Properties

Label 675.2.r.a.46.16
Level $675$
Weight $2$
Character 675.46
Analytic conductor $5.390$
Analytic rank $0$
Dimension $224$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(46,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.46");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.r (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(224\)
Relative dimension: \(28\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 225)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 46.16
Character \(\chi\) \(=\) 675.46
Dual form 675.2.r.a.631.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.220390 + 0.244767i) q^{2} +(0.197717 - 1.88116i) q^{4} +(-2.09765 + 0.774498i) q^{5} +(-1.22023 + 2.11349i) q^{7} +(1.03695 - 0.753387i) q^{8} +(-0.651873 - 0.342746i) q^{10} +(-1.13179 - 1.25698i) q^{11} +(-1.44915 + 1.60944i) q^{13} +(-0.786239 + 0.167120i) q^{14} +(-3.28743 - 0.698765i) q^{16} +(3.09482 - 2.24852i) q^{17} +(-4.15077 + 3.01571i) q^{19} +(1.04221 + 4.09915i) q^{20} +(0.0582329 - 0.554049i) q^{22} +(-8.53438 + 1.81404i) q^{23} +(3.80031 - 3.24926i) q^{25} -0.713316 q^{26} +(3.73455 + 2.71331i) q^{28} +(-5.29950 + 2.35949i) q^{29} +(-6.49762 - 2.89293i) q^{31} +(-1.83522 - 3.17869i) q^{32} +(1.23243 + 0.261961i) q^{34} +(0.922715 - 5.37844i) q^{35} +(2.56039 + 7.88008i) q^{37} +(-1.65293 - 0.351342i) q^{38} +(-1.59166 + 2.38346i) q^{40} +(-2.89941 + 3.22012i) q^{41} +(-3.28981 + 5.69811i) q^{43} +(-2.58834 + 1.88054i) q^{44} +(-2.32491 - 1.68914i) q^{46} +(7.27748 - 3.24014i) q^{47} +(0.522100 + 0.904304i) q^{49} +(1.63286 + 0.214089i) q^{50} +(2.74109 + 3.04429i) q^{52} +(2.04603 + 1.48652i) q^{53} +(3.34762 + 1.76013i) q^{55} +(0.326967 + 3.11088i) q^{56} +(-1.74548 - 0.777139i) q^{58} +(0.645013 - 0.716360i) q^{59} +(-5.83429 - 6.47963i) q^{61} +(-0.723913 - 2.22798i) q^{62} +(-1.70356 + 5.24301i) q^{64} +(1.79330 - 4.49841i) q^{65} +(3.08866 + 1.37516i) q^{67} +(-3.61791 - 6.26641i) q^{68} +(1.51982 - 0.959501i) q^{70} +(0.529305 + 0.384563i) q^{71} +(3.37004 - 10.3719i) q^{73} +(-1.36450 + 2.36339i) q^{74} +(4.85234 + 8.40450i) q^{76} +(4.03764 - 0.858227i) q^{77} +(5.75281 - 2.56132i) q^{79} +(7.43708 - 1.08034i) q^{80} -1.42718 q^{82} +(-1.49547 - 14.2285i) q^{83} +(-4.75039 + 7.11355i) q^{85} +(-2.11975 + 0.450567i) q^{86} +(-2.12059 - 0.450746i) q^{88} +(2.96245 - 9.11749i) q^{89} +(-1.63326 - 5.02664i) q^{91} +(1.72509 + 16.4132i) q^{92} +(2.39696 + 1.06720i) q^{94} +(6.37122 - 9.54068i) q^{95} +(-1.40779 + 0.626788i) q^{97} +(-0.106279 + 0.327092i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 224 q + 3 q^{2} + 23 q^{4} + 8 q^{5} - 8 q^{7} + 20 q^{8} - 20 q^{10} + 11 q^{11} - 3 q^{13} - q^{14} + 23 q^{16} + 24 q^{17} - 12 q^{19} - q^{20} - 11 q^{22} - q^{23} - 16 q^{25} + 136 q^{26} + 4 q^{28}+ \cdots - 146 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.220390 + 0.244767i 0.155839 + 0.173077i 0.816008 0.578040i \(-0.196182\pi\)
−0.660169 + 0.751117i \(0.729516\pi\)
\(3\) 0 0
\(4\) 0.197717 1.88116i 0.0988587 0.940578i
\(5\) −2.09765 + 0.774498i −0.938099 + 0.346366i
\(6\) 0 0
\(7\) −1.22023 + 2.11349i −0.461202 + 0.798825i −0.999021 0.0442351i \(-0.985915\pi\)
0.537819 + 0.843060i \(0.319248\pi\)
\(8\) 1.03695 0.753387i 0.366616 0.266362i
\(9\) 0 0
\(10\) −0.651873 0.342746i −0.206140 0.108386i
\(11\) −1.13179 1.25698i −0.341246 0.378992i 0.547956 0.836507i \(-0.315406\pi\)
−0.889202 + 0.457515i \(0.848740\pi\)
\(12\) 0 0
\(13\) −1.44915 + 1.60944i −0.401921 + 0.446379i −0.909798 0.415051i \(-0.863764\pi\)
0.507877 + 0.861430i \(0.330430\pi\)
\(14\) −0.786239 + 0.167120i −0.210131 + 0.0446648i
\(15\) 0 0
\(16\) −3.28743 0.698765i −0.821857 0.174691i
\(17\) 3.09482 2.24852i 0.750604 0.545346i −0.145410 0.989372i \(-0.546450\pi\)
0.896014 + 0.444025i \(0.146450\pi\)
\(18\) 0 0
\(19\) −4.15077 + 3.01571i −0.952252 + 0.691851i −0.951338 0.308148i \(-0.900291\pi\)
−0.000913382 1.00000i \(0.500291\pi\)
\(20\) 1.04221 + 4.09915i 0.233045 + 0.916597i
\(21\) 0 0
\(22\) 0.0582329 0.554049i 0.0124153 0.118124i
\(23\) −8.53438 + 1.81404i −1.77954 + 0.378253i −0.976133 0.217175i \(-0.930316\pi\)
−0.803409 + 0.595428i \(0.796982\pi\)
\(24\) 0 0
\(25\) 3.80031 3.24926i 0.760061 0.649852i
\(26\) −0.713316 −0.139893
\(27\) 0 0
\(28\) 3.73455 + 2.71331i 0.705763 + 0.512767i
\(29\) −5.29950 + 2.35949i −0.984093 + 0.438147i −0.834744 0.550638i \(-0.814384\pi\)
−0.149349 + 0.988785i \(0.547718\pi\)
\(30\) 0 0
\(31\) −6.49762 2.89293i −1.16701 0.519585i −0.270545 0.962707i \(-0.587204\pi\)
−0.896461 + 0.443123i \(0.853871\pi\)
\(32\) −1.83522 3.17869i −0.324424 0.561918i
\(33\) 0 0
\(34\) 1.23243 + 0.261961i 0.211360 + 0.0449260i
\(35\) 0.922715 5.37844i 0.155967 0.909122i
\(36\) 0 0
\(37\) 2.56039 + 7.88008i 0.420926 + 1.29548i 0.906842 + 0.421472i \(0.138486\pi\)
−0.485916 + 0.874006i \(0.661514\pi\)
\(38\) −1.65293 0.351342i −0.268141 0.0569952i
\(39\) 0 0
\(40\) −1.59166 + 2.38346i −0.251664 + 0.376858i
\(41\) −2.89941 + 3.22012i −0.452812 + 0.502898i −0.925718 0.378214i \(-0.876538\pi\)
0.472906 + 0.881113i \(0.343205\pi\)
\(42\) 0 0
\(43\) −3.28981 + 5.69811i −0.501691 + 0.868954i 0.498307 + 0.867001i \(0.333955\pi\)
−0.999998 + 0.00195353i \(0.999378\pi\)
\(44\) −2.58834 + 1.88054i −0.390207 + 0.283502i
\(45\) 0 0
\(46\) −2.32491 1.68914i −0.342789 0.249051i
\(47\) 7.27748 3.24014i 1.06153 0.472623i 0.199719 0.979853i \(-0.435997\pi\)
0.861811 + 0.507230i \(0.169330\pi\)
\(48\) 0 0
\(49\) 0.522100 + 0.904304i 0.0745857 + 0.129186i
\(50\) 1.63286 + 0.214089i 0.230921 + 0.0302767i
\(51\) 0 0
\(52\) 2.74109 + 3.04429i 0.380120 + 0.422166i
\(53\) 2.04603 + 1.48652i 0.281043 + 0.204190i 0.719372 0.694625i \(-0.244430\pi\)
−0.438329 + 0.898815i \(0.644430\pi\)
\(54\) 0 0
\(55\) 3.34762 + 1.76013i 0.451393 + 0.237336i
\(56\) 0.326967 + 3.11088i 0.0436928 + 0.415709i
\(57\) 0 0
\(58\) −1.74548 0.777139i −0.229193 0.102043i
\(59\) 0.645013 0.716360i 0.0839736 0.0932621i −0.699694 0.714443i \(-0.746680\pi\)
0.783667 + 0.621181i \(0.213347\pi\)
\(60\) 0 0
\(61\) −5.83429 6.47963i −0.747004 0.829632i 0.243095 0.970002i \(-0.421837\pi\)
−0.990099 + 0.140371i \(0.955171\pi\)
\(62\) −0.723913 2.22798i −0.0919371 0.282953i
\(63\) 0 0
\(64\) −1.70356 + 5.24301i −0.212945 + 0.655376i
\(65\) 1.79330 4.49841i 0.222432 0.557959i
\(66\) 0 0
\(67\) 3.08866 + 1.37516i 0.377339 + 0.168002i 0.586638 0.809850i \(-0.300451\pi\)
−0.209298 + 0.977852i \(0.567118\pi\)
\(68\) −3.61791 6.26641i −0.438737 0.759914i
\(69\) 0 0
\(70\) 1.51982 0.959501i 0.181654 0.114682i
\(71\) 0.529305 + 0.384563i 0.0628170 + 0.0456392i 0.618751 0.785587i \(-0.287639\pi\)
−0.555934 + 0.831227i \(0.687639\pi\)
\(72\) 0 0
\(73\) 3.37004 10.3719i 0.394434 1.21394i −0.534968 0.844872i \(-0.679676\pi\)
0.929402 0.369070i \(-0.120324\pi\)
\(74\) −1.36450 + 2.36339i −0.158620 + 0.274738i
\(75\) 0 0
\(76\) 4.85234 + 8.40450i 0.556602 + 0.964062i
\(77\) 4.03764 0.858227i 0.460132 0.0978041i
\(78\) 0 0
\(79\) 5.75281 2.56132i 0.647242 0.288171i −0.0567394 0.998389i \(-0.518070\pi\)
0.703982 + 0.710218i \(0.251404\pi\)
\(80\) 7.43708 1.08034i 0.831491 0.120786i
\(81\) 0 0
\(82\) −1.42718 −0.157606
\(83\) −1.49547 14.2285i −0.164150 1.56178i −0.697936 0.716160i \(-0.745898\pi\)
0.533786 0.845620i \(-0.320769\pi\)
\(84\) 0 0
\(85\) −4.75039 + 7.11355i −0.515252 + 0.771573i
\(86\) −2.11975 + 0.450567i −0.228579 + 0.0485859i
\(87\) 0 0
\(88\) −2.12059 0.450746i −0.226056 0.0480496i
\(89\) 2.96245 9.11749i 0.314019 0.966452i −0.662137 0.749383i \(-0.730350\pi\)
0.976156 0.217069i \(-0.0696496\pi\)
\(90\) 0 0
\(91\) −1.63326 5.02664i −0.171212 0.526935i
\(92\) 1.72509 + 16.4132i 0.179853 + 1.71119i
\(93\) 0 0
\(94\) 2.39696 + 1.06720i 0.247228 + 0.110073i
\(95\) 6.37122 9.54068i 0.653673 0.978853i
\(96\) 0 0
\(97\) −1.40779 + 0.626788i −0.142939 + 0.0636407i −0.476960 0.878925i \(-0.658261\pi\)
0.334020 + 0.942566i \(0.391595\pi\)
\(98\) −0.106279 + 0.327092i −0.0107358 + 0.0330413i
\(99\) 0 0
\(100\) −5.36097 7.79140i −0.536097 0.779140i
\(101\) −4.44731 + 7.70297i −0.442524 + 0.766474i −0.997876 0.0651410i \(-0.979250\pi\)
0.555352 + 0.831616i \(0.312584\pi\)
\(102\) 0 0
\(103\) 1.03592 9.85609i 0.102072 0.971150i −0.816887 0.576797i \(-0.804302\pi\)
0.918959 0.394353i \(-0.129031\pi\)
\(104\) −0.290159 + 2.76067i −0.0284524 + 0.270706i
\(105\) 0 0
\(106\) 0.0870699 + 0.828415i 0.00845698 + 0.0804628i
\(107\) −0.789838 −0.0763565 −0.0381783 0.999271i \(-0.512155\pi\)
−0.0381783 + 0.999271i \(0.512155\pi\)
\(108\) 0 0
\(109\) −5.37002 16.5272i −0.514354 1.58302i −0.784454 0.620187i \(-0.787057\pi\)
0.270100 0.962832i \(-0.412943\pi\)
\(110\) 0.306957 + 1.20730i 0.0292672 + 0.115112i
\(111\) 0 0
\(112\) 5.48824 6.09531i 0.518590 0.575952i
\(113\) −1.45439 + 1.61527i −0.136818 + 0.151951i −0.807660 0.589649i \(-0.799266\pi\)
0.670842 + 0.741600i \(0.265933\pi\)
\(114\) 0 0
\(115\) 16.4972 10.4151i 1.53837 0.971212i
\(116\) 3.39077 + 10.4357i 0.314825 + 0.968931i
\(117\) 0 0
\(118\) 0.317496 0.0292279
\(119\) 0.975849 + 9.28458i 0.0894559 + 0.851116i
\(120\) 0 0
\(121\) 0.850765 8.09449i 0.0773423 0.735862i
\(122\) 0.300187 2.85609i 0.0271776 0.258578i
\(123\) 0 0
\(124\) −6.72673 + 11.6510i −0.604079 + 1.04629i
\(125\) −5.45518 + 9.75915i −0.487926 + 0.872885i
\(126\) 0 0
\(127\) −4.55776 + 14.0274i −0.404436 + 1.24473i 0.516929 + 0.856028i \(0.327075\pi\)
−0.921365 + 0.388698i \(0.872925\pi\)
\(128\) −8.36498 + 3.72433i −0.739367 + 0.329187i
\(129\) 0 0
\(130\) 1.49629 0.552462i 0.131233 0.0484541i
\(131\) 1.92662 + 0.857787i 0.168330 + 0.0749452i 0.489172 0.872188i \(-0.337299\pi\)
−0.320842 + 0.947133i \(0.603966\pi\)
\(132\) 0 0
\(133\) −1.30881 12.4525i −0.113488 1.07977i
\(134\) 0.344114 + 1.05907i 0.0297269 + 0.0914900i
\(135\) 0 0
\(136\) 1.51516 4.66319i 0.129924 0.399866i
\(137\) 4.51172 + 0.958996i 0.385463 + 0.0819326i 0.396567 0.918006i \(-0.370201\pi\)
−0.0111045 + 0.999938i \(0.503535\pi\)
\(138\) 0 0
\(139\) 3.91514 0.832189i 0.332078 0.0705853i −0.0388554 0.999245i \(-0.512371\pi\)
0.370933 + 0.928660i \(0.379038\pi\)
\(140\) −9.93524 2.79918i −0.839681 0.236574i
\(141\) 0 0
\(142\) 0.0225249 + 0.214310i 0.00189025 + 0.0179845i
\(143\) 3.66315 0.306328
\(144\) 0 0
\(145\) 9.28911 9.05385i 0.771418 0.751882i
\(146\) 3.28143 1.46099i 0.271573 0.120912i
\(147\) 0 0
\(148\) 15.3299 3.25847i 1.26011 0.267844i
\(149\) 6.88364 + 11.9228i 0.563929 + 0.976755i 0.997148 + 0.0754658i \(0.0240444\pi\)
−0.433219 + 0.901289i \(0.642622\pi\)
\(150\) 0 0
\(151\) −10.1492 + 17.5789i −0.825931 + 1.43055i 0.0752750 + 0.997163i \(0.476017\pi\)
−0.901206 + 0.433391i \(0.857317\pi\)
\(152\) −2.03213 + 6.25427i −0.164828 + 0.507288i
\(153\) 0 0
\(154\) 1.09992 + 0.799139i 0.0886341 + 0.0643965i
\(155\) 15.8703 + 1.03597i 1.27473 + 0.0832108i
\(156\) 0 0
\(157\) −4.22601 7.31966i −0.337272 0.584172i 0.646647 0.762790i \(-0.276171\pi\)
−0.983919 + 0.178618i \(0.942838\pi\)
\(158\) 1.89479 + 0.843614i 0.150741 + 0.0671143i
\(159\) 0 0
\(160\) 6.31154 + 5.24642i 0.498971 + 0.414766i
\(161\) 6.57991 20.2509i 0.518570 1.59599i
\(162\) 0 0
\(163\) 2.21761 + 6.82510i 0.173696 + 0.534583i 0.999572 0.0292704i \(-0.00931840\pi\)
−0.825875 + 0.563853i \(0.809318\pi\)
\(164\) 5.48428 + 6.09091i 0.428250 + 0.475620i
\(165\) 0 0
\(166\) 3.15308 3.50186i 0.244727 0.271797i
\(167\) 5.53430 + 2.46403i 0.428257 + 0.190672i 0.609534 0.792760i \(-0.291357\pi\)
−0.181277 + 0.983432i \(0.558023\pi\)
\(168\) 0 0
\(169\) 0.868597 + 8.26415i 0.0668152 + 0.635704i
\(170\) −2.78810 + 0.405011i −0.213838 + 0.0310629i
\(171\) 0 0
\(172\) 10.0686 + 7.31525i 0.767722 + 0.557783i
\(173\) 13.0611 + 14.5058i 0.993017 + 1.10286i 0.994696 + 0.102858i \(0.0327987\pi\)
−0.00167954 + 0.999999i \(0.500535\pi\)
\(174\) 0 0
\(175\) 2.23005 + 11.9967i 0.168576 + 0.906869i
\(176\) 2.84234 + 4.92307i 0.214249 + 0.371090i
\(177\) 0 0
\(178\) 2.88456 1.28429i 0.216207 0.0962614i
\(179\) 3.88878 + 2.82536i 0.290661 + 0.211178i 0.723554 0.690268i \(-0.242507\pi\)
−0.432893 + 0.901445i \(0.642507\pi\)
\(180\) 0 0
\(181\) 4.50290 3.27155i 0.334698 0.243172i −0.407724 0.913105i \(-0.633677\pi\)
0.742421 + 0.669933i \(0.233677\pi\)
\(182\) 0.870406 1.50759i 0.0645188 0.111750i
\(183\) 0 0
\(184\) −7.48303 + 8.31075i −0.551656 + 0.612677i
\(185\) −11.4739 14.5467i −0.843580 1.06949i
\(186\) 0 0
\(187\) −6.32901 1.34527i −0.462823 0.0983761i
\(188\) −4.65633 14.3307i −0.339598 1.04517i
\(189\) 0 0
\(190\) 3.73940 0.543200i 0.271284 0.0394079i
\(191\) −23.1633 4.92352i −1.67604 0.356254i −0.730791 0.682601i \(-0.760849\pi\)
−0.945250 + 0.326347i \(0.894182\pi\)
\(192\) 0 0
\(193\) −0.637107 1.10350i −0.0458600 0.0794318i 0.842184 0.539190i \(-0.181269\pi\)
−0.888044 + 0.459758i \(0.847936\pi\)
\(194\) −0.463679 0.206443i −0.0332902 0.0148218i
\(195\) 0 0
\(196\) 1.80436 0.803355i 0.128883 0.0573825i
\(197\) 7.96236 + 5.78499i 0.567295 + 0.412164i 0.834122 0.551581i \(-0.185975\pi\)
−0.266827 + 0.963745i \(0.585975\pi\)
\(198\) 0 0
\(199\) −18.5853 −1.31747 −0.658737 0.752373i \(-0.728909\pi\)
−0.658737 + 0.752373i \(0.728909\pi\)
\(200\) 1.49277 6.23241i 0.105555 0.440698i
\(201\) 0 0
\(202\) −2.86558 + 0.609098i −0.201621 + 0.0428560i
\(203\) 1.47982 14.0796i 0.103863 0.988192i
\(204\) 0 0
\(205\) 3.58798 9.00028i 0.250595 0.628607i
\(206\) 2.64076 1.91862i 0.183990 0.133677i
\(207\) 0 0
\(208\) 5.88859 4.27831i 0.408300 0.296647i
\(209\) 8.48846 + 1.80428i 0.587159 + 0.124804i
\(210\) 0 0
\(211\) −2.15974 + 0.459067i −0.148683 + 0.0316035i −0.281652 0.959517i \(-0.590882\pi\)
0.132969 + 0.991120i \(0.457549\pi\)
\(212\) 3.20092 3.55498i 0.219840 0.244157i
\(213\) 0 0
\(214\) −0.174072 0.193327i −0.0118993 0.0132155i
\(215\) 2.48770 14.5006i 0.169660 0.988934i
\(216\) 0 0
\(217\) 14.0427 10.2026i 0.953283 0.692600i
\(218\) 2.86183 4.95683i 0.193827 0.335719i
\(219\) 0 0
\(220\) 3.97297 5.94939i 0.267857 0.401107i
\(221\) −0.865993 + 8.23937i −0.0582530 + 0.554240i
\(222\) 0 0
\(223\) −17.5445 19.4851i −1.17486 1.30482i −0.943278 0.332003i \(-0.892275\pi\)
−0.231585 0.972815i \(-0.574391\pi\)
\(224\) 8.95752 0.598499
\(225\) 0 0
\(226\) −0.715897 −0.0476208
\(227\) 4.96062 + 5.50933i 0.329248 + 0.365667i 0.884927 0.465730i \(-0.154208\pi\)
−0.555679 + 0.831397i \(0.687542\pi\)
\(228\) 0 0
\(229\) −2.13178 + 20.2826i −0.140872 + 1.34031i 0.664387 + 0.747388i \(0.268693\pi\)
−0.805260 + 0.592922i \(0.797974\pi\)
\(230\) 6.18509 + 1.74260i 0.407833 + 0.114904i
\(231\) 0 0
\(232\) −3.71770 + 6.43924i −0.244079 + 0.422757i
\(233\) −6.14372 + 4.46367i −0.402488 + 0.292425i −0.770554 0.637375i \(-0.780020\pi\)
0.368065 + 0.929800i \(0.380020\pi\)
\(234\) 0 0
\(235\) −12.7562 + 12.4331i −0.832120 + 0.811045i
\(236\) −1.22005 1.35501i −0.0794187 0.0882034i
\(237\) 0 0
\(238\) −2.05750 + 2.28508i −0.133368 + 0.148120i
\(239\) 15.8639 3.37198i 1.02615 0.218115i 0.336062 0.941840i \(-0.390905\pi\)
0.690089 + 0.723725i \(0.257571\pi\)
\(240\) 0 0
\(241\) 14.3594 + 3.05219i 0.924972 + 0.196609i 0.645689 0.763600i \(-0.276570\pi\)
0.279282 + 0.960209i \(0.409903\pi\)
\(242\) 2.16877 1.57570i 0.139414 0.101290i
\(243\) 0 0
\(244\) −13.3427 + 9.69406i −0.854181 + 0.620599i
\(245\) −1.79557 1.49255i −0.114715 0.0953556i
\(246\) 0 0
\(247\) 1.16147 11.0506i 0.0739024 0.703135i
\(248\) −8.91718 + 1.89540i −0.566241 + 0.120358i
\(249\) 0 0
\(250\) −3.59099 + 0.815563i −0.227114 + 0.0515808i
\(251\) −17.7351 −1.11943 −0.559716 0.828685i \(-0.689090\pi\)
−0.559716 + 0.828685i \(0.689090\pi\)
\(252\) 0 0
\(253\) 11.9393 + 8.67440i 0.750617 + 0.545355i
\(254\) −4.43792 + 1.97589i −0.278460 + 0.123978i
\(255\) 0 0
\(256\) 7.31728 + 3.25786i 0.457330 + 0.203616i
\(257\) 3.02034 + 5.23139i 0.188404 + 0.326325i 0.944718 0.327883i \(-0.106335\pi\)
−0.756314 + 0.654208i \(0.773002\pi\)
\(258\) 0 0
\(259\) −19.7787 4.20410i −1.22899 0.261230i
\(260\) −8.10765 4.26289i −0.502815 0.264373i
\(261\) 0 0
\(262\) 0.214649 + 0.660622i 0.0132611 + 0.0408133i
\(263\) −9.90415 2.10519i −0.610716 0.129812i −0.107837 0.994169i \(-0.534392\pi\)
−0.502879 + 0.864357i \(0.667726\pi\)
\(264\) 0 0
\(265\) −5.44317 1.53357i −0.334371 0.0942066i
\(266\) 2.75951 3.06475i 0.169196 0.187912i
\(267\) 0 0
\(268\) 3.19757 5.53835i 0.195323 0.338309i
\(269\) −21.9237 + 15.9285i −1.33671 + 0.971177i −0.337153 + 0.941450i \(0.609464\pi\)
−0.999558 + 0.0297274i \(0.990536\pi\)
\(270\) 0 0
\(271\) −8.50805 6.18146i −0.516827 0.375497i 0.298580 0.954385i \(-0.403487\pi\)
−0.815407 + 0.578888i \(0.803487\pi\)
\(272\) −11.7452 + 5.22930i −0.712157 + 0.317073i
\(273\) 0 0
\(274\) 0.759606 + 1.31568i 0.0458895 + 0.0794829i
\(275\) −8.38537 1.09943i −0.505657 0.0662980i
\(276\) 0 0
\(277\) 10.8806 + 12.0841i 0.653753 + 0.726066i 0.975314 0.220823i \(-0.0708743\pi\)
−0.321561 + 0.946889i \(0.604208\pi\)
\(278\) 1.06655 + 0.774893i 0.0639674 + 0.0464750i
\(279\) 0 0
\(280\) −3.09524 6.27232i −0.184976 0.374843i
\(281\) −1.58707 15.0999i −0.0946766 0.900787i −0.934028 0.357199i \(-0.883732\pi\)
0.839352 0.543589i \(-0.182935\pi\)
\(282\) 0 0
\(283\) −1.72853 0.769590i −0.102750 0.0457474i 0.354718 0.934973i \(-0.384577\pi\)
−0.457468 + 0.889226i \(0.651244\pi\)
\(284\) 0.828075 0.919670i 0.0491372 0.0545724i
\(285\) 0 0
\(286\) 0.807321 + 0.896621i 0.0477379 + 0.0530183i
\(287\) −3.26777 10.0571i −0.192890 0.593655i
\(288\) 0 0
\(289\) −0.731209 + 2.25043i −0.0430123 + 0.132378i
\(290\) 4.26331 + 0.278296i 0.250350 + 0.0163421i
\(291\) 0 0
\(292\) −18.8449 8.39028i −1.10281 0.491004i
\(293\) 3.67099 + 6.35834i 0.214462 + 0.371458i 0.953106 0.302637i \(-0.0978670\pi\)
−0.738644 + 0.674095i \(0.764534\pi\)
\(294\) 0 0
\(295\) −0.798195 + 2.00224i −0.0464727 + 0.116575i
\(296\) 8.59174 + 6.24227i 0.499385 + 0.362824i
\(297\) 0 0
\(298\) −1.40123 + 4.31255i −0.0811713 + 0.249820i
\(299\) 9.44799 16.3644i 0.546391 0.946377i
\(300\) 0 0
\(301\) −8.02861 13.9060i −0.462761 0.801526i
\(302\) −6.53953 + 1.39002i −0.376308 + 0.0799867i
\(303\) 0 0
\(304\) 15.7526 7.01352i 0.903475 0.402253i
\(305\) 17.2568 + 9.07338i 0.988120 + 0.519540i
\(306\) 0 0
\(307\) 4.38216 0.250103 0.125051 0.992150i \(-0.460090\pi\)
0.125051 + 0.992150i \(0.460090\pi\)
\(308\) −0.816147 7.76512i −0.0465043 0.442459i
\(309\) 0 0
\(310\) 3.24408 + 4.11285i 0.184251 + 0.233594i
\(311\) −17.4478 + 3.70864i −0.989373 + 0.210298i −0.674049 0.738686i \(-0.735447\pi\)
−0.315324 + 0.948984i \(0.602113\pi\)
\(312\) 0 0
\(313\) −15.9454 3.38931i −0.901290 0.191575i −0.266113 0.963942i \(-0.585739\pi\)
−0.635177 + 0.772367i \(0.719073\pi\)
\(314\) 0.860246 2.64756i 0.0485465 0.149411i
\(315\) 0 0
\(316\) −3.68081 11.3284i −0.207061 0.637270i
\(317\) −2.20283 20.9585i −0.123723 1.17715i −0.863519 0.504317i \(-0.831744\pi\)
0.739796 0.672832i \(-0.234922\pi\)
\(318\) 0 0
\(319\) 8.96373 + 3.99091i 0.501872 + 0.223448i
\(320\) −0.487227 12.3174i −0.0272368 0.688565i
\(321\) 0 0
\(322\) 6.40690 2.85254i 0.357043 0.158966i
\(323\) −6.06501 + 18.6662i −0.337466 + 1.03861i
\(324\) 0 0
\(325\) −0.277714 + 10.8250i −0.0154048 + 0.600464i
\(326\) −1.18182 + 2.04698i −0.0654551 + 0.113372i
\(327\) 0 0
\(328\) −0.580540 + 5.52347i −0.0320550 + 0.304983i
\(329\) −2.03215 + 19.3346i −0.112036 + 1.06595i
\(330\) 0 0
\(331\) 1.89347 + 18.0152i 0.104075 + 0.990204i 0.914561 + 0.404447i \(0.132536\pi\)
−0.810487 + 0.585757i \(0.800797\pi\)
\(332\) −27.0617 −1.48520
\(333\) 0 0
\(334\) 0.616588 + 1.89766i 0.0337382 + 0.103835i
\(335\) −7.54399 0.492449i −0.412172 0.0269053i
\(336\) 0 0
\(337\) −2.47620 + 2.75010i −0.134887 + 0.149807i −0.806804 0.590819i \(-0.798805\pi\)
0.671917 + 0.740627i \(0.265471\pi\)
\(338\) −1.83137 + 2.03394i −0.0996131 + 0.110632i
\(339\) 0 0
\(340\) 12.4425 + 10.3427i 0.674787 + 0.560911i
\(341\) 3.71757 + 11.4415i 0.201318 + 0.619593i
\(342\) 0 0
\(343\) −19.6315 −1.06000
\(344\) 0.881524 + 8.38714i 0.0475286 + 0.452204i
\(345\) 0 0
\(346\) −0.672022 + 6.39386i −0.0361281 + 0.343736i
\(347\) −2.69542 + 25.6452i −0.144698 + 1.37671i 0.645457 + 0.763797i \(0.276667\pi\)
−0.790154 + 0.612908i \(0.790000\pi\)
\(348\) 0 0
\(349\) 15.6853 27.1678i 0.839616 1.45426i −0.0506002 0.998719i \(-0.516113\pi\)
0.890216 0.455538i \(-0.150553\pi\)
\(350\) −2.44493 + 3.18980i −0.130687 + 0.170502i
\(351\) 0 0
\(352\) −1.91846 + 5.90442i −0.102254 + 0.314707i
\(353\) 0.0915256 0.0407498i 0.00487142 0.00216889i −0.404299 0.914627i \(-0.632485\pi\)
0.409171 + 0.912458i \(0.365818\pi\)
\(354\) 0 0
\(355\) −1.40814 0.396734i −0.0747364 0.0210564i
\(356\) −16.5657 7.37552i −0.877979 0.390902i
\(357\) 0 0
\(358\) 0.165490 + 1.57453i 0.00874639 + 0.0832164i
\(359\) −4.79343 14.7527i −0.252988 0.778616i −0.994219 0.107367i \(-0.965758\pi\)
0.741232 0.671249i \(-0.234242\pi\)
\(360\) 0 0
\(361\) 2.26305 6.96496i 0.119108 0.366577i
\(362\) 1.79316 + 0.381148i 0.0942464 + 0.0200327i
\(363\) 0 0
\(364\) −9.77882 + 2.07855i −0.512549 + 0.108946i
\(365\) 0.963851 + 24.3668i 0.0504503 + 1.27542i
\(366\) 0 0
\(367\) 1.34951 + 12.8397i 0.0704439 + 0.670229i 0.971583 + 0.236699i \(0.0760655\pi\)
−0.901139 + 0.433530i \(0.857268\pi\)
\(368\) 29.3238 1.52861
\(369\) 0 0
\(370\) 1.03182 6.01438i 0.0536416 0.312673i
\(371\) −5.63837 + 2.51036i −0.292730 + 0.130332i
\(372\) 0 0
\(373\) 0.226521 0.0481486i 0.0117288 0.00249304i −0.202044 0.979377i \(-0.564758\pi\)
0.213772 + 0.976884i \(0.431425\pi\)
\(374\) −1.06557 1.84562i −0.0550993 0.0954347i
\(375\) 0 0
\(376\) 5.10529 8.84261i 0.263285 0.456023i
\(377\) 3.88230 11.9485i 0.199949 0.615379i
\(378\) 0 0
\(379\) 4.51376 + 3.27944i 0.231856 + 0.168453i 0.697647 0.716441i \(-0.254230\pi\)
−0.465791 + 0.884895i \(0.654230\pi\)
\(380\) −16.6878 13.8716i −0.856066 0.711598i
\(381\) 0 0
\(382\) −3.89984 6.75473i −0.199533 0.345602i
\(383\) 12.2595 + 5.45829i 0.626433 + 0.278906i 0.695300 0.718720i \(-0.255272\pi\)
−0.0688668 + 0.997626i \(0.521938\pi\)
\(384\) 0 0
\(385\) −7.80488 + 4.92741i −0.397774 + 0.251124i
\(386\) 0.129690 0.399143i 0.00660102 0.0203159i
\(387\) 0 0
\(388\) 0.900742 + 2.77220i 0.0457282 + 0.140737i
\(389\) −22.7699 25.2885i −1.15448 1.28218i −0.953097 0.302664i \(-0.902124\pi\)
−0.201380 0.979513i \(-0.564543\pi\)
\(390\) 0 0
\(391\) −22.3335 + 24.8038i −1.12945 + 1.25438i
\(392\) 1.22268 + 0.544373i 0.0617547 + 0.0274950i
\(393\) 0 0
\(394\) 0.338843 + 3.22388i 0.0170707 + 0.162417i
\(395\) −10.0837 + 9.82830i −0.507365 + 0.494515i
\(396\) 0 0
\(397\) 22.7816 + 16.5518i 1.14338 + 0.830711i 0.987586 0.157079i \(-0.0502078\pi\)
0.155790 + 0.987790i \(0.450208\pi\)
\(398\) −4.09600 4.54907i −0.205314 0.228024i
\(399\) 0 0
\(400\) −14.7637 + 8.02619i −0.738185 + 0.401309i
\(401\) 6.50887 + 11.2737i 0.325037 + 0.562981i 0.981520 0.191360i \(-0.0612898\pi\)
−0.656483 + 0.754341i \(0.727956\pi\)
\(402\) 0 0
\(403\) 14.0720 6.26526i 0.700976 0.312095i
\(404\) 13.6112 + 9.88910i 0.677181 + 0.492001i
\(405\) 0 0
\(406\) 3.77236 2.74078i 0.187219 0.136023i
\(407\) 7.00725 12.1369i 0.347337 0.601605i
\(408\) 0 0
\(409\) 22.3589 24.8320i 1.10557 1.22786i 0.134037 0.990976i \(-0.457206\pi\)
0.971537 0.236888i \(-0.0761275\pi\)
\(410\) 2.99373 1.10535i 0.147850 0.0545892i
\(411\) 0 0
\(412\) −18.3360 3.89744i −0.903351 0.192013i
\(413\) 0.726959 + 2.23735i 0.0357713 + 0.110093i
\(414\) 0 0
\(415\) 14.1569 + 28.6882i 0.694936 + 1.40825i
\(416\) 7.77542 + 1.65272i 0.381221 + 0.0810311i
\(417\) 0 0
\(418\) 1.42914 + 2.47534i 0.0699015 + 0.121073i
\(419\) −36.0676 16.0583i −1.76202 0.784501i −0.988593 0.150615i \(-0.951875\pi\)
−0.773426 0.633886i \(-0.781459\pi\)
\(420\) 0 0
\(421\) 2.40676 1.07156i 0.117298 0.0522246i −0.347248 0.937773i \(-0.612884\pi\)
0.464547 + 0.885549i \(0.346217\pi\)
\(422\) −0.588349 0.427460i −0.0286404 0.0208084i
\(423\) 0 0
\(424\) 3.24155 0.157424
\(425\) 4.45525 18.6009i 0.216111 0.902278i
\(426\) 0 0
\(427\) 20.8138 4.42411i 1.00725 0.214098i
\(428\) −0.156165 + 1.48581i −0.00754851 + 0.0718192i
\(429\) 0 0
\(430\) 4.09754 2.58688i 0.197601 0.124750i
\(431\) −27.7928 + 20.1926i −1.33873 + 0.972644i −0.339240 + 0.940700i \(0.610170\pi\)
−0.999490 + 0.0319446i \(0.989830\pi\)
\(432\) 0 0
\(433\) −22.0022 + 15.9856i −1.05736 + 0.768217i −0.973598 0.228269i \(-0.926694\pi\)
−0.0837621 + 0.996486i \(0.526694\pi\)
\(434\) 5.59215 + 1.18865i 0.268432 + 0.0570569i
\(435\) 0 0
\(436\) −32.1520 + 6.83412i −1.53980 + 0.327295i
\(437\) 29.9536 33.2669i 1.43288 1.59137i
\(438\) 0 0
\(439\) −10.0470 11.1583i −0.479515 0.532556i 0.454044 0.890979i \(-0.349981\pi\)
−0.933559 + 0.358424i \(0.883314\pi\)
\(440\) 4.79737 0.696885i 0.228706 0.0332227i
\(441\) 0 0
\(442\) −2.20759 + 1.60390i −0.105004 + 0.0762900i
\(443\) −5.24719 + 9.08840i −0.249301 + 0.431803i −0.963332 0.268312i \(-0.913534\pi\)
0.714031 + 0.700114i \(0.246868\pi\)
\(444\) 0 0
\(445\) 0.847277 + 21.4197i 0.0401648 + 1.01539i
\(446\) 0.902700 8.58862i 0.0427441 0.406683i
\(447\) 0 0
\(448\) −9.00233 9.99810i −0.425320 0.472366i
\(449\) −19.5039 −0.920444 −0.460222 0.887804i \(-0.652230\pi\)
−0.460222 + 0.887804i \(0.652230\pi\)
\(450\) 0 0
\(451\) 7.32912 0.345115
\(452\) 2.75101 + 3.05530i 0.129397 + 0.143709i
\(453\) 0 0
\(454\) −0.255235 + 2.42840i −0.0119788 + 0.113970i
\(455\) 7.31913 + 9.27921i 0.343126 + 0.435016i
\(456\) 0 0
\(457\) −6.38012 + 11.0507i −0.298449 + 0.516929i −0.975781 0.218748i \(-0.929803\pi\)
0.677332 + 0.735677i \(0.263136\pi\)
\(458\) −5.43434 + 3.94828i −0.253930 + 0.184491i
\(459\) 0 0
\(460\) −16.3306 33.0931i −0.761419 1.54297i
\(461\) 9.42808 + 10.4709i 0.439109 + 0.487680i 0.921556 0.388245i \(-0.126919\pi\)
−0.482447 + 0.875925i \(0.660252\pi\)
\(462\) 0 0
\(463\) 20.2556 22.4961i 0.941356 1.04548i −0.0575325 0.998344i \(-0.518323\pi\)
0.998888 0.0471380i \(-0.0150100\pi\)
\(464\) 19.0705 4.05355i 0.885325 0.188182i
\(465\) 0 0
\(466\) −2.44657 0.520035i −0.113335 0.0240902i
\(467\) 0.459190 0.333621i 0.0212488 0.0154382i −0.577110 0.816666i \(-0.695820\pi\)
0.598359 + 0.801228i \(0.295820\pi\)
\(468\) 0 0
\(469\) −6.67524 + 4.84985i −0.308234 + 0.223945i
\(470\) −5.85454 0.382166i −0.270050 0.0176280i
\(471\) 0 0
\(472\) 0.129149 1.22877i 0.00594457 0.0565588i
\(473\) 10.8857 2.31384i 0.500527 0.106390i
\(474\) 0 0
\(475\) −5.97537 + 24.9475i −0.274169 + 1.14467i
\(476\) 17.6587 0.809384
\(477\) 0 0
\(478\) 4.32159 + 3.13982i 0.197665 + 0.143612i
\(479\) −8.30395 + 3.69716i −0.379417 + 0.168927i −0.587579 0.809167i \(-0.699919\pi\)
0.208161 + 0.978094i \(0.433252\pi\)
\(480\) 0 0
\(481\) −16.3929 7.29860i −0.747453 0.332787i
\(482\) 2.41759 + 4.18739i 0.110118 + 0.190730i
\(483\) 0 0
\(484\) −15.0588 3.20084i −0.684490 0.145493i
\(485\) 2.46761 2.40511i 0.112048 0.109211i
\(486\) 0 0
\(487\) −9.84622 30.3036i −0.446175 1.37319i −0.881190 0.472762i \(-0.843257\pi\)
0.435015 0.900423i \(-0.356743\pi\)
\(488\) −10.9315 2.32357i −0.494847 0.105183i
\(489\) 0 0
\(490\) −0.0303963 0.768439i −0.00137317 0.0347145i
\(491\) 28.2390 31.3625i 1.27441 1.41537i 0.410388 0.911911i \(-0.365393\pi\)
0.864018 0.503461i \(-0.167940\pi\)
\(492\) 0 0
\(493\) −11.0957 + 19.2182i −0.499723 + 0.865546i
\(494\) 2.96081 2.15115i 0.133213 0.0967850i
\(495\) 0 0
\(496\) 19.3390 + 14.0506i 0.868346 + 0.630890i
\(497\) −1.45864 + 0.649429i −0.0654290 + 0.0291309i
\(498\) 0 0
\(499\) 9.50928 + 16.4706i 0.425694 + 0.737323i 0.996485 0.0837721i \(-0.0266968\pi\)
−0.570791 + 0.821095i \(0.693363\pi\)
\(500\) 17.2799 + 12.1916i 0.772780 + 0.545225i
\(501\) 0 0
\(502\) −3.90864 4.34098i −0.174451 0.193747i
\(503\) −8.48894 6.16758i −0.378503 0.274999i 0.382225 0.924069i \(-0.375158\pi\)
−0.760728 + 0.649071i \(0.775158\pi\)
\(504\) 0 0
\(505\) 3.36299 19.6026i 0.149651 0.872305i
\(506\) 0.508084 + 4.83410i 0.0225871 + 0.214902i
\(507\) 0 0
\(508\) 25.4865 + 11.3473i 1.13078 + 0.503456i
\(509\) 18.4464 20.4868i 0.817624 0.908063i −0.179508 0.983757i \(-0.557450\pi\)
0.997131 + 0.0756936i \(0.0241171\pi\)
\(510\) 0 0
\(511\) 17.8088 + 19.7786i 0.787814 + 0.874956i
\(512\) 6.47433 + 19.9259i 0.286128 + 0.880611i
\(513\) 0 0
\(514\) −0.614821 + 1.89222i −0.0271186 + 0.0834624i
\(515\) 5.46053 + 21.4770i 0.240620 + 0.946389i
\(516\) 0 0
\(517\) −12.3093 5.48047i −0.541364 0.241031i
\(518\) −3.33000 5.76773i −0.146312 0.253420i
\(519\) 0 0
\(520\) −1.52948 6.01567i −0.0670723 0.263804i
\(521\) −24.6933 17.9407i −1.08183 0.785998i −0.103831 0.994595i \(-0.533110\pi\)
−0.978002 + 0.208597i \(0.933110\pi\)
\(522\) 0 0
\(523\) −4.73750 + 14.5805i −0.207156 + 0.637562i 0.792461 + 0.609922i \(0.208799\pi\)
−0.999618 + 0.0276401i \(0.991201\pi\)
\(524\) 1.99456 3.45467i 0.0871326 0.150918i
\(525\) 0 0
\(526\) −1.66749 2.88818i −0.0727060 0.125930i
\(527\) −26.6138 + 5.65693i −1.15931 + 0.246420i
\(528\) 0 0
\(529\) 48.5334 21.6084i 2.11015 0.939498i
\(530\) −0.824249 1.67029i −0.0358031 0.0725529i
\(531\) 0 0
\(532\) −23.6838 −1.02682
\(533\) −0.980923 9.33285i −0.0424885 0.404251i
\(534\) 0 0
\(535\) 1.65681 0.611728i 0.0716300 0.0264473i
\(536\) 4.23880 0.900985i 0.183088 0.0389166i
\(537\) 0 0
\(538\) −8.73053 1.85573i −0.376400 0.0800063i
\(539\) 0.545782 1.67975i 0.0235085 0.0723518i
\(540\) 0 0
\(541\) 0.320574 + 0.986626i 0.0137826 + 0.0424184i 0.957711 0.287731i \(-0.0929009\pi\)
−0.943929 + 0.330149i \(0.892901\pi\)
\(542\) −0.362065 3.44482i −0.0155520 0.147968i
\(543\) 0 0
\(544\) −12.8270 5.71096i −0.549954 0.244855i
\(545\) 24.0647 + 30.5093i 1.03082 + 1.30687i
\(546\) 0 0
\(547\) −25.9691 + 11.5622i −1.11036 + 0.494364i −0.878190 0.478311i \(-0.841249\pi\)
−0.232169 + 0.972675i \(0.574582\pi\)
\(548\) 2.69607 8.29764i 0.115170 0.354458i
\(549\) 0 0
\(550\) −1.57894 2.29477i −0.0673264 0.0978492i
\(551\) 14.8815 25.7755i 0.633972 1.09807i
\(552\) 0 0
\(553\) −1.60640 + 15.2839i −0.0683112 + 0.649938i
\(554\) −0.559831 + 5.32644i −0.0237850 + 0.226299i
\(555\) 0 0
\(556\) −0.791385 7.52953i −0.0335622 0.319323i
\(557\) −23.9335 −1.01409 −0.507047 0.861919i \(-0.669263\pi\)
−0.507047 + 0.861919i \(0.669263\pi\)
\(558\) 0 0
\(559\) −4.40336 13.5522i −0.186242 0.573195i
\(560\) −6.79162 + 17.0365i −0.286998 + 0.719922i
\(561\) 0 0
\(562\) 3.34620 3.71633i 0.141151 0.156764i
\(563\) −2.36392 + 2.62540i −0.0996272 + 0.110647i −0.790896 0.611950i \(-0.790385\pi\)
0.691269 + 0.722597i \(0.257052\pi\)
\(564\) 0 0
\(565\) 1.79979 4.51469i 0.0757178 0.189935i
\(566\) −0.192579 0.592697i −0.00809470 0.0249129i
\(567\) 0 0
\(568\) 0.838586 0.0351863
\(569\) −1.93022 18.3648i −0.0809189 0.769892i −0.957460 0.288565i \(-0.906822\pi\)
0.876541 0.481326i \(-0.159845\pi\)
\(570\) 0 0
\(571\) 2.82412 26.8697i 0.118186 1.12446i −0.761255 0.648453i \(-0.775416\pi\)
0.879440 0.476009i \(-0.157917\pi\)
\(572\) 0.724269 6.89096i 0.0302832 0.288125i
\(573\) 0 0
\(574\) 1.74148 3.01633i 0.0726880 0.125899i
\(575\) −26.5390 + 34.6243i −1.10675 + 1.44393i
\(576\) 0 0
\(577\) 4.52246 13.9187i 0.188273 0.579444i −0.811717 0.584051i \(-0.801467\pi\)
0.999989 + 0.00460768i \(0.00146668\pi\)
\(578\) −0.711983 + 0.316995i −0.0296146 + 0.0131853i
\(579\) 0 0
\(580\) −15.1951 19.2644i −0.630942 0.799909i
\(581\) 31.8966 + 14.2013i 1.32329 + 0.589169i
\(582\) 0 0
\(583\) −0.447138 4.25423i −0.0185186 0.176192i
\(584\) −4.31951 13.2941i −0.178743 0.550113i
\(585\) 0 0
\(586\) −0.747267 + 2.29985i −0.0308693 + 0.0950060i
\(587\) −29.1470 6.19538i −1.20302 0.255711i −0.437560 0.899189i \(-0.644157\pi\)
−0.765464 + 0.643479i \(0.777491\pi\)
\(588\) 0 0
\(589\) 35.6943 7.58706i 1.47076 0.312620i
\(590\) −0.665996 + 0.245900i −0.0274186 + 0.0101235i
\(591\) 0 0
\(592\) −2.91079 27.6943i −0.119633 1.13823i
\(593\) −15.3217 −0.629186 −0.314593 0.949227i \(-0.601868\pi\)
−0.314593 + 0.949227i \(0.601868\pi\)
\(594\) 0 0
\(595\) −9.23788 18.7200i −0.378716 0.767447i
\(596\) 23.7897 10.5918i 0.974463 0.433859i
\(597\) 0 0
\(598\) 6.08771 1.29398i 0.248945 0.0529149i
\(599\) 14.5795 + 25.2524i 0.595702 + 1.03179i 0.993447 + 0.114290i \(0.0364594\pi\)
−0.397745 + 0.917496i \(0.630207\pi\)
\(600\) 0 0
\(601\) −5.97136 + 10.3427i −0.243577 + 0.421888i −0.961731 0.273997i \(-0.911654\pi\)
0.718154 + 0.695885i \(0.244987\pi\)
\(602\) 1.63430 5.02987i 0.0666093 0.205002i
\(603\) 0 0
\(604\) 31.0621 + 22.5679i 1.26390 + 0.918275i
\(605\) 4.48455 + 17.6383i 0.182323 + 0.717101i
\(606\) 0 0
\(607\) 11.8537 + 20.5312i 0.481127 + 0.833336i 0.999765 0.0216578i \(-0.00689442\pi\)
−0.518639 + 0.854993i \(0.673561\pi\)
\(608\) 17.2036 + 7.65953i 0.697697 + 0.310635i
\(609\) 0 0
\(610\) 1.58235 + 6.22358i 0.0640673 + 0.251985i
\(611\) −5.33132 + 16.4081i −0.215682 + 0.663801i
\(612\) 0 0
\(613\) 10.4855 + 32.2710i 0.423505 + 1.30341i 0.904419 + 0.426646i \(0.140305\pi\)
−0.480914 + 0.876768i \(0.659695\pi\)
\(614\) 0.965781 + 1.07261i 0.0389758 + 0.0432870i
\(615\) 0 0
\(616\) 3.54025 3.93184i 0.142641 0.158418i
\(617\) −9.30742 4.14393i −0.374703 0.166828i 0.210740 0.977542i \(-0.432413\pi\)
−0.585443 + 0.810714i \(0.699079\pi\)
\(618\) 0 0
\(619\) 0.692019 + 6.58412i 0.0278146 + 0.264638i 0.999587 + 0.0287199i \(0.00914307\pi\)
−0.971773 + 0.235918i \(0.924190\pi\)
\(620\) 5.08665 29.6497i 0.204285 1.19076i
\(621\) 0 0
\(622\) −4.75307 3.45330i −0.190581 0.138465i
\(623\) 15.6549 + 17.3865i 0.627199 + 0.696576i
\(624\) 0 0
\(625\) 3.88465 24.6963i 0.155386 0.987854i
\(626\) −2.68462 4.64989i −0.107299 0.185847i
\(627\) 0 0
\(628\) −14.6050 + 6.50255i −0.582802 + 0.259480i
\(629\) 25.6425 + 18.6303i 1.02243 + 0.742841i
\(630\) 0 0
\(631\) 18.8353 13.6847i 0.749823 0.544778i −0.145949 0.989292i \(-0.546623\pi\)
0.895772 + 0.444514i \(0.146623\pi\)
\(632\) 4.03570 6.99004i 0.160532 0.278049i
\(633\) 0 0
\(634\) 4.64449 5.15822i 0.184456 0.204859i
\(635\) −1.30355 32.9545i −0.0517296 1.30776i
\(636\) 0 0
\(637\) −2.21202 0.470180i −0.0876436 0.0186292i
\(638\) 0.998668 + 3.07358i 0.0395376 + 0.121684i
\(639\) 0 0
\(640\) 14.6624 14.2910i 0.579581 0.564902i
\(641\) 24.4184 + 5.19029i 0.964468 + 0.205004i 0.663123 0.748511i \(-0.269231\pi\)
0.301346 + 0.953515i \(0.402564\pi\)
\(642\) 0 0
\(643\) 4.76373 + 8.25102i 0.187863 + 0.325388i 0.944538 0.328403i \(-0.106511\pi\)
−0.756674 + 0.653792i \(0.773177\pi\)
\(644\) −36.7941 16.3818i −1.44989 0.645533i
\(645\) 0 0
\(646\) −5.90553 + 2.62931i −0.232350 + 0.103449i
\(647\) 38.6632 + 28.0905i 1.52001 + 1.10435i 0.961483 + 0.274863i \(0.0886326\pi\)
0.558525 + 0.829487i \(0.311367\pi\)
\(648\) 0 0
\(649\) −1.63046 −0.0640013
\(650\) −2.71082 + 2.31775i −0.106327 + 0.0909095i
\(651\) 0 0
\(652\) 13.2775 2.82222i 0.519988 0.110527i
\(653\) −1.42666 + 13.5738i −0.0558295 + 0.531182i 0.930488 + 0.366323i \(0.119384\pi\)
−0.986317 + 0.164859i \(0.947283\pi\)
\(654\) 0 0
\(655\) −4.70574 0.307176i −0.183868 0.0120024i
\(656\) 11.7817 8.55991i 0.459998 0.334208i
\(657\) 0 0
\(658\) −5.18035 + 3.76374i −0.201951 + 0.146726i
\(659\) −7.11906 1.51320i −0.277319 0.0589460i 0.0671526 0.997743i \(-0.478609\pi\)
−0.344472 + 0.938797i \(0.611942\pi\)
\(660\) 0 0
\(661\) 21.3346 4.53482i 0.829821 0.176384i 0.226630 0.973981i \(-0.427229\pi\)
0.603191 + 0.797597i \(0.293896\pi\)
\(662\) −3.99223 + 4.43382i −0.155162 + 0.172325i
\(663\) 0 0
\(664\) −12.2703 13.6275i −0.476179 0.528851i
\(665\) 12.3898 + 25.1073i 0.480457 + 0.973619i
\(666\) 0 0
\(667\) 40.9478 29.7503i 1.58550 1.15194i
\(668\) 5.72945 9.92369i 0.221679 0.383959i
\(669\) 0 0
\(670\) −1.54208 1.95505i −0.0595758 0.0755303i
\(671\) −1.54158 + 14.6671i −0.0595119 + 0.566218i
\(672\) 0 0
\(673\) 32.4377 + 36.0257i 1.25038 + 1.38869i 0.890048 + 0.455868i \(0.150671\pi\)
0.360335 + 0.932823i \(0.382662\pi\)
\(674\) −1.21886 −0.0469488
\(675\) 0 0
\(676\) 15.7179 0.604534
\(677\) 6.61758 + 7.34956i 0.254334 + 0.282467i 0.856768 0.515702i \(-0.172469\pi\)
−0.602434 + 0.798169i \(0.705802\pi\)
\(678\) 0 0
\(679\) 0.393108 3.74017i 0.0150861 0.143535i
\(680\) 0.433345 + 10.9553i 0.0166180 + 0.420115i
\(681\) 0 0
\(682\) −1.98120 + 3.43153i −0.0758639 + 0.131400i
\(683\) −22.0510 + 16.0210i −0.843757 + 0.613026i −0.923418 0.383796i \(-0.874616\pi\)
0.0796603 + 0.996822i \(0.474616\pi\)
\(684\) 0 0
\(685\) −10.2068 + 1.48268i −0.389981 + 0.0566502i
\(686\) −4.32657 4.80515i −0.165189 0.183461i
\(687\) 0 0
\(688\) 14.7966 16.4333i 0.564117 0.626515i
\(689\) −5.35747 + 1.13876i −0.204103 + 0.0433835i
\(690\) 0 0
\(691\) 0.729910 + 0.155147i 0.0277671 + 0.00590208i 0.221774 0.975098i \(-0.428815\pi\)
−0.194007 + 0.981000i \(0.562149\pi\)
\(692\) 29.8701 21.7019i 1.13549 0.824982i
\(693\) 0 0
\(694\) −6.87115 + 4.99218i −0.260825 + 0.189501i
\(695\) −7.56808 + 4.77791i −0.287074 + 0.181237i
\(696\) 0 0
\(697\) −1.73265 + 16.4851i −0.0656288 + 0.624417i
\(698\) 10.1067 2.14824i 0.382543 0.0813120i
\(699\) 0 0
\(700\) 23.0087 1.82311i 0.869646 0.0689071i
\(701\) 14.0062 0.529006 0.264503 0.964385i \(-0.414792\pi\)
0.264503 + 0.964385i \(0.414792\pi\)
\(702\) 0 0
\(703\) −34.3916 24.9870i −1.29711 0.942402i
\(704\) 8.51839 3.79263i 0.321049 0.142940i
\(705\) 0 0
\(706\) 0.0301455 + 0.0134217i 0.00113454 + 0.000505131i
\(707\) −10.8534 18.7987i −0.408186 0.706999i
\(708\) 0 0
\(709\) −24.2191 5.14793i −0.909567 0.193334i −0.270711 0.962661i \(-0.587259\pi\)
−0.638856 + 0.769326i \(0.720592\pi\)
\(710\) −0.213232 0.432103i −0.00800247 0.0162165i
\(711\) 0 0
\(712\) −3.79708 11.6862i −0.142302 0.437960i
\(713\) 60.7010 + 12.9024i 2.27327 + 0.483199i
\(714\) 0 0
\(715\) −7.68403 + 2.83710i −0.287366 + 0.106102i
\(716\) 6.08383 6.75678i 0.227363 0.252513i
\(717\) 0 0
\(718\) 2.55455 4.42461i 0.0953349 0.165125i
\(719\) −7.88850 + 5.73133i −0.294192 + 0.213743i −0.725084 0.688661i \(-0.758199\pi\)
0.430892 + 0.902403i \(0.358199\pi\)
\(720\) 0 0
\(721\) 19.5667 + 14.2161i 0.728703 + 0.529434i
\(722\) 2.20355 0.981083i 0.0820076 0.0365121i
\(723\) 0 0
\(724\) −5.26399 9.11749i −0.195634 0.338849i
\(725\) −12.4731 + 26.1862i −0.463241 + 0.972533i
\(726\) 0 0
\(727\) −1.50130 1.66737i −0.0556802 0.0618392i 0.714661 0.699471i \(-0.246581\pi\)
−0.770341 + 0.637632i \(0.779914\pi\)
\(728\) −5.48061 3.98189i −0.203125 0.147579i
\(729\) 0 0
\(730\) −5.75178 + 5.60611i −0.212883 + 0.207491i
\(731\) 2.63095 + 25.0318i 0.0973093 + 0.925836i
\(732\) 0 0
\(733\) 6.55459 + 2.91829i 0.242099 + 0.107790i 0.524200 0.851595i \(-0.324364\pi\)
−0.282100 + 0.959385i \(0.591031\pi\)
\(734\) −2.84533 + 3.16006i −0.105023 + 0.116640i
\(735\) 0 0
\(736\) 21.4287 + 23.7990i 0.789873 + 0.877243i
\(737\) −1.76716 5.43875i −0.0650941 0.200339i
\(738\) 0 0
\(739\) 3.95764 12.1804i 0.145584 0.448062i −0.851502 0.524352i \(-0.824308\pi\)
0.997086 + 0.0762903i \(0.0243076\pi\)
\(740\) −29.6331 + 18.7081i −1.08934 + 0.687724i
\(741\) 0 0
\(742\) −1.85709 0.826832i −0.0681761 0.0303539i
\(743\) 1.45630 + 2.52238i 0.0534264 + 0.0925372i 0.891502 0.453017i \(-0.149652\pi\)
−0.838075 + 0.545554i \(0.816319\pi\)
\(744\) 0 0
\(745\) −23.6737 19.6786i −0.867337 0.720967i
\(746\) 0.0617081 + 0.0448336i 0.00225929 + 0.00164147i
\(747\) 0 0
\(748\) −3.78202 + 11.6399i −0.138284 + 0.425596i
\(749\) 0.963780 1.66932i 0.0352158 0.0609955i
\(750\) 0 0
\(751\) −17.2581 29.8919i −0.629757 1.09077i −0.987600 0.156989i \(-0.949821\pi\)
0.357843 0.933782i \(-0.383512\pi\)
\(752\) −26.1883 + 5.56649i −0.954989 + 0.202989i
\(753\) 0 0
\(754\) 3.78022 1.68306i 0.137668 0.0612935i
\(755\) 7.67467 44.7351i 0.279310 1.62808i
\(756\) 0 0
\(757\) 4.55628 0.165601 0.0828005 0.996566i \(-0.473614\pi\)
0.0828005 + 0.996566i \(0.473614\pi\)
\(758\) 0.192086 + 1.82758i 0.00697687 + 0.0663805i
\(759\) 0 0
\(760\) −0.581202 14.6932i −0.0210824 0.532977i
\(761\) 25.2562 5.36838i 0.915538 0.194604i 0.274031 0.961721i \(-0.411643\pi\)
0.641507 + 0.767117i \(0.278310\pi\)
\(762\) 0 0
\(763\) 41.4828 + 8.81743i 1.50178 + 0.319212i
\(764\) −13.8417 + 42.6004i −0.500775 + 1.54123i
\(765\) 0 0
\(766\) 1.36586 + 4.20369i 0.0493505 + 0.151885i
\(767\) 0.218220 + 2.07622i 0.00787946 + 0.0749680i
\(768\) 0 0
\(769\) 30.0274 + 13.3690i 1.08281 + 0.482100i 0.869019 0.494779i \(-0.164751\pi\)
0.213795 + 0.976879i \(0.431418\pi\)
\(770\) −2.92618 0.824431i −0.105452 0.0297104i
\(771\) 0 0
\(772\) −2.20182 + 0.980316i −0.0792454 + 0.0352823i
\(773\) 11.0693 34.0677i 0.398134 1.22533i −0.528360 0.849020i \(-0.677193\pi\)
0.926494 0.376310i \(-0.122807\pi\)
\(774\) 0 0
\(775\) −34.0928 + 10.1184i −1.22465 + 0.363465i
\(776\) −0.987590 + 1.71056i −0.0354524 + 0.0614054i
\(777\) 0 0
\(778\) 1.17156 11.1466i 0.0420024 0.399626i
\(779\) 2.32383 22.1097i 0.0832598 0.792164i
\(780\) 0 0
\(781\) −0.115674 1.10057i −0.00413915 0.0393814i
\(782\) −10.9932 −0.393117
\(783\) 0 0
\(784\) −1.08447 3.33766i −0.0387311 0.119202i
\(785\) 14.5338 + 12.0811i 0.518732 + 0.431192i
\(786\) 0 0
\(787\) −1.79034 + 1.98837i −0.0638187 + 0.0708778i −0.774209 0.632930i \(-0.781852\pi\)
0.710390 + 0.703808i \(0.248519\pi\)
\(788\) 12.4568 13.8346i 0.443754 0.492839i
\(789\) 0 0
\(790\) −4.62799 0.302101i −0.164656 0.0107483i
\(791\) −1.63917 5.04484i −0.0582820 0.179374i
\(792\) 0 0
\(793\) 18.8833 0.670567
\(794\) 0.969486 + 9.22404i 0.0344058 + 0.327349i
\(795\) 0 0
\(796\) −3.67463 + 34.9618i −0.130244 + 1.23919i
\(797\) −3.84156 + 36.5500i −0.136075 + 1.29467i 0.686968 + 0.726687i \(0.258941\pi\)
−0.823043 + 0.567979i \(0.807726\pi\)
\(798\) 0 0
\(799\) 15.2370 26.3912i 0.539045 0.933654i
\(800\) −17.3028 6.11690i −0.611746 0.216265i
\(801\) 0 0
\(802\) −1.32495 + 4.07776i −0.0467854 + 0.143991i
\(803\) −16.8514 + 7.50274i −0.594674 + 0.264766i
\(804\) 0 0
\(805\) 1.88189 + 47.5755i 0.0663279 + 1.67682i
\(806\) 4.63485 + 2.06357i 0.163256 + 0.0726861i
\(807\) 0 0
\(808\) 1.19169 + 11.3381i 0.0419233 + 0.398874i
\(809\) −15.1395 46.5946i −0.532276 1.63818i −0.749462 0.662048i \(-0.769688\pi\)
0.217186 0.976130i \(-0.430312\pi\)
\(810\) 0 0
\(811\) 8.75261 26.9378i 0.307346 0.945913i −0.671446 0.741054i \(-0.734326\pi\)
0.978791 0.204859i \(-0.0656736\pi\)
\(812\) −26.1933 5.56755i −0.919204 0.195383i
\(813\) 0 0
\(814\) 4.51505 0.959703i 0.158252 0.0336376i
\(815\) −9.93780 12.5992i −0.348106 0.441329i
\(816\) 0 0
\(817\) −3.52863 33.5727i −0.123451 1.17456i
\(818\) 11.0057 0.384806
\(819\) 0 0
\(820\) −16.2215 8.52906i −0.566480 0.297848i
\(821\) −9.47344 + 4.21785i −0.330625 + 0.147204i −0.565335 0.824862i \(-0.691253\pi\)
0.234709 + 0.972066i \(0.424586\pi\)
\(822\) 0 0
\(823\) −22.4338 + 4.76845i −0.781992 + 0.166218i −0.581575 0.813493i \(-0.697563\pi\)
−0.200418 + 0.979711i \(0.564230\pi\)
\(824\) −6.35126 11.0007i −0.221257 0.383228i
\(825\) 0 0
\(826\) −0.387416 + 0.671025i −0.0134799 + 0.0233479i
\(827\) −3.87041 + 11.9119i −0.134587 + 0.414218i −0.995526 0.0944920i \(-0.969877\pi\)
0.860938 + 0.508710i \(0.169877\pi\)
\(828\) 0 0
\(829\) 8.58869 + 6.24005i 0.298297 + 0.216726i 0.726859 0.686787i \(-0.240979\pi\)
−0.428561 + 0.903513i \(0.640979\pi\)
\(830\) −3.90190 + 9.78774i −0.135437 + 0.339737i
\(831\) 0 0
\(832\) −5.96961 10.3397i −0.206959 0.358463i
\(833\) 3.64915 + 1.62471i 0.126436 + 0.0562928i
\(834\) 0 0
\(835\) −13.5174 0.882376i −0.467790 0.0305359i
\(836\) 5.07244 15.6114i 0.175434 0.539930i
\(837\) 0 0
\(838\) −4.01837 12.3673i −0.138812 0.427220i
\(839\) 4.12762 + 4.58418i 0.142501 + 0.158264i 0.810170 0.586195i \(-0.199375\pi\)
−0.667669 + 0.744458i \(0.732708\pi\)
\(840\) 0 0
\(841\) 3.11276 3.45707i 0.107337 0.119209i
\(842\) 0.792708 + 0.352936i 0.0273185 + 0.0121630i
\(843\) 0 0
\(844\) 0.436558 + 4.15357i 0.0150269 + 0.142972i
\(845\) −8.22258 16.6626i −0.282865 0.573211i
\(846\) 0 0
\(847\) 16.0695 + 11.6752i 0.552155 + 0.401164i
\(848\) −5.68743 6.31654i −0.195307 0.216911i
\(849\) 0 0
\(850\) 5.53479 3.00895i 0.189842 0.103206i
\(851\) −36.1461 62.6070i −1.23907 2.14614i
\(852\) 0 0
\(853\) −25.0320 + 11.1450i −0.857079 + 0.381596i −0.787748 0.615998i \(-0.788753\pi\)
−0.0693309 + 0.997594i \(0.522086\pi\)
\(854\) 5.67002 + 4.11951i 0.194024 + 0.140967i
\(855\) 0 0
\(856\) −0.819021 + 0.595053i −0.0279935 + 0.0203385i
\(857\) 16.4638 28.5161i 0.562392 0.974092i −0.434895 0.900481i \(-0.643214\pi\)
0.997287 0.0736109i \(-0.0234523\pi\)
\(858\) 0 0
\(859\) −30.8351 + 34.2459i −1.05208 + 1.16845i −0.0667547 + 0.997769i \(0.521264\pi\)
−0.985326 + 0.170684i \(0.945402\pi\)
\(860\) −26.7861 7.54678i −0.913397 0.257343i
\(861\) 0 0
\(862\) −11.0677 2.35252i −0.376968 0.0801271i
\(863\) −1.06714 3.28433i −0.0363260 0.111800i 0.931249 0.364383i \(-0.118720\pi\)
−0.967575 + 0.252583i \(0.918720\pi\)
\(864\) 0 0
\(865\) −38.6324 20.3124i −1.31354 0.690642i
\(866\) −8.76181 1.86238i −0.297738 0.0632863i
\(867\) 0 0
\(868\) −16.4163 28.4338i −0.557204 0.965106i
\(869\) −9.73047 4.33228i −0.330083 0.146963i
\(870\) 0 0
\(871\) −6.68915 + 2.97820i −0.226653 + 0.100913i
\(872\) −18.0198 13.0922i −0.610227 0.443356i
\(873\) 0 0
\(874\) 14.7441 0.498727
\(875\) −13.9693 23.4378i −0.472250 0.792344i
\(876\) 0 0
\(877\) −55.9211 + 11.8864i −1.88832 + 0.401375i −0.998491 0.0549146i \(-0.982511\pi\)
−0.889831 + 0.456290i \(0.849178\pi\)
\(878\) 0.516938 4.91834i 0.0174458 0.165986i
\(879\) 0 0
\(880\) −9.77515 8.12552i −0.329520 0.273911i
\(881\) 25.5288 18.5478i 0.860089 0.624891i −0.0678204 0.997698i \(-0.521604\pi\)
0.927909 + 0.372807i \(0.121604\pi\)
\(882\) 0 0
\(883\) −32.6810 + 23.7441i −1.09980 + 0.799053i −0.981028 0.193868i \(-0.937897\pi\)
−0.118775 + 0.992921i \(0.537897\pi\)
\(884\) 15.3283 + 3.25813i 0.515547 + 0.109583i
\(885\) 0 0
\(886\) −3.38097 + 0.718647i −0.113586 + 0.0241434i
\(887\) 7.80917 8.67297i 0.262206 0.291210i −0.597638 0.801766i \(-0.703894\pi\)
0.859844 + 0.510556i \(0.170561\pi\)
\(888\) 0 0
\(889\) −24.0852 26.7493i −0.807792 0.897144i
\(890\) −5.05612 + 4.92807i −0.169482 + 0.165189i
\(891\) 0 0
\(892\) −40.1233 + 29.1513i −1.34343 + 0.976058i
\(893\) −20.4358 + 35.3959i −0.683858 + 1.18448i
\(894\) 0 0
\(895\) −10.3456 2.91478i −0.345814 0.0974305i
\(896\) 2.33582 22.2239i 0.0780343 0.742447i
\(897\) 0 0
\(898\) −4.29845 4.77391i −0.143441 0.159307i
\(899\) 41.2600 1.37610
\(900\) 0 0
\(901\) 9.67456 0.322306
\(902\) 1.61526 + 1.79393i 0.0537823 + 0.0597313i
\(903\) 0 0
\(904\) −0.291209 + 2.77067i −0.00968546 + 0.0921510i
\(905\) −6.91171 + 10.3501i −0.229753 + 0.344048i
\(906\) 0 0
\(907\) −15.1100 + 26.1713i −0.501720 + 0.869005i 0.498278 + 0.867017i \(0.333966\pi\)
−0.999998 + 0.00198753i \(0.999367\pi\)
\(908\) 11.3447 8.24241i 0.376487 0.273534i
\(909\) 0 0
\(910\) −0.658187 + 3.83652i −0.0218187 + 0.127180i
\(911\) 37.2219 + 41.3391i 1.23322 + 1.36963i 0.905217 + 0.424949i \(0.139708\pi\)
0.328000 + 0.944678i \(0.393625\pi\)
\(912\) 0 0
\(913\) −16.1923 + 17.9834i −0.535887 + 0.595163i
\(914\) −4.11096 + 0.873811i −0.135978 + 0.0289031i
\(915\) 0 0
\(916\) 37.7332 + 8.02044i 1.24674 + 0.265003i
\(917\) −4.16384 + 3.02521i −0.137502 + 0.0999011i
\(918\) 0 0
\(919\) −45.6386 + 33.1584i −1.50548 + 1.09379i −0.537345 + 0.843363i \(0.680573\pi\)
−0.968134 + 0.250432i \(0.919427\pi\)
\(920\) 9.26016 23.2287i 0.305298 0.765827i
\(921\) 0 0
\(922\) −0.485095 + 4.61537i −0.0159758 + 0.151999i
\(923\) −1.38597 + 0.294597i −0.0456198 + 0.00969679i
\(924\) 0 0
\(925\) 35.3347 + 21.6273i 1.16180 + 0.711102i
\(926\) 9.97042 0.327648
\(927\) 0 0
\(928\) 17.2258 + 12.5153i 0.565466 + 0.410835i
\(929\) 12.4179 5.52882i 0.407419 0.181395i −0.192786 0.981241i \(-0.561752\pi\)
0.600205 + 0.799846i \(0.295086\pi\)
\(930\) 0 0
\(931\) −4.89424 2.17905i −0.160402 0.0714156i
\(932\) 7.18214 + 12.4398i 0.235259 + 0.407480i
\(933\) 0 0
\(934\) 0.182860 + 0.0388682i 0.00598338 + 0.00127181i
\(935\) 14.3180 2.07989i 0.468248 0.0680196i
\(936\) 0 0
\(937\) −5.39097 16.5917i −0.176115 0.542027i 0.823567 0.567218i \(-0.191980\pi\)
−0.999683 + 0.0251916i \(0.991980\pi\)
\(938\) −2.65824 0.565026i −0.0867946 0.0184488i
\(939\) 0 0
\(940\) 20.8665 + 26.4545i 0.680589 + 0.862852i
\(941\) −32.8128 + 36.4424i −1.06967 + 1.18799i −0.0882513 + 0.996098i \(0.528128\pi\)
−0.981417 + 0.191888i \(0.938539\pi\)
\(942\) 0 0
\(943\) 18.9032 32.7414i 0.615574 1.06621i
\(944\) −2.62100 + 1.90427i −0.0853063 + 0.0619787i
\(945\) 0 0
\(946\) 2.96546 + 2.15453i 0.0964153 + 0.0700498i
\(947\) −34.3978 + 15.3149i −1.11778 + 0.497667i −0.880629 0.473806i \(-0.842880\pi\)
−0.237150 + 0.971473i \(0.576213\pi\)
\(948\) 0 0
\(949\) 11.8093 + 20.4543i 0.383347 + 0.663976i
\(950\) −7.42326 + 4.03560i −0.240842 + 0.130932i
\(951\) 0 0
\(952\) 8.00678 + 8.89243i 0.259501 + 0.288205i
\(953\) 24.9618 + 18.1358i 0.808594 + 0.587478i 0.913423 0.407013i \(-0.133430\pi\)
−0.104829 + 0.994490i \(0.533430\pi\)
\(954\) 0 0
\(955\) 52.4020 7.61212i 1.69569 0.246322i
\(956\) −3.20664 30.5092i −0.103710 0.986737i
\(957\) 0 0
\(958\) −2.73505 1.21772i −0.0883654 0.0393428i
\(959\) −7.53215 + 8.36530i −0.243226 + 0.270130i
\(960\) 0 0
\(961\) 13.1070 + 14.5567i 0.422805 + 0.469573i
\(962\) −1.82637 5.62099i −0.0588845 0.181228i
\(963\) 0 0
\(964\) 8.58075 26.4088i 0.276367 0.850571i
\(965\) 2.19109 + 1.82133i 0.0705337 + 0.0586306i
\(966\) 0 0
\(967\) 26.3223 + 11.7195i 0.846469 + 0.376872i 0.783688 0.621155i \(-0.213336\pi\)
0.0627812 + 0.998027i \(0.480003\pi\)
\(968\) −5.21608 9.03451i −0.167651 0.290380i
\(969\) 0 0
\(970\) 1.13253 + 0.0739280i 0.0363633 + 0.00237369i
\(971\) −0.696107 0.505751i −0.0223391 0.0162303i 0.576560 0.817055i \(-0.304395\pi\)
−0.598899 + 0.800825i \(0.704395\pi\)
\(972\) 0 0
\(973\) −3.01853 + 9.29008i −0.0967696 + 0.297826i
\(974\) 5.24732 9.08862i 0.168135 0.291218i
\(975\) 0 0
\(976\) 14.6521 + 25.3781i 0.469001 + 0.812334i
\(977\) −48.2956 + 10.2656i −1.54511 + 0.328424i −0.900078 0.435728i \(-0.856491\pi\)
−0.645036 + 0.764152i \(0.723158\pi\)
\(978\) 0 0
\(979\) −14.8133 + 6.59531i −0.473436 + 0.210787i
\(980\) −3.16274 + 3.08264i −0.101030 + 0.0984712i
\(981\) 0 0
\(982\) 13.9001 0.443570
\(983\) 5.03462 + 47.9012i 0.160579 + 1.52781i 0.717097 + 0.696974i \(0.245471\pi\)
−0.556517 + 0.830836i \(0.687863\pi\)
\(984\) 0 0
\(985\) −21.1827 5.96808i −0.674938 0.190159i
\(986\) −7.14937 + 1.51965i −0.227682 + 0.0483954i
\(987\) 0 0
\(988\) −20.5583 4.36980i −0.654047 0.139022i
\(989\) 17.7399 54.5977i 0.564095 1.73611i
\(990\) 0 0
\(991\) 6.36275 + 19.5825i 0.202120 + 0.622060i 0.999819 + 0.0190053i \(0.00604994\pi\)
−0.797700 + 0.603055i \(0.793950\pi\)
\(992\) 2.72883 + 25.9631i 0.0866404 + 0.824328i
\(993\) 0 0
\(994\) −0.480429 0.213901i −0.0152383 0.00678451i
\(995\) 38.9855 14.3943i 1.23592 0.456329i
\(996\) 0 0
\(997\) 52.1722 23.2285i 1.65231 0.735655i 0.652553 0.757743i \(-0.273698\pi\)
0.999756 + 0.0220883i \(0.00703148\pi\)
\(998\) −1.93571 + 5.95750i −0.0612738 + 0.188581i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.r.a.46.16 224
3.2 odd 2 225.2.q.a.196.13 yes 224
9.4 even 3 inner 675.2.r.a.496.13 224
9.5 odd 6 225.2.q.a.121.16 yes 224
25.6 even 5 inner 675.2.r.a.181.13 224
75.56 odd 10 225.2.q.a.106.16 yes 224
225.31 even 15 inner 675.2.r.a.631.16 224
225.131 odd 30 225.2.q.a.31.13 224
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
225.2.q.a.31.13 224 225.131 odd 30
225.2.q.a.106.16 yes 224 75.56 odd 10
225.2.q.a.121.16 yes 224 9.5 odd 6
225.2.q.a.196.13 yes 224 3.2 odd 2
675.2.r.a.46.16 224 1.1 even 1 trivial
675.2.r.a.181.13 224 25.6 even 5 inner
675.2.r.a.496.13 224 9.4 even 3 inner
675.2.r.a.631.16 224 225.31 even 15 inner