 17.9436i −0.514179 1.24717i
\(208\) −6.64592 11.5111i −0.460812 0.798150i
\(209\) 5.90101 + 33.4663i 0.408181 + 2.31491i
\(210\) 0 0
\(211\) −14.2097 + 5.17190i −0.978235 + 0.356048i −0.781154 0.624339i \(-0.785369\pi\)
−0.197081 + 0.980387i \(0.563146\pi\)
\(212\) −0.124737 + 0.707417i −0.00856695 + 0.0485856i
\(213\) −11.4319 2.80738i −0.783297 0.192358i
\(214\) −0.231007 + 0.193838i −0.0157913 + 0.0132505i
\(215\) 0 0
\(216\) −1.11392 + 5.52834i −0.0757928 + 0.376156i
\(217\) 10.3558 0.702996
\(218\) 0.121840 0.102236i 0.00825207 0.00692431i
\(219\) −5.45880 + 5.69291i −0.368872 + 0.384691i
\(220\) 0 0
\(221\) −22.2424 + 8.09556i −1.49618 + 0.544566i
\(222\) −1.06217 + 0.522711i −0.0712880 + 0.0350821i
\(223\) −0.809497 4.59088i −0.0542079 0.307428i 0.945634 0.325234i \(-0.105443\pi\)
−0.999841 + 0.0178057i \(0.994332\pi\)
\(224\) −2.66235 4.61133i −0.177886 0.308107i
\(225\) 0 0
\(226\) 2.43666 4.22042i 0.162084 0.280738i
\(227\) −0.187481 0.0682374i −0.0124435 0.00452908i 0.335791 0.941937i \(-0.390996\pi\)
−0.348234 + 0.937407i \(0.613219\pi\)
\(228\) 13.4859 + 18.4244i 0.893128 + 1.22019i
\(229\) 13.3044 + 11.1637i 0.879179 + 0.737719i 0.966010 0.258504i \(-0.0832296\pi\)
−0.0868311 + 0.996223i \(0.527674\pi\)
\(230\) 0 0
\(231\) −14.4247 + 1.56769i −0.949074 + 0.103146i
\(232\) 0.153450 + 0.0558513i 0.0100745 + 0.00366682i
\(233\) −7.90504 + 13.6919i −0.517876 + 0.896988i 0.481908 + 0.876222i \(0.339944\pi\)
−0.999784 + 0.0207662i \(0.993389\pi\)
\(234\) 2.62571 1.66666i 0.171648 0.108953i
\(235\) 0 0
\(236\) 0.121877 + 0.691202i 0.00793355 + 0.0449934i
\(237\) −23.4659 15.7075i −1.52428 1.02031i
\(238\) −2.77368 + 1.00954i −0.179791 + 0.0654385i
\(239\) −5.21235 + 29.5607i −0.337159 + 1.91212i 0.0676249 + 0.997711i \(0.478458\pi\)
−0.404784 + 0.914412i \(0.632653\pi\)
\(240\) 0 0
\(241\) −2.74958 + 2.30717i −0.177116 + 0.148618i −0.727036 0.686600i \(-0.759103\pi\)
0.549920 + 0.835217i \(0.314658\pi\)
\(242\) −3.75829 −0.241592
\(243\) 15.3971 + 2.43506i 0.987724 + 0.156209i
\(244\) −11.8823 −0.760686
\(245\) 0 0
\(246\) 0.527925 + 1.81682i 0.0336592 + 0.115836i
\(247\) 4.45999 25.2938i 0.283782 1.60941i
\(248\) 6.25139 2.27532i 0.396964 0.144483i
\(249\) −16.0939 10.7729i −1.01991 0.682704i
\(250\) 0 0
\(251\) −12.8233 22.2107i −0.809401 1.40192i −0.913279 0.407334i \(-0.866458\pi\)
0.103878 0.994590i \(-0.466875\pi\)
\(252\) −8.23080 + 5.22448i −0.518492 + 0.329111i
\(253\) 16.0397 27.7815i 1.00841 1.74661i
\(254\) −2.06832 0.752808i −0.129778 0.0472354i
\(255\) 0 0
\(256\) 7.83172 + 6.57159i 0.489483 + 0.410725i
\(257\) −6.42079 5.38768i −0.400518 0.336075i 0.420176 0.907443i \(-0.361968\pi\)
−0.820694 + 0.571368i \(0.806413\pi\)
\(258\) −1.98111 2.70659i −0.123339 0.168505i
\(259\) −3.92260 1.42771i −0.243738 0.0887135i
\(260\) 0 0
\(261\) 0.136446 0.430270i 0.00844581 0.0266330i
\(262\) 1.16961 + 2.02582i 0.0722586 + 0.125156i
\(263\) 0.883720 + 5.01183i 0.0544925 + 0.309043i 0.999856 0.0169761i \(-0.00540391\pi\)
−0.945363 + 0.326019i \(0.894293\pi\)
\(264\) −8.36318 + 4.11567i −0.514718 + 0.253302i
\(265\) 0 0
\(266\) 0.556171 3.15420i 0.0341010 0.193397i
\(267\) −10.9873 + 11.4585i −0.672411 + 0.701248i
\(268\) 0.914470 0.767331i 0.0558601 0.0468722i
\(269\) 28.2625 1.72320 0.861599 0.507590i \(-0.169464\pi\)
0.861599 + 0.507590i \(0.169464\pi\)
\(270\) 0 0
\(271\) −17.2893 −1.05025 −0.525125 0.851025i \(-0.675982\pi\)
−0.525125 + 0.851025i \(0.675982\pi\)
\(272\) 17.1602 14.3992i 1.04049 0.873077i
\(273\) 10.6499 + 2.61536i 0.644564 + 0.158289i
\(274\) 0.0190506 0.108041i 0.00115089 0.00652702i
\(275\) 0 0
\(276\) 1.42748 21.5066i 0.0859241 1.29454i
\(277\) 0.718943 + 4.07733i 0.0431971 + 0.244983i 0.998759 0.0498083i \(-0.0158610\pi\)
−0.955562 + 0.294791i \(0.904750\pi\)
\(278\) −0.647851 1.12211i −0.0388555 0.0672997i
\(279\) −7.00904 17.0008i −0.419620 1.01781i
\(280\) 0 0
\(281\) 18.0380 + 6.56528i 1.07605 + 0.391652i 0.818438 0.574595i \(-0.194840\pi\)
0.257617 + 0.966247i \(0.417063\pi\)
\(282\) −1.19830 + 2.71724i −0.0713575 + 0.161809i
\(283\) 7.31199 + 6.13548i 0.434652 + 0.364717i 0.833704 0.552212i \(-0.186216\pi\)
−0.399051 + 0.916929i \(0.630661\pi\)
\(284\) −10.0141 8.40286i −0.594230 0.498618i
\(285\) 0 0
\(286\) 4.83029 + 1.75808i 0.285621 + 0.103957i
\(287\) −3.33570 + 5.77759i −0.196900 + 0.341041i
\(288\) −5.76835 + 7.49176i −0.339903 + 0.441456i
\(289\) −11.4457 19.8246i −0.673277 1.16615i
\(290\) 0 0
\(291\) −1.57951 + 23.7971i −0.0925927 + 1.39501i
\(292\) −8.23067 + 2.99572i −0.481664 + 0.175311i
\(293\) −1.10363 + 6.25900i −0.0644748 + 0.365655i 0.935451 + 0.353457i \(0.114994\pi\)
−0.999926 + 0.0121977i \(0.996117\pi\)
\(294\) −1.92899 0.473712i −0.112501 0.0276274i
\(295\) 0 0
\(296\) −2.68161 −0.155866
\(297\) 12.3366 + 22.6195i 0.715842 + 1.31252i
\(298\) 6.37651 0.369381
\(299\) −18.5732 + 15.5848i −1.07412 + 0.901290i
\(300\) 0 0
\(301\) 2.05380 11.6477i 0.118379 0.671360i
\(302\) 1.34493 0.489516i 0.0773922 0.0281685i
\(303\) −17.7544 + 8.73727i −1.01997 + 0.501943i
\(304\) 4.22093 + 23.9381i 0.242087 + 1.37294i
\(305\) 0 0
\(306\) 3.53462 + 3.87019i 0.202061 + 0.221244i
\(307\) −4.29280 + 7.43535i −0.245003 + 0.424358i −0.962133 0.272582i \(-0.912122\pi\)
0.717129 + 0.696940i \(0.245456\pi\)
\(308\) −15.1415 5.51106i −0.862767 0.314022i
\(309\) 9.39206 + 12.8314i 0.534295 + 0.729952i
\(310\) 0 0
\(311\) −8.78608 7.37239i −0.498213 0.418050i 0.358746 0.933435i \(-0.383204\pi\)
−0.856959 + 0.515385i \(0.827649\pi\)
\(312\) 7.00360 0.761158i 0.396501 0.0430921i
\(313\) −23.4476 8.53424i −1.32534 0.482384i −0.420173 0.907444i \(-0.638031\pi\)
−0.905165 + 0.425060i \(0.860253\pi\)
\(314\) 1.91605 3.31870i 0.108129 0.187285i
\(315\) 0 0
\(316\) −15.6794 27.1575i −0.882034 1.52773i
\(317\) −0.110144 0.624658i −0.00618630 0.0350843i 0.981558 0.191163i \(-0.0612258\pi\)
−0.987745 + 0.156078i \(0.950115\pi\)
\(318\) −0.148691 0.0995304i −0.00833820 0.00558139i
\(319\) 0.701069 0.255168i 0.0392524 0.0142867i
\(320\) 0 0
\(321\) 0.526875 + 1.81321i 0.0294073 + 0.101203i
\(322\) −2.31612 + 1.94346i −0.129072 + 0.108305i
\(323\) 43.2860 2.40850
\(324\) 14.1477 + 9.97623i 0.785983 + 0.554235i
\(325\) 0 0
\(326\) 0.631648 0.530015i 0.0349837 0.0293548i
\(327\) −0.277890 0.956342i −0.0153674 0.0528858i
\(328\) −0.744208 + 4.22062i −0.0410920 + 0.233045i
\(329\) −9.84024 + 3.58155i −0.542510 + 0.197457i
\(330\) 0 0
\(331\) −3.50296 19.8662i −0.192540 1.09195i −0.915879 0.401455i \(-0.868505\pi\)
0.723339 0.690493i \(-0.242606\pi\)
\(332\) −10.7536 18.6258i −0.590180 1.02222i
\(333\) 0.311078 + 7.40593i 0.0170470 + 0.405843i
\(334\) −2.59540 + 4.49537i −0.142014 + 0.245976i
\(335\) 0 0
\(336\) −10.3178 + 1.12135i −0.562883 + 0.0611746i
\(337\) −23.2996 19.5507i −1.26921 1.06499i −0.994637 0.103428i \(-0.967019\pi\)
−0.274574 0.961566i \(-0.588537\pi\)
\(338\) −0.221365 0.185747i −0.0120407 0.0101033i
\(339\) −18.0230 24.6229i −0.978875 1.33733i
\(340\) 0 0
\(341\) 15.1969 26.3217i 0.822956 1.42540i
\(342\) −5.55460 + 1.22179i −0.300358 + 0.0660668i
\(343\) −9.41512 16.3075i −0.508369 0.880520i
\(344\) −1.31937 7.48250i −0.0711355 0.403429i
\(345\) 0 0
\(346\) −2.18271 + 0.794442i −0.117343 + 0.0427094i
\(347\) −6.41781 + 36.3972i −0.344526 + 1.95391i −0.0481276 + 0.998841i \(0.515325\pi\)
−0.296399 + 0.955064i \(0.595786\pi\)
\(348\) 0.346937 0.361816i 0.0185978 0.0193954i
\(349\) 5.58600 4.68721i 0.299012 0.250901i −0.480921 0.876764i \(-0.659698\pi\)
0.779933 + 0.625863i \(0.215253\pi\)
\(350\) 0 0
\(351\) −2.91457 19.2539i −0.155568 1.02769i
\(352\) −15.6278 −0.832962
\(353\) 8.72291 7.31939i 0.464273 0.389572i −0.380427 0.924811i \(-0.624223\pi\)
0.844700 + 0.535239i \(0.179779\pi\)
\(354\) −0.169783 0.0416944i −0.00902385 0.00221603i
\(355\) 0 0
\(356\) −16.5664 + 6.02968i −0.878018 + 0.319573i
\(357\) −1.22403 + 18.4414i −0.0647824 + 0.976020i
\(358\) 1.12519 + 6.38128i 0.0594682 + 0.337261i
\(359\) −12.4562 21.5748i −0.657414 1.13867i −0.981283 0.192573i \(-0.938317\pi\)
0.323869 0.946102i \(-0.395016\pi\)
\(360\) 0 0
\(361\) −13.9847 + 24.2223i −0.736039 + 1.27486i
\(362\) −2.09015 0.760754i −0.109856 0.0399843i
\(363\) −9.49544 + 21.5317i −0.498381 + 1.13012i
\(364\) 9.32920 + 7.82813i 0.488983 + 0.410305i
\(365\) 0 0
\(366\) 1.19427 2.70812i 0.0624257 0.141555i
\(367\) −27.0081 9.83014i −1.40981 0.513129i −0.478736 0.877959i \(-0.658905\pi\)
−0.931074 + 0.364830i \(0.881127\pi\)
\(368\) 11.4730 19.8718i 0.598071 1.03589i
\(369\) 11.7426 + 1.56571i 0.611295 + 0.0815074i
\(370\) 0 0
\(371\) −0.109560 0.621347i −0.00568808 0.0322587i
\(372\) 1.35247 20.3765i 0.0701224 1.05647i
\(373\) 17.4252 6.34227i 0.902245 0.328390i 0.151093 0.988520i \(-0.451721\pi\)
0.751152 + 0.660129i \(0.229499\pi\)
\(374\) −1.50432 + 8.53145i −0.0777868 + 0.441151i
\(375\) 0 0
\(376\) −5.15326 + 4.32410i −0.265759 + 0.222998i
\(377\) −0.563875 −0.0290410
\(378\) −0.363454 2.40100i −0.0186940 0.123494i
\(379\) 23.8701 1.22613 0.613063 0.790034i \(-0.289937\pi\)
0.613063 + 0.790034i \(0.289937\pi\)
\(380\) 0 0
\(381\) −9.53861 + 9.94768i −0.488678 + 0.509635i
\(382\) −0.127212 + 0.721455i −0.00650873 + 0.0369129i
\(383\) 28.7180 10.4525i 1.46742 0.534097i 0.520021 0.854154i \(-0.325924\pi\)
0.947398 + 0.320057i \(0.103702\pi\)
\(384\) −12.4705 + 6.13698i −0.636385 + 0.313176i
\(385\) 0 0
\(386\) −1.90439 3.29849i −0.0969307 0.167889i
\(387\) −20.5117 + 4.51175i −1.04267 + 0.229345i
\(388\) −13.2427 + 22.9370i −0.672296 + 1.16445i
\(389\) 7.60180 + 2.76683i 0.385427 + 0.140284i 0.527464 0.849578i \(-0.323143\pi\)
−0.142037 + 0.989861i \(0.545365\pi\)
\(390\) 0 0
\(391\) −31.3019 26.2654i −1.58301 1.32830i
\(392\) −3.44676 2.89217i −0.174088 0.146077i
\(393\) 14.5612 1.58253i 0.734516 0.0798279i
\(394\) −2.82812 1.02935i −0.142479 0.0518580i
\(395\) 0 0
\(396\) 1.20078 + 28.5874i 0.0603416 + 1.43657i
\(397\) 9.75843 + 16.9021i 0.489762 + 0.848292i 0.999931 0.0117821i \(-0.00375045\pi\)
−0.510169 + 0.860074i \(0.670417\pi\)
\(398\) 0.920780 + 5.22200i 0.0461545 + 0.261755i
\(399\) −16.6656 11.1556i −0.834325 0.558477i
\(400\) 0 0
\(401\) 2.44572 13.8704i 0.122134 0.692654i −0.860835 0.508883i \(-0.830058\pi\)
0.982969 0.183771i \(-0.0588305\pi\)
\(402\) 0.0829717 + 0.285542i 0.00413825 + 0.0142415i
\(403\) −17.5973 + 14.7659i −0.876582 + 0.735540i
\(404\) −21.9749 −1.09329
\(405\) 0 0
\(406\) −0.0703165 −0.00348975
\(407\) −9.38520 + 7.87512i −0.465207 + 0.390355i
\(408\) 3.31294 + 11.4013i 0.164015 + 0.564448i
\(409\) 0.282399 1.60156i 0.0139637 0.0791923i −0.977030 0.213104i \(-0.931643\pi\)
0.990993 + 0.133912i \(0.0427538\pi\)
\(410\) 0 0
\(411\) −0.570850 0.382113i −0.0281580 0.0188482i
\(412\) 3.06643 + 17.3906i 0.151072 + 0.856774i
\(413\) −0.308235 0.533879i −0.0151673 0.0262705i
\(414\) 4.75812 + 2.48693i 0.233849 + 0.122226i
\(415\) 0 0
\(416\) 11.0991 + 4.03976i 0.544181 + 0.198066i
\(417\) −8.06552 + 0.876569i −0.394970 + 0.0429257i
\(418\) −7.20101 6.04236i −0.352213 0.295542i
\(419\) −24.5436 20.5945i −1.19903 1.00611i −0.999657 0.0261853i \(-0.991664\pi\)
−0.199376 0.979923i \(-0.563892\pi\)
\(420\) 0 0
\(421\) −3.21532 1.17028i −0.156705 0.0570360i 0.262477 0.964938i \(-0.415461\pi\)
−0.419182 + 0.907902i \(0.637683\pi\)
\(422\) 2.09147 3.62254i 0.101811 0.176342i
\(423\) 12.5398 + 13.7304i 0.609708 + 0.667593i
\(424\) −0.202657 0.351011i −0.00984187 0.0170466i
\(425\) 0 0
\(426\) 2.92162 1.43778i 0.141553 0.0696607i
\(427\) 9.80721 3.56953i 0.474604 0.172742i
\(428\) −0.364121 + 2.06504i −0.0176005 + 0.0998173i
\(429\) 22.2761 23.2315i 1.07550 1.12163i
\(430\) 0 0
\(431\) 33.8955 1.63269 0.816344 0.577565i \(-0.195997\pi\)
0.816344 + 0.577565i \(0.195997\pi\)
\(432\) 8.82423 + 16.1795i 0.424556 + 0.778437i
\(433\) −17.6676 −0.849049 −0.424524 0.905417i \(-0.639559\pi\)
−0.424524 + 0.905417i \(0.639559\pi\)
\(434\) −2.19442 + 1.84134i −0.105336 + 0.0883870i
\(435\) 0 0
\(436\) 0.192049 1.08916i 0.00919748 0.0521615i
\(437\) 41.6649 15.1648i 1.99310 0.725430i
\(438\) 0.144494 2.17696i 0.00690418 0.104019i
\(439\) 1.25144 + 7.09728i 0.0597281 + 0.338735i 0.999999 0.00169354i \(-0.000539072\pi\)
−0.940270 + 0.340428i \(0.889428\pi\)
\(440\) 0 0
\(441\) −7.58761 + 9.85457i −0.361315 + 0.469265i
\(442\) 3.27377 5.67034i 0.155718 0.269711i
\(443\) 32.5861 + 11.8604i 1.54821 + 0.563504i 0.967998 0.250959i \(-0.0807461\pi\)
0.580216 + 0.814463i \(0.302968\pi\)
\(444\) −3.32152 + 7.53183i −0.157632 + 0.357445i
\(445\) 0 0
\(446\) 0.987830 + 0.828888i 0.0467751 + 0.0392490i
\(447\) 16.1104 36.5318i 0.761998 1.72789i
\(448\) −9.87731 3.59505i −0.466659 0.169850i
\(449\) −4.87046 + 8.43589i −0.229851 + 0.398114i −0.957764 0.287556i \(-0.907157\pi\)
0.727913 + 0.685670i \(0.240491\pi\)
\(450\) 0 0
\(451\) 9.79011 + 16.9570i 0.460998 + 0.798473i
\(452\) −5.88437 33.3719i −0.276777 1.56968i
\(453\) 0.593521 8.94206i 0.0278861 0.420135i
\(454\) 0.0518609 0.0188758i 0.00243395 0.000885886i
\(455\) 0 0
\(456\) −12.5114 3.07250i −0.585902 0.143883i
\(457\) 24.2137 20.3177i 1.13267 0.950421i 0.133493 0.991050i \(-0.457381\pi\)
0.999174 + 0.0406289i \(0.0129361\pi\)
\(458\) −4.80424 −0.224487
\(459\) 31.1031 10.4721i 1.45177 0.488796i
\(460\) 0 0
\(461\) −13.9469 + 11.7028i −0.649572 + 0.545056i −0.906941 0.421258i \(-0.861589\pi\)
0.257369 + 0.966313i \(0.417144\pi\)
\(462\) 2.77789 2.89702i 0.129239 0.134781i
\(463\) 4.90983 27.8450i 0.228179 1.29407i −0.628334 0.777943i \(-0.716263\pi\)
0.856513 0.516125i \(-0.172626\pi\)
\(464\) 0.501467 0.182519i 0.0232800 0.00847324i
\(465\) 0 0
\(466\) −0.759430 4.30694i −0.0351799 0.199515i
\(467\) 7.02539 + 12.1683i 0.325096 + 0.563083i 0.981532 0.191299i \(-0.0612699\pi\)
−0.656435 + 0.754382i \(0.727937\pi\)
\(468\) 6.53700 20.6138i 0.302173 0.952871i
\(469\) −0.524257 + 0.908040i −0.0242080 + 0.0419294i
\(470\) 0 0
\(471\) −14.1723 19.3621i −0.653024 0.892159i
\(472\) −0.303371 0.254559i −0.0139638 0.0117170i
\(473\) −26.5915 22.3129i −1.22268 1.02595i
\(474\) 7.76542 0.843953i 0.356678 0.0387641i
\(475\) 0 0
\(476\) −10.2623 + 17.7748i −0.470372 + 0.814708i
\(477\) −0.945895 + 0.600404i −0.0433096 + 0.0274906i
\(478\) −4.15161 7.19080i −0.189890 0.328900i
\(479\) 1.21657 + 6.89953i 0.0555867 + 0.315248i 0.999905 0.0137857i \(-0.00438826\pi\)
−0.944318 + 0.329033i \(0.893277\pi\)
\(480\) 0 0
\(481\) 8.70127 3.16700i 0.396744 0.144403i
\(482\) 0.172411 0.977792i 0.00785311 0.0445372i
\(483\) 5.28254 + 18.1795i 0.240364 + 0.827198i
\(484\) −20.0193 + 16.7982i −0.909969 + 0.763555i
\(485\) 0 0
\(486\) −3.69566 + 2.22173i −0.167639 + 0.100780i
\(487\) −20.2826 −0.919093 −0.459547 0.888154i \(-0.651988\pi\)
−0.459547 + 0.888154i \(0.651988\pi\)
\(488\) 5.13596 4.30958i 0.232494 0.195086i
\(489\) −1.44064 4.95789i −0.0651482 0.224203i
\(490\) 0 0
\(491\) 4.72637 1.72026i 0.213298 0.0776342i −0.233161 0.972438i \(-0.574907\pi\)
0.446459 + 0.894804i \(0.352685\pi\)
\(492\) 10.9326 + 7.31803i 0.492881 + 0.329922i
\(493\) −0.165020 0.935876i −0.00743213 0.0421497i
\(494\) 3.55236 + 6.15286i 0.159828 + 0.276830i
\(495\) 0 0
\(496\) 10.8701 18.8277i 0.488084 0.845387i
\(497\) 10.7896 + 3.92709i 0.483979 + 0.176154i
\(498\) 5.32586 0.578820i 0.238658 0.0259375i
\(499\) 18.3084 + 15.3625i 0.819595 + 0.687722i 0.952877 0.303356i \(-0.0981072\pi\)
−0.133282 + 0.991078i \(0.542552\pi\)
\(500\) 0 0
\(501\) 19.1972 + 26.2271i 0.857666 + 1.17174i
\(502\) 6.66653 + 2.42642i 0.297542 + 0.108296i
\(503\) 4.04017 6.99778i 0.180142 0.312015i −0.761787 0.647828i \(-0.775678\pi\)
0.941929 + 0.335813i \(0.109011\pi\)
\(504\) 1.66279 5.24343i 0.0740664 0.233561i
\(505\) 0 0
\(506\) 1.54092 + 8.73897i 0.0685020 + 0.388494i
\(507\) −1.62346 + 0.798931i −0.0721002 + 0.0354818i
\(508\) −14.3821 + 5.23467i −0.638104 + 0.232251i
\(509\) 2.73491 15.5104i 0.121223 0.687487i −0.862257 0.506470i \(-0.830950\pi\)
0.983480 0.181017i \(-0.0579389\pi\)
\(510\) 0 0
\(511\) 5.89335 4.94511i 0.260707 0.218759i
\(512\) −18.8770 −0.834254
\(513\) −7.03408 + 34.9098i −0.310562 + 1.54131i
\(514\) 2.31856 0.102267
\(515\) 0 0
\(516\) −22.6503 5.56234i −0.997122 0.244868i
\(517\) −5.33693 + 30.2672i −0.234718 + 1.33115i
\(518\) 1.08507 0.394933i 0.0476752 0.0173523i
\(519\) −0.963233 + 14.5122i −0.0422813 + 0.637015i
\(520\) 0 0
\(521\) 6.71663 + 11.6335i 0.294261 + 0.509675i 0.974813 0.223025i \(-0.0715932\pi\)
−0.680552 + 0.732700i \(0.738260\pi\)
\(522\) 0.0475919 + 0.115437i 0.00208304 + 0.00505253i
\(523\) 9.04762 15.6709i 0.395625 0.685242i −0.597556 0.801827i \(-0.703861\pi\)
0.993181 + 0.116585i \(0.0371948\pi\)
\(524\) 15.2848 + 5.56323i 0.667721 + 0.243031i
\(525\) 0 0
\(526\) −1.07841 0.904889i −0.0470207 0.0394551i
\(527\) −29.6572 24.8853i −1.29189 1.08402i
\(528\) −12.2910 + 27.8708i −0.534896 + 1.21292i
\(529\) −17.7185 6.44901i −0.770370 0.280392i
\(530\) 0 0
\(531\) −0.667833 + 0.867363i −0.0289815 + 0.0376404i
\(532\) −11.1356 19.2874i −0.482789 0.836214i
\(533\) −2.56978 14.5739i −0.111309 0.631267i
\(534\) 0.290832 4.38172i 0.0125855 0.189615i
\(535\) 0 0
\(536\) −0.116964 + 0.663337i −0.00505208 + 0.0286518i
\(537\) 39.4020 + 9.67614i 1.70032 + 0.417556i
\(538\) −5.98892 + 5.02530i −0.258201 + 0.216656i
\(539\) −20.5565 −0.885433
\(540\) 0 0
\(541\) 10.6112 0.456211 0.228106 0.973636i \(-0.426747\pi\)
0.228106 + 0.973636i \(0.426747\pi\)
\(542\) 3.66366 3.07417i 0.157368 0.132047i
\(543\) −9.63929 + 10.0527i −0.413661 + 0.431402i
\(544\) −3.45667 + 19.6038i −0.148204 + 0.840505i
\(545\) 0 0
\(546\) −2.72179 + 1.33944i −0.116482 + 0.0573227i
\(547\) −2.92380 16.5817i −0.125013 0.708983i −0.981300 0.192483i \(-0.938346\pi\)
0.856287 0.516500i \(-0.172765\pi\)
\(548\) −0.381429 0.660654i −0.0162938 0.0282217i
\(549\) −12.4978 13.6843i −0.533391 0.584031i
\(550\) 0 0
\(551\) 0.968993 + 0.352685i 0.0412805 + 0.0150249i
\(552\) 7.18319 + 9.81364i 0.305737 + 0.417696i
\(553\) 21.0995 + 17.7046i 0.897241 + 0.752875i
\(554\) −0.877326 0.736164i −0.0372740 0.0312766i
\(555\) 0 0
\(556\) −8.46634 3.08149i −0.359053 0.130684i
\(557\) 2.30112 3.98565i 0.0975015 0.168877i −0.813148 0.582056i \(-0.802248\pi\)
0.910650 + 0.413179i \(0.135582\pi\)
\(558\) 4.50811 + 2.35626i 0.190844 + 0.0997484i
\(559\) 13.1179 + 22.7209i 0.554830 + 0.960994i
\(560\) 0 0
\(561\) 45.0770 + 30.1734i 1.90315 + 1.27392i
\(562\) −4.98966 + 1.81609i −0.210476 + 0.0766070i
\(563\) −1.86442 + 10.5736i −0.0785758 + 0.445626i 0.919983 + 0.391958i \(0.128202\pi\)
−0.998559 + 0.0536674i \(0.982909\pi\)
\(564\) 5.76209 + 19.8299i 0.242628 + 0.834988i
\(565\) 0 0
\(566\) −2.64037 −0.110983
\(567\) −14.6739 3.98393i −0.616246 0.167310i
\(568\) 7.37610 0.309494
\(569\) 10.4618 8.77850i 0.438582 0.368014i −0.396597 0.917993i \(-0.629809\pi\)
0.835178 + 0.549979i \(0.185364\pi\)
\(570\) 0 0
\(571\) −2.92720 + 16.6010i −0.122499 + 0.694729i 0.860262 + 0.509852i \(0.170300\pi\)
−0.982762 + 0.184877i \(0.940811\pi\)
\(572\) 33.5875 12.2248i 1.40436 0.511147i
\(573\) 3.81190 + 2.55159i 0.159244 + 0.106594i
\(574\) −0.320457 1.81740i −0.0133756 0.0758569i
\(575\) 0 0
\(576\) 0.783310 + 18.6485i 0.0326379 + 0.777022i
\(577\) −7.71289 + 13.3591i −0.321092 + 0.556147i −0.980714 0.195450i \(-0.937383\pi\)
0.659622 + 0.751598i \(0.270716\pi\)
\(578\) 5.95034 + 2.16575i 0.247502 + 0.0900832i
\(579\) −23.7090 + 2.57671i −0.985311 + 0.107085i
\(580\) 0 0
\(581\) 14.4709 + 12.1426i 0.600355 + 0.503758i
\(582\) −3.89661 5.32354i −0.161520 0.220668i
\(583\) −1.74008 0.633338i −0.0720668 0.0262302i
\(584\) 2.47108 4.28003i 0.102254 0.177109i
\(585\) 0 0
\(586\) −0.879036 1.52254i −0.0363126 0.0628953i
\(587\) 2.05906 + 11.6775i 0.0849866 + 0.481983i 0.997359 + 0.0726229i \(0.0231369\pi\)
−0.912373 + 0.409360i \(0.865752\pi\)
\(588\) −12.3925 + 6.09856i −0.511057 + 0.251500i
\(589\) 39.4757 14.3680i 1.62657 0.592022i
\(590\) 0 0
\(591\) −13.0426 + 13.6020i −0.536502 + 0.559510i
\(592\) −6.71313 + 5.63298i −0.275908 + 0.231514i
\(593\) −34.8582 −1.43146 −0.715728 0.698379i \(-0.753905\pi\)
−0.715728 + 0.698379i \(0.753905\pi\)
\(594\) −6.63609 2.59961i −0.272282 0.106663i
\(595\) 0 0
\(596\) 33.9658 28.5007i 1.39129 1.16743i
\(597\) 32.2439 + 7.91829i 1.31965 + 0.324074i
\(598\) 1.16462 6.60492i 0.0476251 0.270095i
\(599\) 11.2279 4.08662i 0.458759 0.166975i −0.102294 0.994754i \(-0.532618\pi\)
0.561054 + 0.827779i \(0.310396\pi\)
\(600\) 0 0
\(601\) 3.39336 + 19.2447i 0.138418 + 0.785007i 0.972418 + 0.233243i \(0.0749338\pi\)
−0.834001 + 0.551764i \(0.813955\pi\)
\(602\) 1.63584 + 2.83336i 0.0666718 + 0.115479i
\(603\) 1.84553 + 0.246075i 0.0751560 + 0.0100210i
\(604\) 4.97611 8.61887i 0.202475 0.350697i
\(605\) 0 0
\(606\) 2.20867 5.00833i 0.0897209 0.203450i
\(607\) 7.81863 + 6.56061i 0.317348 + 0.266287i 0.787521 0.616287i \(-0.211364\pi\)
−0.470173 + 0.882574i \(0.655808\pi\)
\(608\) −16.5467 13.8843i −0.671055 0.563082i
\(609\) −0.177657 + 0.402852i −0.00719902 + 0.0163244i
\(610\) 0 0
\(611\) 11.6144 20.1168i 0.469870 0.813839i
\(612\) 36.1262 + 4.81691i 1.46032 + 0.194712i
\(613\) −7.38192 12.7859i −0.298153 0.516416i 0.677560 0.735467i \(-0.263037\pi\)
−0.975713 + 0.219051i \(0.929704\pi\)
\(614\) −0.412406 2.33887i −0.0166433 0.0943890i
\(615\) 0 0
\(616\) 8.54350 3.10958i 0.344228 0.125289i
\(617\) −5.66996 + 32.1559i −0.228264 + 1.29455i 0.628082 + 0.778147i \(0.283840\pi\)
−0.856346 + 0.516402i \(0.827271\pi\)
\(618\) −4.27173 1.04903i −0.171834 0.0421982i
\(619\) 11.2792 9.46438i 0.453350 0.380406i −0.387327 0.921942i \(-0.626602\pi\)
0.840677 + 0.541537i \(0.182157\pi\)
\(620\) 0 0
\(621\) 26.2695 20.9766i 1.05416 0.841760i
\(622\) 3.17267 0.127212
\(623\) 11.8619 9.95335i 0.475239 0.398773i
\(624\) 15.9339 16.6172i 0.637865 0.665220i
\(625\) 0 0
\(626\) 6.48608 2.36074i 0.259236 0.0943541i
\(627\) −52.8110 + 25.9892i −2.10907 + 1.03791i
\(628\) −4.62714 26.2418i −0.184643 1.04716i
\(629\) 7.80281 + 13.5149i 0.311118 + 0.538873i
\(630\) 0 0
\(631\) 12.9621 22.4511i 0.516014 0.893762i −0.483813 0.875171i \(-0.660749\pi\)
0.999827 0.0185911i \(-0.00591806\pi\)
\(632\) 16.6269 + 6.05170i 0.661383 + 0.240724i
\(633\) −15.4698 21.1347i −0.614868 0.840031i
\(634\) 0.134409 + 0.112782i 0.00533806 + 0.00447916i
\(635\) 0 0
\(636\) −1.23690 + 0.134427i −0.0490463 + 0.00533040i
\(637\) 14.5997 + 5.31385i 0.578460 + 0.210542i
\(638\) −0.103188 + 0.178727i −0.00408525 + 0.00707585i
\(639\) −0.855657 20.3709i −0.0338493 0.805860i
\(640\) 0 0
\(641\) −3.45147 19.5742i −0.136325 0.773136i −0.973928 0.226857i \(-0.927155\pi\)
0.837603 0.546279i \(-0.183956\pi\)
\(642\) −0.434048 0.290541i −0.0171305 0.0114668i
\(643\) −31.1702 + 11.3450i −1.22923 + 0.447404i −0.873334 0.487121i \(-0.838047\pi\)
−0.355897 + 0.934525i \(0.615825\pi\)
\(644\) −3.65075 + 20.7044i −0.143860 + 0.815869i
\(645\) 0 0
\(646\) −9.17244 + 7.69659i −0.360885 + 0.302818i
\(647\) 18.8740 0.742014 0.371007 0.928630i \(-0.379013\pi\)
0.371007 + 0.928630i \(0.379013\pi\)
\(648\) −9.73341 + 0.819127i −0.382364 + 0.0321783i
\(649\) −1.80931 −0.0710217
\(650\) 0 0
\(651\) 5.00497 + 17.2243i 0.196160 + 0.675074i
\(652\) 0.995625 5.64647i 0.0389917 0.221133i
\(653\) 25.7663 9.37817i 1.00831 0.366996i 0.215528 0.976498i \(-0.430853\pi\)
0.792785 + 0.609502i \(0.208630\pi\)
\(654\) 0.228931 + 0.153241i 0.00895190 + 0.00599218i
\(655\) 0 0
\(656\) 7.00276 + 12.1291i 0.273412 + 0.473563i
\(657\) −12.1070 6.32798i −0.472339 0.246878i
\(658\) 1.44835 2.50861i 0.0564625 0.0977959i
\(659\) −4.90832 1.78648i −0.191201 0.0695915i 0.244645 0.969613i \(-0.421329\pi\)
−0.435846 + 0.900021i \(0.643551\pi\)
\(660\) 0 0
\(661\) 17.4652 + 14.6551i 0.679319 + 0.570017i 0.915807 0.401618i \(-0.131552\pi\)
−0.236488 + 0.971634i \(0.575996\pi\)
\(662\) 4.27466 + 3.58687i 0.166139 + 0.139408i
\(663\) −24.2148 33.0821i −0.940424 1.28480i
\(664\) 11.4035 + 4.15052i 0.442540 + 0.161071i
\(665\) 0 0
\(666\) −1.38275 1.51403i −0.0535805 0.0586674i
\(667\) −0.486714 0.843014i −0.0188456 0.0326416i
\(668\) 6.26772 + 35.5460i 0.242505 + 1.37532i
\(669\) 7.24458 3.56519i 0.280092 0.137838i
\(670\) 0 0
\(671\) 5.31901 30.1656i 0.205338 1.16453i
\(672\) 6.38309 6.65684i 0.246233 0.256793i
\(673\) 13.3460 11.1986i 0.514450 0.431675i −0.348242 0.937405i \(-0.613221\pi\)
0.862692 + 0.505730i \(0.168777\pi\)
\(674\) 8.41353 0.324077
\(675\) 0 0
\(676\) −2.00937 −0.0772835
\(677\) −24.5750 + 20.6209i −0.944495 + 0.792526i −0.978362 0.206901i \(-0.933662\pi\)
0.0338665 + 0.999426i \(0.489218\pi\)
\(678\) 8.19728 + 2.01305i 0.314815 + 0.0773107i
\(679\) 4.03958 22.9096i 0.155025 0.879189i
\(680\) 0 0
\(681\) 0.0228863 0.344808i 0.000877005 0.0132131i
\(682\) 1.45995 + 8.27978i 0.0559043 + 0.317049i
\(683\) 10.6001 + 18.3599i 0.405600 + 0.702520i 0.994391 0.105765i \(-0.0337292\pi\)
−0.588791 + 0.808285i \(0.700396\pi\)
\(684\) −24.1267 + 31.3351i −0.922509 + 1.19813i
\(685\) 0 0
\(686\) 4.89469 + 1.78152i 0.186880 + 0.0680188i
\(687\) −12.1381 + 27.5241i −0.463096 + 1.05011i
\(688\) −19.0206 15.9602i −0.725153 0.608476i
\(689\) 1.07212 + 0.899619i 0.0408447 + 0.0342728i
\(690\) 0 0
\(691\) −10.2500 3.73069i −0.389928 0.141922i 0.139614 0.990206i \(-0.455414\pi\)
−0.529542 + 0.848284i \(0.677636\pi\)
\(692\) −8.07579 + 13.9877i −0.306995 + 0.531732i
\(693\) −9.57895 23.2342i −0.363874 0.882596i
\(694\) −5.11176 8.85382i −0.194040 0.336086i
\(695\) 0 0
\(696\) −0.0187321 + 0.282220i −0.000710038 + 0.0106975i
\(697\) 23.4366 8.53023i 0.887725 0.323106i
\(698\) −0.350268 + 1.98647i −0.0132578 + 0.0751889i
\(699\) −26.5937 6.53075i −1.00587 0.247016i
\(700\) 0 0
\(701\) −16.5817 −0.626282 −0.313141 0.949707i \(-0.601381\pi\)
−0.313141 + 0.949707i \(0.601381\pi\)
\(702\) 4.04109 + 3.56172i 0.152521 + 0.134428i
\(703\) −16.9336 −0.638662
\(704\) −23.6324 + 19.8300i −0.890681 + 0.747370i
\(705\) 0 0
\(706\) −0.546967 + 3.10200i −0.0205854 + 0.116745i
\(707\) 18.1372 6.60142i 0.682121 0.248272i
\(708\) −1.09074 + 0.536773i −0.0409926 + 0.0201732i
\(709\) −0.653972 3.70886i −0.0245604 0.139289i 0.970062 0.242858i \(-0.0780849\pi\)
−0.994622 + 0.103569i \(0.966974\pi\)
\(710\) 0 0
\(711\) 14.7845 46.6213i 0.554461 1.74844i
\(712\) 4.97370 8.61470i 0.186397 0.322850i
\(713\) −37.2648 13.5633i −1.39558 0.507948i
\(714\) −3.01964 4.12542i −0.113007 0.154390i
\(715\) 0 0
\(716\) 34.5156 + 28.9620i 1.28991 + 1.08236i
\(717\) −51.6861 + 5.61730i −1.93025 + 0.209782i
\(718\) 6.47568 + 2.35695i 0.241670 + 0.0879608i
\(719\) 0.0341167 0.0590919i 0.00127234 0.00220375i −0.865389 0.501101i \(-0.832928\pi\)
0.866661 + 0.498898i \(0.166262\pi\)
\(720\) 0 0
\(721\) −7.75519 13.4324i −0.288818 0.500248i
\(722\) −1.34350 7.61937i −0.0499999 0.283564i
\(723\) −5.16629 3.45819i −0.192136 0.128611i
\(724\) −14.5339 + 5.28992i −0.540149 + 0.196598i
\(725\) 0 0
\(726\) −1.81639 6.25100i −0.0674127 0.231996i
\(727\) −33.5717 + 28.1700i −1.24511 + 1.04477i −0.247998 + 0.968760i \(0.579773\pi\)
−0.997107 + 0.0760072i \(0.975783\pi\)
\(728\) −6.87159 −0.254678
\(729\) 3.39133 + 26.7862i 0.125605 + 0.992080i
\(730\) 0 0
\(731\) −33.8715 + 28.4215i −1.25278 + 1.05121i
\(732\) −5.74275 19.7633i −0.212258 0.730473i
\(733\) −0.894591 + 5.07348i −0.0330425 + 0.187393i −0.996862 0.0791639i \(-0.974775\pi\)
0.963819 + 0.266557i \(0.0858861\pi\)
\(734\) 7.47097 2.71921i 0.275759 0.100368i
\(735\) 0 0
\(736\) 3.54075 + 20.0806i 0.130514 + 0.740181i
\(737\) 1.53867 + 2.66506i 0.0566777 + 0.0981686i
\(738\) −2.76669 + 1.75615i −0.101843 + 0.0646447i
\(739\) −0.515367 + 0.892642i −0.0189581 + 0.0328364i −0.875349 0.483492i \(-0.839368\pi\)
0.856391 + 0.516328i \(0.172702\pi\)
\(740\) 0 0
\(741\) 44.2256 4.80648i 1.62467 0.176571i
\(742\) 0.133696 + 0.112185i 0.00490815 + 0.00411843i
\(743\) 32.5316 + 27.2972i 1.19347 + 1.00144i 0.999792 + 0.0203733i \(0.00648548\pi\)
0.193676 + 0.981066i \(0.437959\pi\)
\(744\) 6.80575 + 9.29799i 0.249511 + 0.340881i
\(745\) 0 0
\(746\) −2.56476 + 4.44229i −0.0939025 + 0.162644i
\(747\) 10.1398 31.9749i 0.370997 1.16990i
\(748\) 30.1194 + 52.1683i 1.10127 + 1.90746i
\(749\) −0.319820 1.81379i −0.0116860 0.0662744i
\(750\) 0 0
\(751\) 2.32349 0.845681i 0.0847853 0.0308593i −0.299279 0.954166i \(-0.596746\pi\)
0.384065 + 0.923306i \(0.374524\pi\)
\(752\) −3.81745 + 21.6498i −0.139208 + 0.789487i
\(753\) 30.7444 32.0629i 1.12039 1.16844i
\(754\) 0.119487 0.100261i 0.00435145 0.00365130i
\(755\) 0 0
\(756\) −12.6676 11.1649i −0.460717 0.406064i
\(757\) 52.6699 1.91432 0.957160 0.289559i \(-0.0935087\pi\)
0.957160 + 0.289559i \(0.0935087\pi\)
\(758\) −5.05816 + 4.24430i −0.183721 + 0.154160i
\(759\) 53.9598 + 13.2512i 1.95862 + 0.480987i
\(760\) 0 0
\(761\) −28.1597 + 10.2493i −1.02079 + 0.371537i −0.797567 0.603231i \(-0.793880\pi\)
−0.223222 + 0.974768i \(0.571658\pi\)
\(762\) 0.252486 3.80398i 0.00914660 0.137804i
\(763\) 0.168683 + 0.956649i 0.00610673 + 0.0346330i
\(764\) 2.54702 + 4.41157i 0.0921480 + 0.159605i
\(765\) 0 0
\(766\) −4.22689 + 7.32119i −0.152724 + 0.264525i
\(767\) 1.28501 + 0.467705i 0.0463990 + 0.0168879i
\(768\) −7.14515 + 16.2022i −0.257828 + 0.584647i
\(769\) −33.0529 27.7347i −1.19192 1.00014i −0.999824 0.0187613i \(-0.994028\pi\)
−0.192094 0.981377i \(-0.561528\pi\)
\(770\) 0 0
\(771\) 5.85791 13.2833i 0.210967 0.478386i
\(772\) −24.8872 9.05819i −0.895709 0.326011i
\(773\) 19.4784 33.7376i 0.700590 1.21346i −0.267669 0.963511i \(-0.586254\pi\)
0.968260 0.249947i \(-0.0804132\pi\)
\(774\) 3.54427 4.60319i 0.127396 0.165458i
\(775\) 0 0
\(776\) −2.59504 14.7172i −0.0931565 0.528316i
\(777\) 0.478843 7.21430i 0.0171784 0.258812i
\(778\) −2.10281 + 0.765360i −0.0753894 + 0.0274395i
\(779\) −4.69945 + 26.6519i −0.168375 + 0.954905i
\(780\) 0 0
\(781\) 25.8151 21.6614i 0.923737 0.775108i
\(782\) 11.3032 0.404200
\(783\) 0.781593 + 0.0189946i 0.0279319 + 0.000678813i
\(784\) −14.7039 −0.525138
\(785\) 0 0
\(786\) −2.80418 + 2.92444i −0.100022 + 0.104311i
\(787\) 1.82048 10.3244i 0.0648930 0.368027i −0.935017 0.354603i \(-0.884616\pi\)
0.999910 0.0134234i \(-0.00427292\pi\)
\(788\) −19.6654 + 7.15762i −0.700551 + 0.254980i
\(789\) −7.90884 + 3.89208i −0.281562 + 0.138562i
\(790\) 0 0
\(791\) 14.8819 + 25.7762i 0.529140 + 0.916497i
\(792\) −10.8874 11.9210i −0.386865 0.423594i
\(793\) −11.5755 + 20.0493i −0.411056 + 0.711971i
\(794\) −5.07317 1.84648i −0.180040 0.0655292i
\(795\) 0 0
\(796\) 28.2452 + 23.7005i 1.00112 + 0.840042i
\(797\) −22.2746 18.6906i −0.789007 0.662055i 0.156493 0.987679i \(-0.449981\pi\)
−0.945499 + 0.325624i \(0.894426\pi\)
\(798\) 5.51504 0.599380i 0.195230 0.0212178i
\(799\) 36.7873 + 13.3895i 1.30144 + 0.473686i
\(800\) 0 0
\(801\) −24.3686 12.7368i −0.861022 0.450031i
\(802\) 1.94801 + 3.37405i 0.0687865 + 0.119142i
\(803\) −3.92085 22.2362i −0.138364 0.784699i
\(804\) 1.71823 + 1.15014i 0.0605974 + 0.0405624i
\(805\) 0 0
\(806\) 1.10343 6.25786i 0.0388667 0.220424i
\(807\) 13.6594 + 47.0078i 0.480832 + 1.65475i
\(808\) 9.49834 7.97005i 0.334150 0.280385i
\(809\) 37.5077 1.31870 0.659350 0.751836i \(-0.270831\pi\)
0.659350 + 0.751836i \(0.270831\pi\)
\(810\) 0 0
\(811\) −9.23252 −0.324198 −0.162099 0.986775i \(-0.551826\pi\)
−0.162099 + 0.986775i \(0.551826\pi\)
\(812\) −0.374555 + 0.314289i −0.0131443 + 0.0110294i
\(813\) −8.35597 28.7565i −0.293057 1.00854i
\(814\) 0.588495 3.33752i 0.0206268 0.116980i
\(815\) 0 0
\(816\) 32.2431 + 21.5827i 1.12873 + 0.755546i
\(817\) −8.33141 47.2498i −0.291479 1.65306i
\(818\) 0.224929 + 0.389589i 0.00786447 + 0.0136217i
\(819\) 0.797132 + 18.9776i 0.0278540 + 0.663130i
\(820\) 0 0
\(821\) −26.4820 9.63866i −0.924228 0.336392i −0.164309 0.986409i \(-0.552539\pi\)
−0.759919 + 0.650017i \(0.774762\pi\)
\(822\) 0.188908 0.0205307i 0.00658891 0.000716089i
\(823\) −16.8538 14.1420i −0.587485 0.492959i 0.299910 0.953967i \(-0.403043\pi\)
−0.887396 + 0.461009i \(0.847488\pi\)
\(824\) −7.63281 6.40468i −0.265901 0.223118i
\(825\) 0 0
\(826\) 0.160244 + 0.0583240i 0.00557560 + 0.00202935i
\(827\) 4.11260 7.12323i 0.143009 0.247699i −0.785619 0.618710i \(-0.787656\pi\)
0.928628 + 0.371011i \(0.120989\pi\)
\(828\) 36.4608 8.01992i 1.26710 0.278712i
\(829\) 5.60468 + 9.70759i 0.194659 + 0.337159i 0.946789 0.321856i \(-0.104307\pi\)
−0.752130 + 0.659015i \(0.770973\pi\)
\(830\) 0 0
\(831\) −6.43417 + 3.16637i −0.223199 + 0.109840i
\(832\) 21.9103 7.97468i 0.759601 0.276472i
\(833\) −4.54686 + 25.7865i −0.157539 + 0.893451i
\(834\) 1.55325 1.61986i 0.0537846 0.0560912i
\(835\) 0 0
\(836\) −65.3648 −2.26069
\(837\) 24.8892 19.8743i 0.860296 0.686958i
\(838\) 8.86273 0.306158
\(839\) 6.85960 5.75589i 0.236820 0.198715i −0.516652 0.856195i \(-0.672822\pi\)
0.753472 + 0.657480i \(0.228378\pi\)
\(840\) 0 0
\(841\) −5.03187 + 28.5371i −0.173513 + 0.984039i
\(842\) 0.889421 0.323723i 0.0306515 0.0111562i
\(843\) −2.20194 + 33.1748i −0.0758390 + 1.14260i
\(844\) −5.05076 28.6443i −0.173854 0.985977i
\(845\) 0 0
\(846\) −5.09860 0.679825i −0.175293 0.0233729i
\(847\) 11.4769 19.8786i 0.394351 0.683035i
\(848\) −1.24466 0.453020i −0.0427419 0.0155568i
\(849\) −6.67097 + 15.1270i −0.228947 + 0.519157i
\(850\) 0 0
\(851\) 12.2454 + 10.2751i 0.419766 + 0.352226i
\(852\) 9.13624 20.7172i 0.313003 0.709760i
\(853\) 47.5581 + 17.3097i 1.62836 + 0.592674i 0.984949 0.172847i \(-0.0552968\pi\)
0.643410 + 0.765522i \(0.277519\pi\)
\(854\) −1.44349 + 2.50019i −0.0493951 + 0.0855548i
\(855\) 0 0
\(856\) −0.591579 1.02465i −0.0202198 0.0350217i
\(857\) 4.66987 + 26.4841i 0.159520 + 0.904681i 0.954537 + 0.298094i \(0.0963508\pi\)
−0.795017 + 0.606587i \(0.792538\pi\)
\(858\) −0.589646 + 8.88369i −0.0201302 + 0.303284i
\(859\) −51.3051 + 18.6735i −1.75051 + 0.637133i −0.999726 0.0234172i \(-0.992545\pi\)
−0.750782 + 0.660550i \(0.770323\pi\)
\(860\) 0 0
\(861\) −11.2218 2.75579i −0.382437 0.0939170i
\(862\) −7.18256 + 6.02689i −0.244639 + 0.205277i
\(863\) −36.0299 −1.22647 −0.613235 0.789900i \(-0.710132\pi\)
−0.613235 + 0.789900i \(0.710132\pi\)
\(864\) −15.2486 5.97344i −0.518767 0.203221i
\(865\) 0 0
\(866\) 3.74381 3.14143i 0.127220 0.106750i
\(867\) 27.4416 28.6184i 0.931964 0.971932i
\(868\) −3.45892 + 19.6165i −0.117403 + 0.665828i
\(869\) 75.9635 27.6485i 2.57689 0.937910i
\(870\) 0 0
\(871\) −0.403881 2.29052i −0.0136850 0.0776114i
\(872\) 0.312018 + 0.540430i 0.0105662 + 0.0183013i
\(873\) −40.3441 + 8.87409i −1.36544 + 0.300342i
\(874\) −6.13251 + 10.6218i −0.207435 + 0.359288i
\(875\) 0 0
\(876\) −8.96055 12.2419i −0.302749 0.413614i
\(877\) 5.90106 + 4.95158i 0.199265 + 0.167203i 0.736960 0.675936i \(-0.236261\pi\)
−0.537695 + 0.843139i \(0.680705\pi\)
\(878\) −1.52714 1.28142i −0.0515384 0.0432458i
\(879\) −10.9437 + 1.18937i −0.369122 + 0.0401165i
\(880\) 0 0
\(881\) −8.21595 + 14.2305i −0.276803 + 0.479436i −0.970588 0.240745i \(-0.922608\pi\)
0.693786 + 0.720181i \(0.255941\pi\)
\(882\) −0.144382 3.43735i −0.00486159 0.115742i
\(883\) −0.908772 1.57404i −0.0305826 0.0529706i 0.850329 0.526251i \(-0.176403\pi\)
−0.880912 + 0.473281i \(0.843070\pi\)
\(884\) −7.90594 44.8368i −0.265906 1.50803i
\(885\) 0 0
\(886\) −9.01397 + 3.28082i −0.302830 + 0.110221i
\(887\) 3.37292 19.1288i 0.113251 0.642281i −0.874350 0.485297i \(-0.838712\pi\)
0.987601 0.156985i \(-0.0501773\pi\)
\(888\) −1.29603 4.46021i −0.0434919 0.149675i
\(889\) 10.2979 8.64099i 0.345382 0.289810i
\(890\) 0 0
\(891\) −31.6598 + 31.4510i −1.06064 + 1.05365i
\(892\) 8.96671 0.300228
\(893\) −32.5413 + 27.3054i −1.08895 + 0.913740i
\(894\) 3.08178 + 10.6058i 0.103070 + 0.354710i
\(895\) 0 0
\(896\) 12.7394 4.63677i 0.425594 0.154904i
\(897\) −34.8979 23.3598i −1.16521 0.779961i
\(898\) −0.467901 2.65360i −0.0156140 0.0885516i
\(899\) −0.461140 0.798718i −0.0153799 0.0266387i
\(900\) 0 0
\(901\) −1.17936 + 2.04271i −0.0392901 + 0.0680524i
\(902\) −5.08964 1.85248i −0.169466 0.0616807i
\(903\) 20.3656 2.21336i 0.677726 0.0736559i
\(904\) 14.6471 + 12.2903i 0.487154 + 0.408771i
\(905\) 0 0
\(906\) 1.46420 + 2.00038i 0.0486448 + 0.0664583i
\(907\) 32.5455 + 11.8456i 1.08066 + 0.393327i 0.820152 0.572146i \(-0.193889\pi\)
0.260505 + 0.965473i \(0.416111\pi\)
\(908\) 0.191880 0.332345i 0.00636775 0.0110293i
\(909\) −23.1131 25.3074i −0.766613 0.839394i
\(910\) 0 0
\(911\) −3.90409 22.1412i −0.129348 0.733570i −0.978630 0.205630i \(-0.934076\pi\)
0.849282 0.527940i \(-0.177035\pi\)
\(912\) −37.7751 + 18.5898i −1.25086 + 0.615570i
\(913\) 52.0990 18.9625i 1.72423 0.627567i
\(914\) −1.51831 + 8.61076i −0.0502212 + 0.284819i
\(915\) 0 0
\(916\) −25.5908 + 21.4732i −0.845542 + 0.709494i
\(917\) −14.2868 −0.471791
\(918\) −4.72883 + 7.74945i −0.156075 + 0.255770i
\(919\) −21.3527 −0.704360 −0.352180 0.935932i \(-0.614560\pi\)
−0.352180 + 0.935932i \(0.614560\pi\)
\(920\) 0 0
\(921\) −14.4416 3.54650i −0.475867 0.116861i
\(922\) 0.874535 4.95974i 0.0288013 0.163340i
\(923\) −23.9339 + 8.71122i −0.787793 + 0.286733i
\(924\) 1.84837 27.8477i 0.0608068 0.916122i
\(925\) 0 0
\(926\) 3.91066 + 6.77345i 0.128512 + 0.222589i
\(927\) −16.8027 + 21.8228i −0.551872 + 0.716756i
\(928\) −0.237108 + 0.410682i −0.00778344 + 0.0134813i
\(929\) −41.3431 15.0476i −1.35642 0.493697i −0.441476 0.897273i \(-0.645545\pi\)
−0.914946 + 0.403576i \(0.867767\pi\)
\(930\) 0 0
\(931\) −21.7652 18.2632i −0.713327 0.598553i
\(932\) −23.2957 19.5474i −0.763076 0.640297i
\(933\) 8.01584 18.1766i 0.262427 0.595075i
\(934\) −3.65233 1.32934i −0.119508 0.0434973i
\(935\) 0 0
\(936\) 4.65086 + 11.2809i 0.152018 + 0.368728i
\(937\) −1.06136 1.83833i −0.0346731 0.0600555i 0.848168 0.529727i \(-0.177706\pi\)
−0.882841 + 0.469672i \(0.844372\pi\)
\(938\) −0.0503649 0.285634i −0.00164447 0.00932627i
\(939\) 2.86232 43.1240i 0.0934082 1.40730i
\(940\) 0 0
\(941\) 9.63291 54.6309i 0.314024 1.78092i −0.263617 0.964627i \(-0.584916\pi\)
0.577641 0.816291i \(-0.303973\pi\)
\(942\) 6.44589 + 1.58295i 0.210018 + 0.0515753i
\(943\) 19.5704 16.4215i 0.637301 0.534759i
\(944\) −1.29418 −0.0421220
\(945\) 0 0
\(946\) 9.60222 0.312195
\(947\) 6.92360 5.80959i 0.224987 0.188786i −0.523326 0.852133i \(-0.675309\pi\)
0.748312 + 0.663346i \(0.230864\pi\)
\(948\) 37.5919 39.2041i 1.22093 1.27329i
\(949\) −2.96338 + 16.8062i −0.0961953 + 0.545551i
\(950\) 0 0
\(951\) 0.985732 0.485096i 0.0319646 0.0157303i
\(952\) −2.01100 11.4049i −0.0651769 0.369636i
\(953\) 8.14599 + 14.1093i 0.263874 + 0.457044i 0.967268 0.253757i \(-0.0816662\pi\)
−0.703394 + 0.710801i \(0.748333\pi\)
\(954\) 0.0936815 0.295415i 0.00303305 0.00956442i
\(955\) 0 0
\(956\) −54.2547 19.7471i −1.75472 0.638666i
\(957\) 0.763239 + 1.04273i 0.0246720 + 0.0337068i
\(958\) −1.48459 1.24572i −0.0479648 0.0402472i
\(959\) 0.513282 + 0.430695i 0.0165747 + 0.0139079i
\(960\) 0 0
\(961\) −6.17624 2.24797i −0.199233 0.0725150i
\(962\) −1.28071 + 2.21825i −0.0412917 + 0.0715193i
\(963\) −2.76118 + 1.75265i −0.0889779 + 0.0564785i
\(964\) −3.45199 5.97902i −0.111181 0.192571i
\(965\) 0 0
\(966\) −4.35185 2.91302i −0.140019 0.0937250i
\(967\) −44.9743 + 16.3693i −1.44628 + 0.526402i −0.941549 0.336877i \(-0.890629\pi\)
−0.504728 + 0.863279i \(0.668407\pi\)
\(968\) 2.56054 14.5216i 0.0822990 0.466741i
\(969\) 20.9202 + 71.9957i 0.672055 + 2.31284i
\(970\) 0 0
\(971\) 17.2383 0.553202 0.276601 0.960985i \(-0.410792\pi\)
0.276601 + 0.960985i \(0.410792\pi\)
\(972\) −9.75540 + 28.3528i −0.312905 + 0.909415i
\(973\) 7.91350 0.253695
\(974\) 4.29795 3.60641i 0.137715 0.115557i
\(975\) 0 0
\(976\) 3.80463 21.5771i 0.121783 0.690667i
\(977\) −13.1424 + 4.78345i −0.420463 + 0.153036i −0.543582 0.839356i \(-0.682932\pi\)
0.123119 + 0.992392i \(0.460710\pi\)
\(978\) 1.18683 + 0.794434i 0.0379506 + 0.0254032i
\(979\) −7.89175 44.7563i −0.252221 1.43042i
\(980\) 0 0
\(981\) 1.45634 0.924405i 0.0464972 0.0295140i
\(982\) −0.695657 + 1.20491i −0.0221993 + 0.0384503i
\(983\) 18.1844 + 6.61856i 0.579991 + 0.211099i 0.615322 0.788276i \(-0.289026\pi\)
−0.0353306 + 0.999376i \(0.511248\pi\)
\(984\) −7.37964 + 0.802026i −0.235254 + 0.0255677i
\(985\) 0 0
\(986\) 0.201374 + 0.168973i 0.00641306 + 0.00538120i
\(987\) −10.7129 14.6359i −0.340994 0.465864i
\(988\) 46.4234 + 16.8967i 1.47693 + 0.537557i
\(989\) −22.6458 + 39.2236i −0.720094 + 1.24724i
\(990\) 0 0
\(991\) 8.67263 + 15.0214i 0.275495 + 0.477172i 0.970260 0.242065i \(-0.0778249\pi\)
−0.694765 + 0.719237i \(0.744492\pi\)
\(992\) 3.35470 + 19.0255i 0.106512 + 0.604059i
\(993\) 31.3497 15.4277i 0.994851 0.489584i
\(994\) −2.98461 + 1.08631i −0.0946661 + 0.0344557i
\(995\) 0 0
\(996\) 25.7822 26.8879i 0.816939 0.851974i
\(997\) −13.7671 + 11.5520i −0.436009 + 0.365855i −0.834214 0.551442i \(-0.814078\pi\)
0.398204 + 0.917297i \(0.369634\pi\)
\(998\) −6.61118 −0.209273
\(999\) −12.1676 + 4.09671i −0.384966 + 0.129614i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.l.g.76.5 yes 66
5.2 odd 4 675.2.u.e.49.10 132
5.3 odd 4 675.2.u.e.49.13 132
5.4 even 2 675.2.l.f.76.7 66
27.16 even 9 inner 675.2.l.g.151.5 yes 66
135.43 odd 36 675.2.u.e.124.10 132
135.97 odd 36 675.2.u.e.124.13 132
135.124 even 18 675.2.l.f.151.7 yes 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.l.f.76.7 66 5.4 even 2
675.2.l.f.151.7 yes 66 135.124 even 18
675.2.l.g.76.5 yes 66 1.1 even 1 trivial
675.2.l.g.151.5 yes 66 27.16 even 9 inner
675.2.u.e.49.10 132 5.2 odd 4
675.2.u.e.49.13 132 5.3 odd 4
675.2.u.e.124.10 132 135.43 odd 36
675.2.u.e.124.13 132 135.97 odd 36