Properties

Label 675.2.r.a.181.2
Level $675$
Weight $2$
Character 675.181
Analytic conductor $5.390$
Analytic rank $0$
Dimension $224$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(46,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.46");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.r (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(224\)
Relative dimension: \(28\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 225)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 181.2
Character \(\chi\) \(=\) 675.181
Dual form 675.2.r.a.496.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.43022 - 0.516560i) q^{2} +(3.81206 + 1.69724i) q^{4} +(2.22233 - 0.247525i) q^{5} +(-0.644527 + 1.11635i) q^{7} +(-4.36740 - 3.17310i) q^{8} +(-5.52861 - 0.546422i) q^{10} +(-0.502326 - 0.106773i) q^{11} +(-4.87743 + 1.03673i) q^{13} +(2.14301 - 2.38005i) q^{14} +(3.39033 + 3.76535i) q^{16} +(-5.60571 - 4.07278i) q^{17} +(-4.21905 - 3.06532i) q^{19} +(8.89175 + 2.82823i) q^{20} +(1.16561 + 0.518963i) q^{22} +(-2.78826 + 3.09668i) q^{23} +(4.87746 - 1.10016i) q^{25} +12.3888 q^{26} +(-4.35169 + 3.16169i) q^{28} +(-0.724325 - 6.89149i) q^{29} +(0.160665 - 1.52862i) q^{31} +(-0.895838 - 1.55164i) q^{32} +(11.5193 + 12.7935i) q^{34} +(-1.15602 + 2.64044i) q^{35} +(2.27325 - 6.99635i) q^{37} +(8.66982 + 9.62881i) q^{38} +(-10.4912 - 5.97062i) q^{40} +(3.98547 - 0.847138i) q^{41} +(2.08364 - 3.60897i) q^{43} +(-1.73368 - 1.25959i) q^{44} +(8.37572 - 6.08531i) q^{46} +(-0.841878 - 8.00993i) q^{47} +(2.66917 + 4.62314i) q^{49} +(-12.4216 + 0.154142i) q^{50} +(-20.3526 - 4.32609i) q^{52} +(-2.21350 + 1.60820i) q^{53} +(-1.14276 - 0.112945i) q^{55} +(6.35720 - 2.83041i) q^{56} +(-1.79960 + 17.1220i) q^{58} +(-2.99263 + 0.636103i) q^{59} +(-7.17717 - 1.52555i) q^{61} +(-1.18008 + 3.63190i) q^{62} +(-1.75586 - 5.40400i) q^{64} +(-10.5826 + 3.51124i) q^{65} +(0.0475303 - 0.452221i) q^{67} +(-14.4568 - 25.0399i) q^{68} +(4.17334 - 5.81969i) q^{70} +(-1.33759 + 0.971819i) q^{71} +(-2.72548 - 8.38816i) q^{73} +(-9.13854 + 15.8284i) q^{74} +(-10.8807 - 18.8459i) q^{76} +(0.442959 - 0.491955i) q^{77} +(0.359882 + 3.42405i) q^{79} +(8.46644 + 7.52863i) q^{80} -10.1232 q^{82} +(-13.4120 + 5.97142i) q^{83} +(-13.4658 - 7.66350i) q^{85} +(-6.92795 + 7.69427i) q^{86} +(1.85506 + 2.06025i) q^{88} +(2.98202 + 9.17771i) q^{89} +(1.98628 - 6.11314i) q^{91} +(-15.8848 + 7.07238i) q^{92} +(-2.09166 + 19.9008i) q^{94} +(-10.1349 - 5.76782i) q^{95} +(-0.842924 - 8.01989i) q^{97} +(-4.09855 - 12.6140i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 224 q + 3 q^{2} + 23 q^{4} + 8 q^{5} - 8 q^{7} + 20 q^{8} - 20 q^{10} + 11 q^{11} - 3 q^{13} - q^{14} + 23 q^{16} + 24 q^{17} - 12 q^{19} - q^{20} - 11 q^{22} - q^{23} - 16 q^{25} + 136 q^{26} + 4 q^{28}+ \cdots - 146 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.43022 0.516560i −1.71843 0.365263i −0.759851 0.650098i \(-0.774728\pi\)
−0.958577 + 0.284835i \(0.908061\pi\)
\(3\) 0 0
\(4\) 3.81206 + 1.69724i 1.90603 + 0.848619i
\(5\) 2.22233 0.247525i 0.993854 0.110697i
\(6\) 0 0
\(7\) −0.644527 + 1.11635i −0.243608 + 0.421942i −0.961739 0.273966i \(-0.911664\pi\)
0.718131 + 0.695908i \(0.244998\pi\)
\(8\) −4.36740 3.17310i −1.54411 1.12186i
\(9\) 0 0
\(10\) −5.52861 0.546422i −1.74830 0.172794i
\(11\) −0.502326 0.106773i −0.151457 0.0321932i 0.131559 0.991308i \(-0.458002\pi\)
−0.283016 + 0.959115i \(0.591335\pi\)
\(12\) 0 0
\(13\) −4.87743 + 1.03673i −1.35276 + 0.287537i −0.826571 0.562833i \(-0.809712\pi\)
−0.526185 + 0.850370i \(0.676378\pi\)
\(14\) 2.14301 2.38005i 0.572743 0.636095i
\(15\) 0 0
\(16\) 3.39033 + 3.76535i 0.847583 + 0.941337i
\(17\) −5.60571 4.07278i −1.35958 0.987795i −0.998471 0.0552732i \(-0.982397\pi\)
−0.361113 0.932522i \(-0.617603\pi\)
\(18\) 0 0
\(19\) −4.21905 3.06532i −0.967917 0.703233i −0.0129412 0.999916i \(-0.504119\pi\)
−0.954976 + 0.296683i \(0.904119\pi\)
\(20\) 8.89175 + 2.82823i 1.98825 + 0.632412i
\(21\) 0 0
\(22\) 1.16561 + 0.518963i 0.248509 + 0.110643i
\(23\) −2.78826 + 3.09668i −0.581393 + 0.645702i −0.960048 0.279836i \(-0.909720\pi\)
0.378655 + 0.925538i \(0.376387\pi\)
\(24\) 0 0
\(25\) 4.87746 1.10016i 0.975492 0.220033i
\(26\) 12.3888 2.42964
\(27\) 0 0
\(28\) −4.35169 + 3.16169i −0.822392 + 0.597503i
\(29\) −0.724325 6.89149i −0.134504 1.27972i −0.828602 0.559838i \(-0.810863\pi\)
0.694098 0.719880i \(-0.255803\pi\)
\(30\) 0 0
\(31\) 0.160665 1.52862i 0.0288562 0.274548i −0.970574 0.240802i \(-0.922590\pi\)
0.999430 0.0337463i \(-0.0107438\pi\)
\(32\) −0.895838 1.55164i −0.158363 0.274293i
\(33\) 0 0
\(34\) 11.5193 + 12.7935i 1.97554 + 2.19406i
\(35\) −1.15602 + 2.64044i −0.195403 + 0.446315i
\(36\) 0 0
\(37\) 2.27325 6.99635i 0.373720 1.15019i −0.570618 0.821216i \(-0.693296\pi\)
0.944338 0.328977i \(-0.106704\pi\)
\(38\) 8.66982 + 9.62881i 1.40643 + 1.56200i
\(39\) 0 0
\(40\) −10.4912 5.97062i −1.65880 0.944038i
\(41\) 3.98547 0.847138i 0.622426 0.132301i 0.114105 0.993469i \(-0.463600\pi\)
0.508321 + 0.861168i \(0.330267\pi\)
\(42\) 0 0
\(43\) 2.08364 3.60897i 0.317752 0.550362i −0.662267 0.749268i \(-0.730405\pi\)
0.980019 + 0.198906i \(0.0637387\pi\)
\(44\) −1.73368 1.25959i −0.261362 0.189890i
\(45\) 0 0
\(46\) 8.37572 6.08531i 1.23493 0.897231i
\(47\) −0.841878 8.00993i −0.122801 1.16837i −0.866262 0.499590i \(-0.833484\pi\)
0.743461 0.668779i \(-0.233183\pi\)
\(48\) 0 0
\(49\) 2.66917 + 4.62314i 0.381310 + 0.660448i
\(50\) −12.4216 + 0.154142i −1.75668 + 0.0217990i
\(51\) 0 0
\(52\) −20.3526 4.32609i −2.82240 0.599920i
\(53\) −2.21350 + 1.60820i −0.304047 + 0.220903i −0.729338 0.684153i \(-0.760172\pi\)
0.425291 + 0.905057i \(0.360172\pi\)
\(54\) 0 0
\(55\) −1.14276 0.112945i −0.154090 0.0152295i
\(56\) 6.35720 2.83041i 0.849517 0.378229i
\(57\) 0 0
\(58\) −1.79960 + 17.1220i −0.236299 + 2.24823i
\(59\) −2.99263 + 0.636103i −0.389607 + 0.0828136i −0.398550 0.917146i \(-0.630487\pi\)
0.00894310 + 0.999960i \(0.497153\pi\)
\(60\) 0 0
\(61\) −7.17717 1.52555i −0.918942 0.195327i −0.275925 0.961179i \(-0.588984\pi\)
−0.643017 + 0.765852i \(0.722318\pi\)
\(62\) −1.18008 + 3.63190i −0.149870 + 0.461251i
\(63\) 0 0
\(64\) −1.75586 5.40400i −0.219483 0.675499i
\(65\) −10.5826 + 3.51124i −1.31261 + 0.435516i
\(66\) 0 0
\(67\) 0.0475303 0.452221i 0.00580675 0.0552476i −0.991235 0.132112i \(-0.957824\pi\)
0.997042 + 0.0768644i \(0.0244908\pi\)
\(68\) −14.4568 25.0399i −1.75314 3.03654i
\(69\) 0 0
\(70\) 4.17334 5.81969i 0.498809 0.695587i
\(71\) −1.33759 + 0.971819i −0.158743 + 0.115334i −0.664321 0.747447i \(-0.731279\pi\)
0.505578 + 0.862781i \(0.331279\pi\)
\(72\) 0 0
\(73\) −2.72548 8.38816i −0.318993 0.981760i −0.974079 0.226206i \(-0.927368\pi\)
0.655086 0.755554i \(-0.272632\pi\)
\(74\) −9.13854 + 15.8284i −1.06233 + 1.84002i
\(75\) 0 0
\(76\) −10.8807 18.8459i −1.24810 2.16178i
\(77\) 0.442959 0.491955i 0.0504798 0.0560635i
\(78\) 0 0
\(79\) 0.359882 + 3.42405i 0.0404899 + 0.385236i 0.995936 + 0.0900686i \(0.0287086\pi\)
−0.955446 + 0.295167i \(0.904625\pi\)
\(80\) 8.46644 + 7.52863i 0.946577 + 0.841727i
\(81\) 0 0
\(82\) −10.1232 −1.11792
\(83\) −13.4120 + 5.97142i −1.47216 + 0.655448i −0.976978 0.213341i \(-0.931566\pi\)
−0.495183 + 0.868789i \(0.664899\pi\)
\(84\) 0 0
\(85\) −13.4658 7.66350i −1.46057 0.831223i
\(86\) −6.92795 + 7.69427i −0.747061 + 0.829695i
\(87\) 0 0
\(88\) 1.85506 + 2.06025i 0.197750 + 0.219623i
\(89\) 2.98202 + 9.17771i 0.316093 + 0.972835i 0.975302 + 0.220875i \(0.0708913\pi\)
−0.659209 + 0.751960i \(0.729109\pi\)
\(90\) 0 0
\(91\) 1.98628 6.11314i 0.208219 0.640831i
\(92\) −15.8848 + 7.07238i −1.65611 + 0.737346i
\(93\) 0 0
\(94\) −2.09166 + 19.9008i −0.215738 + 2.05261i
\(95\) −10.1349 5.76782i −1.03981 0.591766i
\(96\) 0 0
\(97\) −0.842924 8.01989i −0.0855860 0.814296i −0.950154 0.311781i \(-0.899075\pi\)
0.864568 0.502516i \(-0.167592\pi\)
\(98\) −4.09855 12.6140i −0.414016 1.27421i
\(99\) 0 0
\(100\) 20.4604 + 4.08432i 2.04604 + 0.408432i
\(101\) 7.80298 13.5152i 0.776425 1.34481i −0.157565 0.987509i \(-0.550364\pi\)
0.933990 0.357299i \(-0.116302\pi\)
\(102\) 0 0
\(103\) 13.8836 + 6.18136i 1.36799 + 0.609068i 0.953612 0.301038i \(-0.0973330\pi\)
0.414376 + 0.910106i \(0.364000\pi\)
\(104\) 24.5913 + 10.9488i 2.41138 + 1.07361i
\(105\) 0 0
\(106\) 6.21002 2.76488i 0.603171 0.268549i
\(107\) 10.6981 1.03422 0.517111 0.855919i \(-0.327008\pi\)
0.517111 + 0.855919i \(0.327008\pi\)
\(108\) 0 0
\(109\) −4.10780 + 12.6425i −0.393456 + 1.21093i 0.536702 + 0.843772i \(0.319670\pi\)
−0.930158 + 0.367160i \(0.880330\pi\)
\(110\) 2.71882 + 0.864787i 0.259229 + 0.0824542i
\(111\) 0 0
\(112\) −6.38861 + 1.35794i −0.603667 + 0.128313i
\(113\) −9.31537 + 1.98004i −0.876316 + 0.186267i −0.624044 0.781390i \(-0.714511\pi\)
−0.252272 + 0.967656i \(0.581178\pi\)
\(114\) 0 0
\(115\) −5.42992 + 7.57199i −0.506343 + 0.706092i
\(116\) 8.93533 27.5001i 0.829625 2.55332i
\(117\) 0 0
\(118\) 7.60135 0.699761
\(119\) 8.15969 3.63293i 0.747998 0.333030i
\(120\) 0 0
\(121\) −9.80807 4.36683i −0.891643 0.396985i
\(122\) 16.6541 + 7.41487i 1.50779 + 0.671311i
\(123\) 0 0
\(124\) 3.20690 5.55451i 0.287988 0.498810i
\(125\) 10.5670 3.65222i 0.945140 0.326664i
\(126\) 0 0
\(127\) 4.08839 + 12.5828i 0.362786 + 1.11654i 0.951356 + 0.308094i \(0.0996913\pi\)
−0.588570 + 0.808447i \(0.700309\pi\)
\(128\) 1.85022 + 17.6036i 0.163538 + 1.55596i
\(129\) 0 0
\(130\) 27.5319 3.06654i 2.41471 0.268953i
\(131\) 1.04806 9.97167i 0.0915699 0.871229i −0.848259 0.529582i \(-0.822349\pi\)
0.939828 0.341647i \(-0.110985\pi\)
\(132\) 0 0
\(133\) 6.14127 2.73427i 0.532516 0.237091i
\(134\) −0.349108 + 1.07445i −0.0301584 + 0.0928179i
\(135\) 0 0
\(136\) 11.5590 + 35.5749i 0.991176 + 3.05053i
\(137\) −7.07228 7.85456i −0.604226 0.671060i 0.360974 0.932576i \(-0.382444\pi\)
−0.965199 + 0.261516i \(0.915778\pi\)
\(138\) 0 0
\(139\) 0.398014 0.442039i 0.0337591 0.0374933i −0.726029 0.687664i \(-0.758636\pi\)
0.759788 + 0.650171i \(0.225303\pi\)
\(140\) −8.88827 + 8.10345i −0.751196 + 0.684867i
\(141\) 0 0
\(142\) 3.75266 1.67079i 0.314916 0.140210i
\(143\) 2.56076 0.214141
\(144\) 0 0
\(145\) −3.31550 15.1358i −0.275338 1.25696i
\(146\) 2.29053 + 21.7930i 0.189566 + 1.80360i
\(147\) 0 0
\(148\) 20.5402 22.8122i 1.68840 1.87515i
\(149\) 1.01642 + 1.76049i 0.0832683 + 0.144225i 0.904652 0.426151i \(-0.140131\pi\)
−0.821384 + 0.570376i \(0.806797\pi\)
\(150\) 0 0
\(151\) −2.10363 + 3.64359i −0.171191 + 0.296511i −0.938836 0.344363i \(-0.888095\pi\)
0.767646 + 0.640874i \(0.221428\pi\)
\(152\) 8.69971 + 26.7750i 0.705640 + 2.17174i
\(153\) 0 0
\(154\) −1.33061 + 0.966746i −0.107224 + 0.0779027i
\(155\) −0.0213235 3.43686i −0.00171275 0.276055i
\(156\) 0 0
\(157\) 0.279109 + 0.483431i 0.0222753 + 0.0385820i 0.876948 0.480585i \(-0.159576\pi\)
−0.854673 + 0.519167i \(0.826242\pi\)
\(158\) 0.894133 8.50710i 0.0711334 0.676789i
\(159\) 0 0
\(160\) −2.37491 3.22650i −0.187753 0.255077i
\(161\) −1.65988 5.10858i −0.130817 0.402612i
\(162\) 0 0
\(163\) −5.35439 + 16.4791i −0.419388 + 1.29074i 0.488879 + 0.872352i \(0.337406\pi\)
−0.908267 + 0.418392i \(0.862594\pi\)
\(164\) 16.6306 + 3.53495i 1.29864 + 0.276033i
\(165\) 0 0
\(166\) 35.6788 7.58376i 2.76921 0.588614i
\(167\) −0.685292 + 6.52012i −0.0530295 + 0.504542i 0.935480 + 0.353381i \(0.114968\pi\)
−0.988509 + 0.151161i \(0.951699\pi\)
\(168\) 0 0
\(169\) 10.8384 4.82559i 0.833727 0.371199i
\(170\) 28.7663 + 25.5799i 2.20627 + 1.96189i
\(171\) 0 0
\(172\) 14.0682 10.2212i 1.07269 0.779357i
\(173\) −1.05159 0.223521i −0.0799506 0.0169940i 0.167763 0.985827i \(-0.446346\pi\)
−0.247713 + 0.968833i \(0.579679\pi\)
\(174\) 0 0
\(175\) −1.91548 + 6.15405i −0.144797 + 0.465203i
\(176\) −1.30102 2.25343i −0.0980678 0.169858i
\(177\) 0 0
\(178\) −2.50613 23.8443i −0.187843 1.78720i
\(179\) −15.2398 + 11.0724i −1.13908 + 0.827587i −0.986990 0.160781i \(-0.948599\pi\)
−0.152085 + 0.988367i \(0.548599\pi\)
\(180\) 0 0
\(181\) −11.6647 8.47488i −0.867029 0.629933i 0.0627594 0.998029i \(-0.480010\pi\)
−0.929788 + 0.368096i \(0.880010\pi\)
\(182\) −7.98490 + 13.8303i −0.591880 + 1.02517i
\(183\) 0 0
\(184\) 22.0035 4.67699i 1.62212 0.344792i
\(185\) 3.32013 16.1109i 0.244101 1.18449i
\(186\) 0 0
\(187\) 2.38103 + 2.64440i 0.174118 + 0.193378i
\(188\) 10.3855 31.9632i 0.757439 2.33116i
\(189\) 0 0
\(190\) 21.6505 + 19.2523i 1.57069 + 1.39671i
\(191\) 12.3893 + 13.7597i 0.896455 + 0.995614i 1.00000 0.000989586i \(0.000314995\pi\)
−0.103544 + 0.994625i \(0.533018\pi\)
\(192\) 0 0
\(193\) −2.70053 4.67746i −0.194388 0.336691i 0.752311 0.658808i \(-0.228939\pi\)
−0.946700 + 0.322117i \(0.895606\pi\)
\(194\) −2.09426 + 19.9255i −0.150359 + 1.43057i
\(195\) 0 0
\(196\) 2.32847 + 22.1539i 0.166319 + 1.58242i
\(197\) 12.6037 9.15716i 0.897980 0.652421i −0.0399665 0.999201i \(-0.512725\pi\)
0.937946 + 0.346780i \(0.112725\pi\)
\(198\) 0 0
\(199\) −17.1285 −1.21421 −0.607104 0.794623i \(-0.707669\pi\)
−0.607104 + 0.794623i \(0.707669\pi\)
\(200\) −24.7927 10.6718i −1.75311 0.754612i
\(201\) 0 0
\(202\) −25.9444 + 28.8141i −1.82544 + 2.02736i
\(203\) 8.16018 + 3.63315i 0.572733 + 0.254997i
\(204\) 0 0
\(205\) 8.64733 2.86912i 0.603955 0.200388i
\(206\) −30.5471 22.1938i −2.12832 1.54631i
\(207\) 0 0
\(208\) −20.4398 14.8504i −1.41724 1.02969i
\(209\) 1.79205 + 1.99027i 0.123959 + 0.137670i
\(210\) 0 0
\(211\) −9.68372 + 10.7549i −0.666655 + 0.740395i −0.977702 0.209999i \(-0.932654\pi\)
0.311047 + 0.950395i \(0.399320\pi\)
\(212\) −11.1675 + 2.37372i −0.766986 + 0.163028i
\(213\) 0 0
\(214\) −25.9987 5.52619i −1.77723 0.377763i
\(215\) 3.73721 8.53606i 0.254876 0.582154i
\(216\) 0 0
\(217\) 1.60293 + 1.16460i 0.108814 + 0.0790579i
\(218\) 16.5135 28.6022i 1.11843 1.93718i
\(219\) 0 0
\(220\) −4.16458 2.37009i −0.280776 0.159792i
\(221\) 31.5638 + 14.0531i 2.12321 + 0.945316i
\(222\) 0 0
\(223\) 18.2430 + 3.87767i 1.22164 + 0.259668i 0.773210 0.634150i \(-0.218650\pi\)
0.448431 + 0.893818i \(0.351983\pi\)
\(224\) 2.30957 0.154314
\(225\) 0 0
\(226\) 23.6612 1.57392
\(227\) 16.6360 + 3.53610i 1.10417 + 0.234699i 0.723714 0.690100i \(-0.242433\pi\)
0.380457 + 0.924799i \(0.375767\pi\)
\(228\) 0 0
\(229\) −19.8898 8.85552i −1.31436 0.585189i −0.374649 0.927167i \(-0.622237\pi\)
−0.939708 + 0.341977i \(0.888903\pi\)
\(230\) 17.1073 15.5968i 1.12802 1.02842i
\(231\) 0 0
\(232\) −18.7040 + 32.3962i −1.22798 + 2.12692i
\(233\) 7.60150 + 5.52281i 0.497991 + 0.361811i 0.808249 0.588841i \(-0.200416\pi\)
−0.310258 + 0.950652i \(0.600416\pi\)
\(234\) 0 0
\(235\) −3.85359 17.5923i −0.251380 1.14759i
\(236\) −12.4877 2.65434i −0.812880 0.172783i
\(237\) 0 0
\(238\) −21.7065 + 4.61386i −1.40702 + 0.299072i
\(239\) −3.28802 + 3.65172i −0.212684 + 0.236210i −0.840042 0.542521i \(-0.817470\pi\)
0.627358 + 0.778731i \(0.284136\pi\)
\(240\) 0 0
\(241\) −5.34404 5.93515i −0.344240 0.382317i 0.546019 0.837773i \(-0.316143\pi\)
−0.890258 + 0.455456i \(0.849476\pi\)
\(242\) 21.5801 + 15.6788i 1.38722 + 1.00787i
\(243\) 0 0
\(244\) −24.7706 17.9969i −1.58577 1.15213i
\(245\) 7.07611 + 9.61343i 0.452076 + 0.614180i
\(246\) 0 0
\(247\) 23.7561 + 10.5769i 1.51156 + 0.672991i
\(248\) −5.55215 + 6.16629i −0.352562 + 0.391560i
\(249\) 0 0
\(250\) −27.5667 + 3.41722i −1.74347 + 0.216124i
\(251\) −21.5099 −1.35769 −0.678847 0.734279i \(-0.737520\pi\)
−0.678847 + 0.734279i \(0.737520\pi\)
\(252\) 0 0
\(253\) 1.73126 1.25783i 0.108843 0.0790792i
\(254\) −3.43595 32.6909i −0.215591 2.05121i
\(255\) 0 0
\(256\) 3.40901 32.4346i 0.213063 2.02716i
\(257\) −4.80713 8.32619i −0.299860 0.519373i 0.676243 0.736678i \(-0.263607\pi\)
−0.976104 + 0.217305i \(0.930273\pi\)
\(258\) 0 0
\(259\) 6.34522 + 7.04708i 0.394273 + 0.437884i
\(260\) −46.3010 4.57618i −2.87147 0.283803i
\(261\) 0 0
\(262\) −7.69800 + 23.6920i −0.475584 + 1.46370i
\(263\) −6.46203 7.17681i −0.398466 0.442541i 0.510206 0.860052i \(-0.329569\pi\)
−0.908672 + 0.417511i \(0.862902\pi\)
\(264\) 0 0
\(265\) −4.52104 + 4.12184i −0.277725 + 0.253203i
\(266\) −16.3371 + 3.47255i −1.00169 + 0.212916i
\(267\) 0 0
\(268\) 0.948715 1.64322i 0.0579520 0.100376i
\(269\) −14.7015 10.6812i −0.896364 0.651246i 0.0411659 0.999152i \(-0.486893\pi\)
−0.937529 + 0.347906i \(0.886893\pi\)
\(270\) 0 0
\(271\) −2.02436 + 1.47078i −0.122971 + 0.0893437i −0.647571 0.762005i \(-0.724215\pi\)
0.524600 + 0.851349i \(0.324215\pi\)
\(272\) −3.66977 34.9155i −0.222512 2.11706i
\(273\) 0 0
\(274\) 13.1299 + 22.7416i 0.793204 + 1.37387i
\(275\) −2.56754 + 0.0318612i −0.154829 + 0.00192130i
\(276\) 0 0
\(277\) −13.1783 2.80114i −0.791809 0.168304i −0.205784 0.978597i \(-0.565974\pi\)
−0.586025 + 0.810293i \(0.699308\pi\)
\(278\) −1.19560 + 0.868656i −0.0717075 + 0.0520985i
\(279\) 0 0
\(280\) 13.4272 7.86366i 0.802427 0.469944i
\(281\) 0.690611 0.307480i 0.0411984 0.0183427i −0.386034 0.922485i \(-0.626155\pi\)
0.427232 + 0.904142i \(0.359489\pi\)
\(282\) 0 0
\(283\) 0.437736 4.16478i 0.0260207 0.247571i −0.973778 0.227501i \(-0.926945\pi\)
0.999799 0.0200697i \(-0.00638881\pi\)
\(284\) −6.74840 + 1.43442i −0.400444 + 0.0851169i
\(285\) 0 0
\(286\) −6.22321 1.32278i −0.367986 0.0782178i
\(287\) −1.62304 + 4.99519i −0.0958049 + 0.294857i
\(288\) 0 0
\(289\) 9.58309 + 29.4937i 0.563711 + 1.73492i
\(290\) 0.238844 + 38.4961i 0.0140254 + 2.26057i
\(291\) 0 0
\(292\) 3.84702 36.6020i 0.225130 2.14197i
\(293\) 13.1006 + 22.6909i 0.765344 + 1.32561i 0.940065 + 0.340997i \(0.110764\pi\)
−0.174721 + 0.984618i \(0.555902\pi\)
\(294\) 0 0
\(295\) −6.49315 + 2.15438i −0.378046 + 0.125433i
\(296\) −32.1283 + 23.3426i −1.86742 + 1.35676i
\(297\) 0 0
\(298\) −1.56073 4.80343i −0.0904105 0.278255i
\(299\) 10.3891 17.9945i 0.600819 1.04065i
\(300\) 0 0
\(301\) 2.68592 + 4.65215i 0.154814 + 0.268146i
\(302\) 6.99441 7.76808i 0.402483 0.447003i
\(303\) 0 0
\(304\) −2.76200 26.2787i −0.158411 1.50718i
\(305\) −16.3276 1.61375i −0.934917 0.0924029i
\(306\) 0 0
\(307\) 13.6647 0.779887 0.389944 0.920839i \(-0.372495\pi\)
0.389944 + 0.920839i \(0.372495\pi\)
\(308\) 2.52355 1.12356i 0.143793 0.0640206i
\(309\) 0 0
\(310\) −1.72352 + 8.36336i −0.0978896 + 0.475007i
\(311\) −0.639250 + 0.709959i −0.0362486 + 0.0402581i −0.760996 0.648756i \(-0.775290\pi\)
0.724748 + 0.689014i \(0.241956\pi\)
\(312\) 0 0
\(313\) −8.02015 8.90728i −0.453326 0.503469i 0.472547 0.881306i \(-0.343335\pi\)
−0.925872 + 0.377836i \(0.876668\pi\)
\(314\) −0.428576 1.31902i −0.0241859 0.0744367i
\(315\) 0 0
\(316\) −4.43953 + 13.6635i −0.249743 + 0.768631i
\(317\) −2.06249 + 0.918281i −0.115841 + 0.0515758i −0.463839 0.885920i \(-0.653528\pi\)
0.347998 + 0.937495i \(0.386862\pi\)
\(318\) 0 0
\(319\) −0.371976 + 3.53911i −0.0208266 + 0.198152i
\(320\) −5.23973 11.5748i −0.292910 0.647052i
\(321\) 0 0
\(322\) 1.39499 + 13.2724i 0.0777395 + 0.739642i
\(323\) 11.1664 + 34.3666i 0.621314 + 1.91221i
\(324\) 0 0
\(325\) −22.6489 + 10.4226i −1.25634 + 0.578141i
\(326\) 21.5248 37.2821i 1.19215 2.06486i
\(327\) 0 0
\(328\) −20.0942 8.94651i −1.10952 0.493988i
\(329\) 9.48453 + 4.22278i 0.522899 + 0.232810i
\(330\) 0 0
\(331\) 12.2444 5.45156i 0.673014 0.299645i −0.0416306 0.999133i \(-0.513255\pi\)
0.714644 + 0.699488i \(0.246589\pi\)
\(332\) −61.2623 −3.36221
\(333\) 0 0
\(334\) 5.03344 15.4913i 0.275418 0.847649i
\(335\) −0.00630826 1.01675i −0.000344657 0.0555508i
\(336\) 0 0
\(337\) −11.7817 + 2.50428i −0.641790 + 0.136417i −0.517300 0.855804i \(-0.673063\pi\)
−0.124490 + 0.992221i \(0.539730\pi\)
\(338\) −28.8326 + 6.12855i −1.56828 + 0.333349i
\(339\) 0 0
\(340\) −38.3257 52.0684i −2.07850 2.82381i
\(341\) −0.243921 + 0.750712i −0.0132091 + 0.0406533i
\(342\) 0 0
\(343\) −15.9048 −0.858777
\(344\) −20.5517 + 9.15020i −1.10807 + 0.493346i
\(345\) 0 0
\(346\) 2.44013 + 1.08641i 0.131182 + 0.0584060i
\(347\) −0.638552 0.284302i −0.0342793 0.0152621i 0.389525 0.921016i \(-0.372639\pi\)
−0.423805 + 0.905754i \(0.639306\pi\)
\(348\) 0 0
\(349\) 8.65614 14.9929i 0.463353 0.802551i −0.535773 0.844362i \(-0.679980\pi\)
0.999126 + 0.0418117i \(0.0133130\pi\)
\(350\) 7.83399 13.9663i 0.418744 0.746528i
\(351\) 0 0
\(352\) 0.284330 + 0.875079i 0.0151549 + 0.0466419i
\(353\) −0.551935 5.25131i −0.0293765 0.279499i −0.999342 0.0362582i \(-0.988456\pi\)
0.969966 0.243241i \(-0.0782105\pi\)
\(354\) 0 0
\(355\) −2.73202 + 2.49079i −0.145001 + 0.132197i
\(356\) −4.20912 + 40.0471i −0.223083 + 2.12249i
\(357\) 0 0
\(358\) 42.7556 19.0360i 2.25970 1.00609i
\(359\) −0.334961 + 1.03090i −0.0176786 + 0.0544091i −0.959507 0.281686i \(-0.909106\pi\)
0.941828 + 0.336095i \(0.109106\pi\)
\(360\) 0 0
\(361\) 2.53289 + 7.79543i 0.133310 + 0.410286i
\(362\) 23.9700 + 26.6214i 1.25983 + 1.39919i
\(363\) 0 0
\(364\) 17.9473 19.9324i 0.940692 1.04474i
\(365\) −8.13319 17.9666i −0.425710 0.940415i
\(366\) 0 0
\(367\) 28.5328 12.7036i 1.48940 0.663123i 0.509111 0.860701i \(-0.329974\pi\)
0.980287 + 0.197578i \(0.0633075\pi\)
\(368\) −21.1132 −1.10060
\(369\) 0 0
\(370\) −16.3909 + 37.4379i −0.852121 + 1.94630i
\(371\) −0.368661 3.50757i −0.0191399 0.182104i
\(372\) 0 0
\(373\) −0.165419 + 0.183716i −0.00856507 + 0.00951248i −0.747412 0.664361i \(-0.768704\pi\)
0.738847 + 0.673873i \(0.235371\pi\)
\(374\) −4.42044 7.65643i −0.228576 0.395905i
\(375\) 0 0
\(376\) −21.7395 + 37.6539i −1.12113 + 1.94185i
\(377\) 10.6775 + 32.8619i 0.549917 + 1.69247i
\(378\) 0 0
\(379\) 18.0726 13.1305i 0.928325 0.674467i −0.0172574 0.999851i \(-0.505493\pi\)
0.945582 + 0.325384i \(0.105493\pi\)
\(380\) −28.8453 39.1885i −1.47973 2.01033i
\(381\) 0 0
\(382\) −23.0010 39.8388i −1.17683 2.03833i
\(383\) 2.77196 26.3735i 0.141641 1.34762i −0.660653 0.750692i \(-0.729720\pi\)
0.802293 0.596930i \(-0.203613\pi\)
\(384\) 0 0
\(385\) 0.862627 1.20293i 0.0439635 0.0613069i
\(386\) 4.14671 + 12.7622i 0.211062 + 0.649581i
\(387\) 0 0
\(388\) 10.3984 32.0029i 0.527898 1.62470i
\(389\) −12.7219 2.70413i −0.645028 0.137105i −0.126229 0.992001i \(-0.540287\pi\)
−0.518799 + 0.854896i \(0.673621\pi\)
\(390\) 0 0
\(391\) 28.2423 6.00308i 1.42827 0.303589i
\(392\) 3.01235 28.6606i 0.152147 1.44758i
\(393\) 0 0
\(394\) −35.3601 + 15.7433i −1.78142 + 0.793138i
\(395\) 1.64731 + 7.52027i 0.0828854 + 0.378386i
\(396\) 0 0
\(397\) 24.8748 18.0726i 1.24843 0.907040i 0.250303 0.968168i \(-0.419470\pi\)
0.998130 + 0.0611280i \(0.0194698\pi\)
\(398\) 41.6261 + 8.84790i 2.08653 + 0.443505i
\(399\) 0 0
\(400\) 20.6787 + 14.6354i 1.03394 + 0.731771i
\(401\) −5.05931 8.76298i −0.252650 0.437602i 0.711605 0.702580i \(-0.247969\pi\)
−0.964255 + 0.264978i \(0.914635\pi\)
\(402\) 0 0
\(403\) 0.801137 + 7.62231i 0.0399075 + 0.379694i
\(404\) 52.6838 38.2771i 2.62112 1.90435i
\(405\) 0 0
\(406\) −17.9543 13.0446i −0.891058 0.647392i
\(407\) −1.88893 + 3.27173i −0.0936309 + 0.162173i
\(408\) 0 0
\(409\) 17.3238 3.68229i 0.856607 0.182077i 0.241383 0.970430i \(-0.422399\pi\)
0.615224 + 0.788353i \(0.289066\pi\)
\(410\) −22.4970 + 2.50574i −1.11105 + 0.123750i
\(411\) 0 0
\(412\) 42.4337 + 47.1274i 2.09056 + 2.32180i
\(413\) 1.21871 3.75082i 0.0599690 0.184566i
\(414\) 0 0
\(415\) −28.3278 + 16.5902i −1.39056 + 0.814383i
\(416\) 5.97802 + 6.63927i 0.293097 + 0.325517i
\(417\) 0 0
\(418\) −3.32698 5.76250i −0.162728 0.281853i
\(419\) −1.40339 + 13.3523i −0.0685600 + 0.652305i 0.905240 + 0.424900i \(0.139691\pi\)
−0.973800 + 0.227405i \(0.926976\pi\)
\(420\) 0 0
\(421\) 3.40776 + 32.4227i 0.166084 + 1.58019i 0.687051 + 0.726609i \(0.258905\pi\)
−0.520967 + 0.853577i \(0.674428\pi\)
\(422\) 29.0891 21.1345i 1.41604 1.02881i
\(423\) 0 0
\(424\) 14.7702 0.717304
\(425\) −31.8224 13.6977i −1.54361 0.664434i
\(426\) 0 0
\(427\) 6.32893 7.02899i 0.306279 0.340157i
\(428\) 40.7817 + 18.1572i 1.97126 + 0.877660i
\(429\) 0 0
\(430\) −13.4916 + 18.8140i −0.650625 + 0.907293i
\(431\) −7.24479 5.26365i −0.348969 0.253541i 0.399467 0.916747i \(-0.369195\pi\)
−0.748436 + 0.663206i \(0.769195\pi\)
\(432\) 0 0
\(433\) 22.5500 + 16.3836i 1.08369 + 0.787344i 0.978322 0.207090i \(-0.0663992\pi\)
0.105364 + 0.994434i \(0.466399\pi\)
\(434\) −3.29389 3.65823i −0.158112 0.175601i
\(435\) 0 0
\(436\) −37.1165 + 41.2220i −1.77756 + 1.97418i
\(437\) 21.2561 4.51813i 1.01682 0.216132i
\(438\) 0 0
\(439\) 3.07587 + 0.653797i 0.146803 + 0.0312040i 0.280727 0.959788i \(-0.409424\pi\)
−0.133924 + 0.990992i \(0.542758\pi\)
\(440\) 4.63250 + 4.11937i 0.220846 + 0.196383i
\(441\) 0 0
\(442\) −69.4479 50.4568i −3.30330 2.39999i
\(443\) −9.86697 + 17.0901i −0.468794 + 0.811975i −0.999364 0.0356665i \(-0.988645\pi\)
0.530570 + 0.847641i \(0.321978\pi\)
\(444\) 0 0
\(445\) 8.89873 + 19.6577i 0.421840 + 0.931866i
\(446\) −42.3315 18.8472i −2.00445 0.892440i
\(447\) 0 0
\(448\) 7.16447 + 1.52285i 0.338489 + 0.0719481i
\(449\) 13.7726 0.649970 0.324985 0.945719i \(-0.394641\pi\)
0.324985 + 0.945719i \(0.394641\pi\)
\(450\) 0 0
\(451\) −2.09246 −0.0985300
\(452\) −38.8713 8.26235i −1.82835 0.388628i
\(453\) 0 0
\(454\) −38.6026 17.1870i −1.81171 0.806626i
\(455\) 2.90100 14.0770i 0.136001 0.659942i
\(456\) 0 0
\(457\) 8.03370 13.9148i 0.375801 0.650906i −0.614646 0.788803i \(-0.710701\pi\)
0.990447 + 0.137897i \(0.0440344\pi\)
\(458\) 43.7623 + 31.7952i 2.04488 + 1.48569i
\(459\) 0 0
\(460\) −33.5506 + 19.6490i −1.56431 + 0.916140i
\(461\) 10.0438 + 2.13487i 0.467785 + 0.0994309i 0.435773 0.900057i \(-0.356475\pi\)
0.0320125 + 0.999487i \(0.489808\pi\)
\(462\) 0 0
\(463\) −17.6285 + 3.74706i −0.819268 + 0.174141i −0.598435 0.801171i \(-0.704211\pi\)
−0.220832 + 0.975312i \(0.570877\pi\)
\(464\) 23.4931 26.0918i 1.09064 1.21128i
\(465\) 0 0
\(466\) −15.6205 17.3483i −0.723604 0.803644i
\(467\) −28.5731 20.7596i −1.32221 0.960639i −0.999902 0.0140027i \(-0.995543\pi\)
−0.322304 0.946636i \(-0.604457\pi\)
\(468\) 0 0
\(469\) 0.474203 + 0.344529i 0.0218967 + 0.0159089i
\(470\) 0.277607 + 44.7438i 0.0128050 + 2.06388i
\(471\) 0 0
\(472\) 15.0884 + 6.71780i 0.694501 + 0.309212i
\(473\) −1.43201 + 1.59040i −0.0658437 + 0.0731268i
\(474\) 0 0
\(475\) −23.9506 10.3093i −1.09893 0.473025i
\(476\) 37.2712 1.70832
\(477\) 0 0
\(478\) 9.87695 7.17603i 0.451761 0.328224i
\(479\) −0.178641 1.69966i −0.00816233 0.0776594i 0.989682 0.143278i \(-0.0457645\pi\)
−0.997845 + 0.0656191i \(0.979098\pi\)
\(480\) 0 0
\(481\) −3.83430 + 36.4810i −0.174829 + 1.66339i
\(482\) 9.92134 + 17.1843i 0.451905 + 0.782722i
\(483\) 0 0
\(484\) −29.9774 33.2933i −1.36261 1.51333i
\(485\) −3.85838 17.6142i −0.175200 0.799818i
\(486\) 0 0
\(487\) 10.1084 31.1106i 0.458057 1.40975i −0.409452 0.912332i \(-0.634280\pi\)
0.867509 0.497422i \(-0.165720\pi\)
\(488\) 26.5048 + 29.4366i 1.19982 + 1.33253i
\(489\) 0 0
\(490\) −12.2306 27.0180i −0.552523 1.22055i
\(491\) 40.3627 8.57936i 1.82154 0.387181i 0.834943 0.550336i \(-0.185500\pi\)
0.986600 + 0.163155i \(0.0521671\pi\)
\(492\) 0 0
\(493\) −24.0072 + 41.5817i −1.08123 + 1.87275i
\(494\) −52.2689 37.9756i −2.35169 1.70860i
\(495\) 0 0
\(496\) 6.30049 4.57758i 0.282901 0.205539i
\(497\) −0.222778 2.11959i −0.00999296 0.0950766i
\(498\) 0 0
\(499\) 1.73929 + 3.01255i 0.0778615 + 0.134860i 0.902327 0.431052i \(-0.141857\pi\)
−0.824466 + 0.565912i \(0.808524\pi\)
\(500\) 46.4807 + 4.01223i 2.07868 + 0.179432i
\(501\) 0 0
\(502\) 52.2739 + 11.1112i 2.33310 + 0.495916i
\(503\) −13.8073 + 10.0316i −0.615638 + 0.447287i −0.851395 0.524525i \(-0.824243\pi\)
0.235757 + 0.971812i \(0.424243\pi\)
\(504\) 0 0
\(505\) 13.9954 31.9665i 0.622788 1.42249i
\(506\) −4.85709 + 2.16251i −0.215924 + 0.0961355i
\(507\) 0 0
\(508\) −5.77078 + 54.9053i −0.256037 + 2.43603i
\(509\) 7.62861 1.62151i 0.338132 0.0718723i −0.0357163 0.999362i \(-0.511371\pi\)
0.373849 + 0.927490i \(0.378038\pi\)
\(510\) 0 0
\(511\) 11.1208 + 2.36380i 0.491955 + 0.104568i
\(512\) −14.0995 + 43.3938i −0.623115 + 1.91775i
\(513\) 0 0
\(514\) 7.38142 + 22.7177i 0.325580 + 1.00203i
\(515\) 32.3839 + 10.3005i 1.42700 + 0.453893i
\(516\) 0 0
\(517\) −0.432345 + 4.11349i −0.0190145 + 0.180911i
\(518\) −11.7801 20.4037i −0.517586 0.896486i
\(519\) 0 0
\(520\) 57.3601 + 18.2447i 2.51540 + 0.800085i
\(521\) 9.24944 6.72011i 0.405225 0.294413i −0.366441 0.930441i \(-0.619424\pi\)
0.771666 + 0.636028i \(0.219424\pi\)
\(522\) 0 0
\(523\) 6.03668 + 18.5790i 0.263966 + 0.812403i 0.991930 + 0.126788i \(0.0404667\pi\)
−0.727964 + 0.685615i \(0.759533\pi\)
\(524\) 20.9196 36.2338i 0.913876 1.58288i
\(525\) 0 0
\(526\) 11.9969 + 20.7793i 0.523090 + 0.906019i
\(527\) −7.12638 + 7.91465i −0.310430 + 0.344768i
\(528\) 0 0
\(529\) 0.589142 + 5.60531i 0.0256149 + 0.243709i
\(530\) 13.1163 7.68160i 0.569736 0.333668i
\(531\) 0 0
\(532\) 28.0516 1.21619
\(533\) −18.5606 + 8.26372i −0.803949 + 0.357941i
\(534\) 0 0
\(535\) 23.7746 2.64804i 1.02786 0.114485i
\(536\) −1.64253 + 1.82421i −0.0709463 + 0.0787938i
\(537\) 0 0
\(538\) 30.2103 + 33.5520i 1.30246 + 1.44653i
\(539\) −0.847169 2.60732i −0.0364902 0.112305i
\(540\) 0 0
\(541\) 2.36879 7.29039i 0.101842 0.313439i −0.887134 0.461512i \(-0.847307\pi\)
0.988976 + 0.148073i \(0.0473072\pi\)
\(542\) 5.67939 2.52863i 0.243951 0.108614i
\(543\) 0 0
\(544\) −1.29768 + 12.3466i −0.0556375 + 0.529355i
\(545\) −5.99952 + 29.1125i −0.256991 + 1.24704i
\(546\) 0 0
\(547\) 1.50602 + 14.3288i 0.0643929 + 0.612657i 0.978366 + 0.206882i \(0.0663317\pi\)
−0.913973 + 0.405775i \(0.867002\pi\)
\(548\) −13.6289 41.9454i −0.582197 1.79182i
\(549\) 0 0
\(550\) 6.25616 + 1.24886i 0.266764 + 0.0532516i
\(551\) −18.0687 + 31.2959i −0.769751 + 1.33325i
\(552\) 0 0
\(553\) −4.05440 1.80514i −0.172411 0.0767622i
\(554\) 30.5793 + 13.6148i 1.29919 + 0.578437i
\(555\) 0 0
\(556\) 2.26750 1.00956i 0.0961633 0.0428147i
\(557\) −11.9602 −0.506771 −0.253386 0.967365i \(-0.581544\pi\)
−0.253386 + 0.967365i \(0.581544\pi\)
\(558\) 0 0
\(559\) −6.42128 + 19.7627i −0.271591 + 0.835872i
\(560\) −13.8615 + 4.59913i −0.585753 + 0.194349i
\(561\) 0 0
\(562\) −1.83717 + 0.390502i −0.0774963 + 0.0164724i
\(563\) −40.3973 + 8.58670i −1.70254 + 0.361886i −0.953676 0.300836i \(-0.902734\pi\)
−0.748865 + 0.662722i \(0.769401\pi\)
\(564\) 0 0
\(565\) −20.2117 + 6.70609i −0.850311 + 0.282127i
\(566\) −3.21516 + 9.89523i −0.135143 + 0.415928i
\(567\) 0 0
\(568\) 8.92549 0.374505
\(569\) 13.3805 5.95739i 0.560941 0.249747i −0.106623 0.994300i \(-0.534004\pi\)
0.667564 + 0.744553i \(0.267337\pi\)
\(570\) 0 0
\(571\) −21.3865 9.52187i −0.894996 0.398478i −0.0929016 0.995675i \(-0.529614\pi\)
−0.802094 + 0.597197i \(0.796281\pi\)
\(572\) 9.76175 + 4.34621i 0.408159 + 0.181724i
\(573\) 0 0
\(574\) 6.52466 11.3010i 0.272334 0.471696i
\(575\) −10.1928 + 18.1715i −0.425069 + 0.757803i
\(576\) 0 0
\(577\) 0.219132 + 0.674419i 0.00912259 + 0.0280764i 0.955514 0.294945i \(-0.0953014\pi\)
−0.946392 + 0.323022i \(0.895301\pi\)
\(578\) −8.05378 76.6266i −0.334993 3.18724i
\(579\) 0 0
\(580\) 13.0502 63.3259i 0.541882 2.62947i
\(581\) 1.97820 18.8213i 0.0820694 0.780839i
\(582\) 0 0
\(583\) 1.28361 0.571500i 0.0531617 0.0236691i
\(584\) −14.7132 + 45.2827i −0.608838 + 1.87381i
\(585\) 0 0
\(586\) −20.1161 61.9111i −0.830990 2.55752i
\(587\) 7.12521 + 7.91335i 0.294089 + 0.326619i 0.872023 0.489464i \(-0.162808\pi\)
−0.577934 + 0.816083i \(0.696141\pi\)
\(588\) 0 0
\(589\) −5.36357 + 5.95685i −0.221002 + 0.245448i
\(590\) 16.8927 1.88153i 0.695460 0.0774612i
\(591\) 0 0
\(592\) 34.0507 15.1604i 1.39948 0.623087i
\(593\) 47.7160 1.95946 0.979730 0.200323i \(-0.0641990\pi\)
0.979730 + 0.200323i \(0.0641990\pi\)
\(594\) 0 0
\(595\) 17.2343 10.0933i 0.706535 0.413784i
\(596\) 0.886680 + 8.43620i 0.0363198 + 0.345560i
\(597\) 0 0
\(598\) −34.5432 + 38.3641i −1.41257 + 1.56882i
\(599\) −1.95259 3.38199i −0.0797808 0.138184i 0.823374 0.567498i \(-0.192089\pi\)
−0.903155 + 0.429314i \(0.858755\pi\)
\(600\) 0 0
\(601\) −3.54162 + 6.13427i −0.144466 + 0.250222i −0.929174 0.369644i \(-0.879480\pi\)
0.784708 + 0.619866i \(0.212813\pi\)
\(602\) −4.12427 12.6932i −0.168093 0.517336i
\(603\) 0 0
\(604\) −14.2032 + 10.3192i −0.577920 + 0.419883i
\(605\) −22.8776 7.27678i −0.930108 0.295843i
\(606\) 0 0
\(607\) 2.38982 + 4.13929i 0.0969997 + 0.168008i 0.910441 0.413638i \(-0.135742\pi\)
−0.813442 + 0.581646i \(0.802409\pi\)
\(608\) −0.976678 + 9.29247i −0.0396095 + 0.376860i
\(609\) 0 0
\(610\) 38.8462 + 12.3560i 1.57284 + 0.500278i
\(611\) 12.4103 + 38.1951i 0.502069 + 1.54521i
\(612\) 0 0
\(613\) 14.0778 43.3269i 0.568596 1.74996i −0.0884219 0.996083i \(-0.528182\pi\)
0.657018 0.753875i \(-0.271818\pi\)
\(614\) −33.2083 7.05865i −1.34018 0.284864i
\(615\) 0 0
\(616\) −3.49560 + 0.743013i −0.140842 + 0.0299368i
\(617\) −2.02983 + 19.3126i −0.0817179 + 0.777494i 0.874537 + 0.484959i \(0.161166\pi\)
−0.956255 + 0.292535i \(0.905501\pi\)
\(618\) 0 0
\(619\) 24.9267 11.0981i 1.00189 0.446070i 0.160812 0.986985i \(-0.448589\pi\)
0.841077 + 0.540915i \(0.181922\pi\)
\(620\) 5.75189 13.1377i 0.231001 0.527623i
\(621\) 0 0
\(622\) 1.92026 1.39515i 0.0769953 0.0559404i
\(623\) −12.1675 2.58629i −0.487482 0.103618i
\(624\) 0 0
\(625\) 22.5793 10.7320i 0.903171 0.429281i
\(626\) 14.8896 + 25.7896i 0.595109 + 1.03076i
\(627\) 0 0
\(628\) 0.243482 + 2.31658i 0.00971601 + 0.0924416i
\(629\) −41.2378 + 29.9610i −1.64426 + 1.19462i
\(630\) 0 0
\(631\) 12.6772 + 9.21053i 0.504672 + 0.366665i 0.810799 0.585325i \(-0.199033\pi\)
−0.306127 + 0.951991i \(0.599033\pi\)
\(632\) 9.29310 16.0961i 0.369660 0.640269i
\(633\) 0 0
\(634\) 5.48667 1.16623i 0.217903 0.0463168i
\(635\) 12.2003 + 26.9511i 0.484154 + 1.06952i
\(636\) 0 0
\(637\) −17.8116 19.7818i −0.705723 0.783785i
\(638\) 2.73215 8.40869i 0.108167 0.332903i
\(639\) 0 0
\(640\) 8.46913 + 38.6631i 0.334772 + 1.52829i
\(641\) −23.6349 26.2493i −0.933524 1.03678i −0.999241 0.0389455i \(-0.987600\pi\)
0.0657170 0.997838i \(-0.479067\pi\)
\(642\) 0 0
\(643\) 5.45444 + 9.44736i 0.215102 + 0.372567i 0.953304 0.302012i \(-0.0976583\pi\)
−0.738202 + 0.674580i \(0.764325\pi\)
\(644\) 2.34292 22.2914i 0.0923240 0.878404i
\(645\) 0 0
\(646\) −9.38440 89.2866i −0.369224 3.51293i
\(647\) 28.4306 20.6560i 1.11772 0.812072i 0.133860 0.991000i \(-0.457263\pi\)
0.983862 + 0.178928i \(0.0572629\pi\)
\(648\) 0 0
\(649\) 1.57119 0.0616748
\(650\) 60.4258 13.6297i 2.37010 0.534600i
\(651\) 0 0
\(652\) −48.3802 + 53.7317i −1.89472 + 2.10429i
\(653\) 11.5270 + 5.13214i 0.451086 + 0.200836i 0.619689 0.784848i \(-0.287259\pi\)
−0.168603 + 0.985684i \(0.553926\pi\)
\(654\) 0 0
\(655\) −0.139100 22.4197i −0.00543509 0.876011i
\(656\) 16.7018 + 12.1346i 0.652097 + 0.473776i
\(657\) 0 0
\(658\) −20.8682 15.1616i −0.813527 0.591062i
\(659\) 11.9432 + 13.2643i 0.465242 + 0.516703i 0.929413 0.369043i \(-0.120314\pi\)
−0.464171 + 0.885746i \(0.653648\pi\)
\(660\) 0 0
\(661\) 24.5369 27.2510i 0.954375 1.05994i −0.0437689 0.999042i \(-0.513937\pi\)
0.998144 0.0608991i \(-0.0193968\pi\)
\(662\) −32.5727 + 6.92354i −1.26597 + 0.269091i
\(663\) 0 0
\(664\) 77.5235 + 16.4781i 3.00850 + 0.639476i
\(665\) 12.9711 7.59656i 0.502998 0.294582i
\(666\) 0 0
\(667\) 23.3603 + 16.9723i 0.904516 + 0.657169i
\(668\) −13.6786 + 23.6920i −0.529240 + 0.916670i
\(669\) 0 0
\(670\) −0.509880 + 2.47418i −0.0196984 + 0.0955859i
\(671\) 3.44239 + 1.53265i 0.132892 + 0.0591674i
\(672\) 0 0
\(673\) −20.3716 4.33013i −0.785269 0.166914i −0.202208 0.979343i \(-0.564812\pi\)
−0.583061 + 0.812428i \(0.698145\pi\)
\(674\) 29.9258 1.15270
\(675\) 0 0
\(676\) 49.5070 1.90411
\(677\) 6.76634 + 1.43823i 0.260052 + 0.0552757i 0.336092 0.941829i \(-0.390895\pi\)
−0.0760407 + 0.997105i \(0.524228\pi\)
\(678\) 0 0
\(679\) 9.49631 + 4.22803i 0.364435 + 0.162257i
\(680\) 34.4936 + 76.1980i 1.32277 + 2.92206i
\(681\) 0 0
\(682\) 0.980570 1.69840i 0.0375480 0.0650350i
\(683\) −25.6445 18.6318i −0.981258 0.712926i −0.0232689 0.999729i \(-0.507407\pi\)
−0.957989 + 0.286803i \(0.907407\pi\)
\(684\) 0 0
\(685\) −17.6611 15.7048i −0.674796 0.600050i
\(686\) 38.6522 + 8.21577i 1.47575 + 0.313680i
\(687\) 0 0
\(688\) 20.6532 4.38998i 0.787398 0.167367i
\(689\) 9.12892 10.1387i 0.347784 0.386253i
\(690\) 0 0
\(691\) −2.74243 3.04578i −0.104327 0.115867i 0.688720 0.725028i \(-0.258173\pi\)
−0.793047 + 0.609161i \(0.791506\pi\)
\(692\) −3.62934 2.63687i −0.137967 0.100239i
\(693\) 0 0
\(694\) 1.40496 + 1.02077i 0.0533317 + 0.0387478i
\(695\) 0.775101 1.08087i 0.0294012 0.0409999i
\(696\) 0 0
\(697\) −25.7916 11.4832i −0.976926 0.434956i
\(698\) −28.7811 + 31.9646i −1.08938 + 1.20988i
\(699\) 0 0
\(700\) −17.7468 + 20.2086i −0.670767 + 0.763813i
\(701\) −1.75231 −0.0661838 −0.0330919 0.999452i \(-0.510535\pi\)
−0.0330919 + 0.999452i \(0.510535\pi\)
\(702\) 0 0
\(703\) −31.0370 + 22.5497i −1.17058 + 0.850479i
\(704\) 0.305017 + 2.90205i 0.0114958 + 0.109375i
\(705\) 0 0
\(706\) −1.37129 + 13.0470i −0.0516092 + 0.491029i
\(707\) 10.0585 + 17.4218i 0.378287 + 0.655213i
\(708\) 0 0
\(709\) −17.0356 18.9200i −0.639787 0.710556i 0.332825 0.942989i \(-0.391998\pi\)
−0.972612 + 0.232433i \(0.925331\pi\)
\(710\) 7.92606 4.64192i 0.297460 0.174208i
\(711\) 0 0
\(712\) 16.0981 49.5449i 0.603303 1.85677i
\(713\) 4.28567 + 4.75972i 0.160500 + 0.178253i
\(714\) 0 0
\(715\) 5.69083 0.633852i 0.212825 0.0237047i
\(716\) −76.8874 + 16.3429i −2.87342 + 0.610763i
\(717\) 0 0
\(718\) 1.34655 2.33230i 0.0502530 0.0870407i
\(719\) −9.49736 6.90024i −0.354192 0.257335i 0.396434 0.918063i \(-0.370248\pi\)
−0.750625 + 0.660728i \(0.770248\pi\)
\(720\) 0 0
\(721\) −15.8489 + 11.5149i −0.590244 + 0.428838i
\(722\) −2.12868 20.2530i −0.0792213 0.753740i
\(723\) 0 0
\(724\) −30.0825 52.1045i −1.11801 1.93645i
\(725\) −11.1146 32.8161i −0.412787 1.21876i
\(726\) 0 0
\(727\) −19.9336 4.23701i −0.739295 0.157142i −0.177154 0.984183i \(-0.556689\pi\)
−0.562141 + 0.827041i \(0.690022\pi\)
\(728\) −28.0725 + 20.3958i −1.04043 + 0.755920i
\(729\) 0 0
\(730\) 10.4846 + 47.8641i 0.388054 + 1.77153i
\(731\) −26.3788 + 11.7446i −0.975656 + 0.434390i
\(732\) 0 0
\(733\) 4.53737 43.1702i 0.167592 1.59453i −0.510716 0.859749i \(-0.670620\pi\)
0.678308 0.734778i \(-0.262714\pi\)
\(734\) −75.9032 + 16.1337i −2.80164 + 0.595506i
\(735\) 0 0
\(736\) 7.30275 + 1.55225i 0.269183 + 0.0572166i
\(737\) −0.0721606 + 0.222087i −0.00265807 + 0.00818069i
\(738\) 0 0
\(739\) −2.42742 7.47084i −0.0892942 0.274819i 0.896431 0.443184i \(-0.146151\pi\)
−0.985725 + 0.168365i \(0.946151\pi\)
\(740\) 40.0005 55.7805i 1.47045 2.05053i
\(741\) 0 0
\(742\) −0.915943 + 8.71462i −0.0336253 + 0.319924i
\(743\) 16.6131 + 28.7747i 0.609475 + 1.05564i 0.991327 + 0.131418i \(0.0419529\pi\)
−0.381852 + 0.924223i \(0.624714\pi\)
\(744\) 0 0
\(745\) 2.69458 + 3.66079i 0.0987218 + 0.134121i
\(746\) 0.496906 0.361023i 0.0181930 0.0132180i
\(747\) 0 0
\(748\) 4.58845 + 14.1218i 0.167770 + 0.516344i
\(749\) −6.89519 + 11.9428i −0.251945 + 0.436381i
\(750\) 0 0
\(751\) −16.9328 29.3284i −0.617886 1.07021i −0.989871 0.141971i \(-0.954656\pi\)
0.371985 0.928239i \(-0.378677\pi\)
\(752\) 27.3059 30.3263i 0.995745 1.10589i
\(753\) 0 0
\(754\) −8.97350 85.3772i −0.326796 3.10925i
\(755\) −3.77306 + 8.61794i −0.137316 + 0.313639i
\(756\) 0 0
\(757\) −9.25569 −0.336404 −0.168202 0.985753i \(-0.553796\pi\)
−0.168202 + 0.985753i \(0.553796\pi\)
\(758\) −50.7030 + 22.5744i −1.84162 + 0.819940i
\(759\) 0 0
\(760\) 25.9611 + 57.3493i 0.941707 + 2.08028i
\(761\) −10.3134 + 11.4542i −0.373861 + 0.415214i −0.900487 0.434882i \(-0.856790\pi\)
0.526627 + 0.850097i \(0.323457\pi\)
\(762\) 0 0
\(763\) −11.4659 12.7342i −0.415094 0.461008i
\(764\) 23.8752 + 73.4802i 0.863773 + 2.65842i
\(765\) 0 0
\(766\) −20.3600 + 62.6615i −0.735636 + 2.26405i
\(767\) 13.9369 6.20510i 0.503232 0.224053i
\(768\) 0 0
\(769\) −1.77895 + 16.9256i −0.0641505 + 0.610351i 0.914467 + 0.404661i \(0.132611\pi\)
−0.978617 + 0.205690i \(0.934056\pi\)
\(770\) −2.71776 + 2.47779i −0.0979413 + 0.0892932i
\(771\) 0 0
\(772\) −2.35583 22.4142i −0.0847880 0.806704i
\(773\) −8.95270 27.5536i −0.322006 0.991033i −0.972774 0.231756i \(-0.925553\pi\)
0.650768 0.759277i \(-0.274447\pi\)
\(774\) 0 0
\(775\) −0.898098 7.63255i −0.0322606 0.274169i
\(776\) −21.7665 + 37.7007i −0.781372 + 1.35338i
\(777\) 0 0
\(778\) 29.5203 + 13.1433i 1.05835 + 0.471210i
\(779\) −19.4117 8.64263i −0.695495 0.309654i
\(780\) 0 0
\(781\) 0.775672 0.345352i 0.0277557 0.0123576i
\(782\) −71.7360 −2.56527
\(783\) 0 0
\(784\) −8.35834 + 25.7243i −0.298512 + 0.918726i
\(785\) 0.739932 + 1.00525i 0.0264093 + 0.0358791i
\(786\) 0 0
\(787\) −7.31133 + 1.55407i −0.260621 + 0.0553967i −0.336369 0.941730i \(-0.609199\pi\)
0.0757480 + 0.997127i \(0.475866\pi\)
\(788\) 63.5881 13.5161i 2.26523 0.481490i
\(789\) 0 0
\(790\) −0.118670 19.1269i −0.00422209 0.680504i
\(791\) 3.79358 11.6754i 0.134884 0.415130i
\(792\) 0 0
\(793\) 36.5877 1.29927
\(794\) −69.7870 + 31.0712i −2.47665 + 1.10268i
\(795\) 0 0
\(796\) −65.2949 29.0711i −2.31431 1.03040i
\(797\) −14.5045 6.45782i −0.513776 0.228748i 0.133437 0.991057i \(-0.457399\pi\)
−0.647212 + 0.762310i \(0.724065\pi\)
\(798\) 0 0
\(799\) −27.9034 + 48.3301i −0.987152 + 1.70980i
\(800\) −6.07647 6.58249i −0.214836 0.232726i
\(801\) 0 0
\(802\) 7.76865 + 23.9094i 0.274320 + 0.844271i
\(803\) 0.473453 + 4.50460i 0.0167078 + 0.158964i
\(804\) 0 0
\(805\) −4.95329 10.9421i −0.174580 0.385657i
\(806\) 1.99044 18.9378i 0.0701102 0.667054i
\(807\) 0 0
\(808\) −76.9636 + 34.2664i −2.70757 + 1.20549i
\(809\) 0.927281 2.85388i 0.0326015 0.100337i −0.933432 0.358755i \(-0.883201\pi\)
0.966033 + 0.258418i \(0.0832013\pi\)
\(810\) 0 0
\(811\) −11.0539 34.0205i −0.388156 1.19462i −0.934165 0.356841i \(-0.883854\pi\)
0.546009 0.837779i \(-0.316146\pi\)
\(812\) 24.9408 + 27.6995i 0.875250 + 0.972063i
\(813\) 0 0
\(814\) 6.28057 6.97528i 0.220134 0.244483i
\(815\) −7.82020 + 37.9473i −0.273930 + 1.32924i
\(816\) 0 0
\(817\) −19.8536 + 8.83941i −0.694591 + 0.309252i
\(818\) −44.0028 −1.53852
\(819\) 0 0
\(820\) 37.8337 + 3.73931i 1.32121 + 0.130582i
\(821\) −4.85653 46.2068i −0.169494 1.61263i −0.666924 0.745126i \(-0.732389\pi\)
0.497430 0.867504i \(-0.334277\pi\)
\(822\) 0 0
\(823\) 27.4590 30.4963i 0.957159 1.06303i −0.0407992 0.999167i \(-0.512990\pi\)
0.997959 0.0638657i \(-0.0203429\pi\)
\(824\) −41.0210 71.0504i −1.42903 2.47516i
\(825\) 0 0
\(826\) −4.89927 + 8.48578i −0.170467 + 0.295258i
\(827\) −12.0368 37.0454i −0.418560 1.28820i −0.909028 0.416736i \(-0.863174\pi\)
0.490468 0.871459i \(-0.336826\pi\)
\(828\) 0 0
\(829\) −4.44553 + 3.22987i −0.154400 + 0.112178i −0.662303 0.749236i \(-0.730421\pi\)
0.507903 + 0.861414i \(0.330421\pi\)
\(830\) 77.4127 25.6850i 2.68704 0.891539i
\(831\) 0 0
\(832\) 14.1666 + 24.5373i 0.491138 + 0.850677i
\(833\) 3.86646 36.7869i 0.133965 1.27459i
\(834\) 0 0
\(835\) 0.0909525 + 14.6595i 0.00314754 + 0.507311i
\(836\) 3.45343 + 10.6286i 0.119439 + 0.367596i
\(837\) 0 0
\(838\) 10.3078 31.7242i 0.356078 1.09590i
\(839\) 15.3782 + 3.26874i 0.530916 + 0.112850i 0.465567 0.885013i \(-0.345851\pi\)
0.0653491 + 0.997862i \(0.479184\pi\)
\(840\) 0 0
\(841\) −18.6017 + 3.95392i −0.641439 + 0.136342i
\(842\) 8.46664 80.5547i 0.291780 2.77610i
\(843\) 0 0
\(844\) −55.1685 + 24.5626i −1.89898 + 0.845479i
\(845\) 22.8921 13.4068i 0.787512 0.461209i
\(846\) 0 0
\(847\) 11.1965 8.13473i 0.384716 0.279512i
\(848\) −13.5599 2.88225i −0.465650 0.0989769i
\(849\) 0 0
\(850\) 70.2598 + 49.7265i 2.40989 + 1.70561i
\(851\) 15.3270 + 26.5472i 0.525403 + 0.910025i
\(852\) 0 0
\(853\) −0.145516 1.38449i −0.00498237 0.0474041i 0.991748 0.128201i \(-0.0409202\pi\)
−0.996731 + 0.0807967i \(0.974254\pi\)
\(854\) −19.0116 + 13.8127i −0.650564 + 0.472662i
\(855\) 0 0
\(856\) −46.7227 33.9460i −1.59695 1.16025i
\(857\) 12.7340 22.0559i 0.434985 0.753415i −0.562310 0.826927i \(-0.690087\pi\)
0.997294 + 0.0735113i \(0.0234205\pi\)
\(858\) 0 0
\(859\) 6.26793 1.33229i 0.213859 0.0454572i −0.0997361 0.995014i \(-0.531800\pi\)
0.313595 + 0.949557i \(0.398467\pi\)
\(860\) 28.7342 26.1970i 0.979828 0.893311i
\(861\) 0 0
\(862\) 14.8875 + 16.5342i 0.507069 + 0.563157i
\(863\) 3.68829 11.3514i 0.125551 0.386406i −0.868450 0.495777i \(-0.834883\pi\)
0.994001 + 0.109370i \(0.0348835\pi\)
\(864\) 0 0
\(865\) −2.39229 0.236443i −0.0813404 0.00803931i
\(866\) −46.3386 51.4642i −1.57465 1.74882i
\(867\) 0 0
\(868\) 4.13386 + 7.16006i 0.140312 + 0.243028i
\(869\) 0.184817 1.75841i 0.00626948 0.0596501i
\(870\) 0 0
\(871\) 0.237005 + 2.25495i 0.00803061 + 0.0764062i
\(872\) 58.0563 42.1804i 1.96603 1.42841i
\(873\) 0 0
\(874\) −53.9910 −1.82627
\(875\) −2.73354 + 14.1504i −0.0924106 + 0.478372i
\(876\) 0 0
\(877\) −0.560532 + 0.622534i −0.0189278 + 0.0210215i −0.752534 0.658553i \(-0.771169\pi\)
0.733607 + 0.679574i \(0.237836\pi\)
\(878\) −7.13733 3.17775i −0.240873 0.107244i
\(879\) 0 0
\(880\) −3.44906 4.68581i −0.116268 0.157959i
\(881\) 8.77572 + 6.37593i 0.295661 + 0.214811i 0.725720 0.687991i \(-0.241507\pi\)
−0.430058 + 0.902801i \(0.641507\pi\)
\(882\) 0 0
\(883\) −29.2715 21.2670i −0.985064 0.715691i −0.0262292 0.999656i \(-0.508350\pi\)
−0.958835 + 0.283965i \(0.908350\pi\)
\(884\) 96.4717 + 107.143i 3.24469 + 3.60360i
\(885\) 0 0
\(886\) 32.8070 36.4358i 1.10217 1.22409i
\(887\) −44.3753 + 9.43226i −1.48998 + 0.316704i −0.879717 0.475497i \(-0.842268\pi\)
−0.610259 + 0.792202i \(0.708935\pi\)
\(888\) 0 0
\(889\) −16.6819 3.54585i −0.559493 0.118924i
\(890\) −11.4715 52.3694i −0.384526 1.75543i
\(891\) 0 0
\(892\) 62.9620 + 45.7446i 2.10812 + 1.53164i
\(893\) −21.0011 + 36.3750i −0.702775 + 1.21724i
\(894\) 0 0
\(895\) −31.1271 + 28.3786i −1.04046 + 0.948592i
\(896\) −20.8444 9.28052i −0.696362 0.310041i
\(897\) 0 0
\(898\) −33.4705 7.11438i −1.11693 0.237410i
\(899\) −10.6509 −0.355226
\(900\) 0 0
\(901\) 18.9581 0.631585
\(902\) 5.08514 + 1.08088i 0.169317 + 0.0359893i
\(903\) 0 0
\(904\) 46.9668 + 20.9110i 1.56209 + 0.695488i
\(905\) −28.0205 15.9466i −0.931432 0.530084i
\(906\) 0 0
\(907\) −8.10153 + 14.0323i −0.269007 + 0.465933i −0.968606 0.248602i \(-0.920029\pi\)
0.699599 + 0.714536i \(0.253362\pi\)
\(908\) 57.4159 + 41.7151i 1.90541 + 1.38436i
\(909\) 0 0
\(910\) −14.3217 + 32.7118i −0.474760 + 1.08439i
\(911\) −13.5590 2.88206i −0.449231 0.0954869i −0.0222596 0.999752i \(-0.507086\pi\)
−0.426971 + 0.904265i \(0.640419\pi\)
\(912\) 0 0
\(913\) 7.37479 1.56756i 0.244070 0.0518787i
\(914\) −26.7115 + 29.6661i −0.883538 + 0.981268i
\(915\) 0 0
\(916\) −60.7913 67.5156i −2.00860 2.23078i
\(917\) 10.4564 + 7.59702i 0.345301 + 0.250876i
\(918\) 0 0
\(919\) 33.8071 + 24.5623i 1.11519 + 0.810236i 0.983474 0.181051i \(-0.0579500\pi\)
0.131720 + 0.991287i \(0.457950\pi\)
\(920\) 47.7413 15.8402i 1.57398 0.522237i
\(921\) 0 0
\(922\) −23.3058 10.3764i −0.767537 0.341729i
\(923\) 5.51651 6.12671i 0.181578 0.201663i
\(924\) 0 0
\(925\) 3.39057 36.6254i 0.111481 1.20423i
\(926\) 44.7769 1.47146
\(927\) 0 0
\(928\) −10.0442 + 7.29755i −0.329718 + 0.239554i
\(929\) −3.25692 30.9875i −0.106856 1.01667i −0.908221 0.418491i \(-0.862559\pi\)
0.801365 0.598176i \(-0.204108\pi\)
\(930\) 0 0
\(931\) 2.91004 27.6871i 0.0953726 0.907409i
\(932\) 19.6038 + 33.9548i 0.642145 + 1.11223i
\(933\) 0 0
\(934\) 58.7155 + 65.2101i 1.92123 + 2.13374i
\(935\) 5.94598 + 5.28736i 0.194454 + 0.172915i
\(936\) 0 0
\(937\) −11.2706 + 34.6872i −0.368193 + 1.13318i 0.579764 + 0.814784i \(0.303145\pi\)
−0.947957 + 0.318398i \(0.896855\pi\)
\(938\) −0.974450 1.08224i −0.0318169 0.0353363i
\(939\) 0 0
\(940\) 15.1682 73.6033i 0.494732 2.40068i
\(941\) 15.2034 3.23158i 0.495617 0.105347i 0.0466795 0.998910i \(-0.485136\pi\)
0.448937 + 0.893563i \(0.351803\pi\)
\(942\) 0 0
\(943\) −8.48922 + 14.7038i −0.276447 + 0.478820i
\(944\) −12.5412 9.11169i −0.408180 0.296560i
\(945\) 0 0
\(946\) 4.30163 3.12532i 0.139858 0.101613i
\(947\) −1.69965 16.1711i −0.0552313 0.525490i −0.986802 0.161931i \(-0.948228\pi\)
0.931571 0.363560i \(-0.118439\pi\)
\(948\) 0 0
\(949\) 21.9896 + 38.0871i 0.713813 + 1.23636i
\(950\) 52.8800 + 37.4259i 1.71565 + 1.21426i
\(951\) 0 0
\(952\) −47.1643 10.0251i −1.52860 0.324915i
\(953\) −29.6469 + 21.5397i −0.960357 + 0.697741i −0.953234 0.302234i \(-0.902268\pi\)
−0.00712369 + 0.999975i \(0.502268\pi\)
\(954\) 0 0
\(955\) 30.9388 + 27.5118i 1.00116 + 0.890261i
\(956\) −18.7320 + 8.34000i −0.605835 + 0.269735i
\(957\) 0 0
\(958\) −0.443837 + 4.22283i −0.0143397 + 0.136433i
\(959\) 13.3267 2.83268i 0.430343 0.0914722i
\(960\) 0 0
\(961\) 28.0117 + 5.95407i 0.903603 + 0.192067i
\(962\) 28.1628 86.6762i 0.908006 2.79455i
\(963\) 0 0
\(964\) −10.2984 31.6953i −0.331690 1.02084i
\(965\) −7.15925 9.72638i −0.230464 0.313103i
\(966\) 0 0
\(967\) 4.26366 40.5660i 0.137110 1.30452i −0.682200 0.731165i \(-0.738977\pi\)
0.819310 0.573350i \(-0.194357\pi\)
\(968\) 28.9793 + 50.1937i 0.931431 + 1.61329i
\(969\) 0 0
\(970\) 0.277952 + 44.7994i 0.00892449 + 1.43842i
\(971\) −36.3301 + 26.3954i −1.16589 + 0.847068i −0.990511 0.137433i \(-0.956115\pi\)
−0.175378 + 0.984501i \(0.556115\pi\)
\(972\) 0 0
\(973\) 0.236941 + 0.729230i 0.00759599 + 0.0233780i
\(974\) −40.6362 + 70.3840i −1.30207 + 2.25525i
\(975\) 0 0
\(976\) −18.5888 32.1967i −0.595011 1.03059i
\(977\) 4.45973 4.95303i 0.142679 0.158462i −0.667569 0.744548i \(-0.732665\pi\)
0.810249 + 0.586086i \(0.199332\pi\)
\(978\) 0 0
\(979\) −0.518017 4.92860i −0.0165559 0.157519i
\(980\) 10.6583 + 48.6568i 0.340466 + 1.55429i
\(981\) 0 0
\(982\) −102.522 −3.27161
\(983\) 28.5768 12.7232i 0.911458 0.405807i 0.103217 0.994659i \(-0.467086\pi\)
0.808241 + 0.588851i \(0.200420\pi\)
\(984\) 0 0
\(985\) 25.7430 23.4699i 0.820240 0.747814i
\(986\) 79.8223 88.6517i 2.54206 2.82324i
\(987\) 0 0
\(988\) 72.6080 + 80.6394i 2.30997 + 2.56548i
\(989\) 5.36608 + 16.5151i 0.170632 + 0.525150i
\(990\) 0 0
\(991\) −1.60963 + 4.95394i −0.0511317 + 0.157367i −0.973362 0.229274i \(-0.926365\pi\)
0.922230 + 0.386641i \(0.126365\pi\)
\(992\) −2.51580 + 1.12010i −0.0798766 + 0.0355634i
\(993\) 0 0
\(994\) −0.553495 + 5.26616i −0.0175558 + 0.167032i
\(995\) −38.0651 + 4.23974i −1.20675 + 0.134409i
\(996\) 0 0
\(997\) 2.39822 + 22.8176i 0.0759524 + 0.722639i 0.964541 + 0.263934i \(0.0850200\pi\)
−0.888588 + 0.458705i \(0.848313\pi\)
\(998\) −2.67071 8.21961i −0.0845399 0.260187i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.r.a.181.2 224
3.2 odd 2 225.2.q.a.106.27 yes 224
9.4 even 3 inner 675.2.r.a.631.27 224
9.5 odd 6 225.2.q.a.31.2 224
25.21 even 5 inner 675.2.r.a.46.27 224
75.71 odd 10 225.2.q.a.196.2 yes 224
225.121 even 15 inner 675.2.r.a.496.2 224
225.221 odd 30 225.2.q.a.121.27 yes 224
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
225.2.q.a.31.2 224 9.5 odd 6
225.2.q.a.106.27 yes 224 3.2 odd 2
225.2.q.a.121.27 yes 224 225.221 odd 30
225.2.q.a.196.2 yes 224 75.71 odd 10
675.2.r.a.46.27 224 25.21 even 5 inner
675.2.r.a.181.2 224 1.1 even 1 trivial
675.2.r.a.496.2 224 225.121 even 15 inner
675.2.r.a.631.27 224 9.4 even 3 inner