Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [675,2,Mod(49,675)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(675, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([14, 9]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("675.49");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 675 = 3^{3} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 675.u (of order \(18\), degree \(6\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.38990213644\) |
Analytic rank: | \(0\) |
Dimension: | \(132\) |
Relative dimension: | \(22\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 | −1.70577 | − | 2.03285i | 0.184133 | + | 1.72224i | −0.875557 | + | 4.96553i | 0 | 3.18696 | − | 3.31205i | 4.87417 | − | 0.859447i | 6.99134 | − | 4.03645i | −2.93219 | + | 0.634241i | 0 | ||||
49.2 | −1.55198 | − | 1.84958i | 0.794060 | − | 1.53931i | −0.665000 | + | 3.77140i | 0 | −4.07944 | + | 0.920299i | −0.330906 | + | 0.0583477i | 3.82562 | − | 2.20872i | −1.73894 | − | 2.44461i | 0 | ||||
49.3 | −1.42910 | − | 1.70314i | 1.70215 | − | 0.320463i | −0.511048 | + | 2.89830i | 0 | −2.97833 | − | 2.44102i | −3.70709 | + | 0.653660i | 1.81569 | − | 1.04829i | 2.79461 | − | 1.09095i | 0 | ||||
49.4 | −1.30162 | − | 1.55121i | −0.933937 | + | 1.45868i | −0.364742 | + | 2.06856i | 0 | 3.47836 | − | 0.449921i | −0.370230 | + | 0.0652816i | 0.176186 | − | 0.101721i | −1.25552 | − | 2.72464i | 0 | ||||
49.5 | −1.03778 | − | 1.23677i | −1.23848 | − | 1.21085i | −0.105334 | + | 0.597379i | 0 | −0.212279 | + | 2.78832i | −1.71440 | + | 0.302296i | −1.94825 | + | 1.12482i | 0.0676836 | + | 2.99924i | 0 | ||||
49.6 | −0.860644 | − | 1.02568i | −1.52697 | + | 0.817526i | 0.0359939 | − | 0.204131i | 0 | 2.15270 | + | 0.862581i | 0.340915 | − | 0.0601126i | −2.55944 | + | 1.47769i | 1.66330 | − | 2.49668i | 0 | ||||
49.7 | −0.852522 | − | 1.01600i | 1.72092 | − | 0.196018i | 0.0418420 | − | 0.237298i | 0 | −1.66628 | − | 1.58134i | 4.36644 | − | 0.769922i | −2.57396 | + | 1.48608i | 2.92315 | − | 0.674663i | 0 | ||||
49.8 | −0.564301 | − | 0.672508i | 0.939248 | + | 1.45527i | 0.213465 | − | 1.21062i | 0 | 0.448662 | − | 1.45286i | −0.501180 | + | 0.0883715i | −2.45517 | + | 1.41750i | −1.23563 | + | 2.73372i | 0 | ||||
49.9 | −0.499186 | − | 0.594907i | 1.47949 | + | 0.900618i | 0.242569 | − | 1.37568i | 0 | −0.202756 | − | 1.32973i | −4.84944 | + | 0.855088i | −2.28459 | + | 1.31901i | 1.37777 | + | 2.66491i | 0 | ||||
49.10 | −0.177808 | − | 0.211903i | 1.66326 | − | 0.483303i | 0.334009 | − | 1.89426i | 0 | −0.398153 | − | 0.266514i | 1.66379 | − | 0.293371i | −0.939908 | + | 0.542656i | 2.53284 | − | 1.60771i | 0 | ||||
49.11 | −0.163444 | − | 0.194784i | −0.154950 | − | 1.72511i | 0.336069 | − | 1.90594i | 0 | −0.310698 | + | 0.312139i | −2.55151 | + | 0.449901i | −0.866590 | + | 0.500326i | −2.95198 | + | 0.534610i | 0 | ||||
49.12 | 0.163444 | + | 0.194784i | 0.154950 | + | 1.72511i | 0.336069 | − | 1.90594i | 0 | −0.310698 | + | 0.312139i | 2.55151 | − | 0.449901i | 0.866590 | − | 0.500326i | −2.95198 | + | 0.534610i | 0 | ||||
49.13 | 0.177808 | + | 0.211903i | −1.66326 | + | 0.483303i | 0.334009 | − | 1.89426i | 0 | −0.398153 | − | 0.266514i | −1.66379 | + | 0.293371i | 0.939908 | − | 0.542656i | 2.53284 | − | 1.60771i | 0 | ||||
49.14 | 0.499186 | + | 0.594907i | −1.47949 | − | 0.900618i | 0.242569 | − | 1.37568i | 0 | −0.202756 | − | 1.32973i | 4.84944 | − | 0.855088i | 2.28459 | − | 1.31901i | 1.37777 | + | 2.66491i | 0 | ||||
49.15 | 0.564301 | + | 0.672508i | −0.939248 | − | 1.45527i | 0.213465 | − | 1.21062i | 0 | 0.448662 | − | 1.45286i | 0.501180 | − | 0.0883715i | 2.45517 | − | 1.41750i | −1.23563 | + | 2.73372i | 0 | ||||
49.16 | 0.852522 | + | 1.01600i | −1.72092 | + | 0.196018i | 0.0418420 | − | 0.237298i | 0 | −1.66628 | − | 1.58134i | −4.36644 | + | 0.769922i | 2.57396 | − | 1.48608i | 2.92315 | − | 0.674663i | 0 | ||||
49.17 | 0.860644 | + | 1.02568i | 1.52697 | − | 0.817526i | 0.0359939 | − | 0.204131i | 0 | 2.15270 | + | 0.862581i | −0.340915 | + | 0.0601126i | 2.55944 | − | 1.47769i | 1.66330 | − | 2.49668i | 0 | ||||
49.18 | 1.03778 | + | 1.23677i | 1.23848 | + | 1.21085i | −0.105334 | + | 0.597379i | 0 | −0.212279 | + | 2.78832i | 1.71440 | − | 0.302296i | 1.94825 | − | 1.12482i | 0.0676836 | + | 2.99924i | 0 | ||||
49.19 | 1.30162 | + | 1.55121i | 0.933937 | − | 1.45868i | −0.364742 | + | 2.06856i | 0 | 3.47836 | − | 0.449921i | 0.370230 | − | 0.0652816i | −0.176186 | + | 0.101721i | −1.25552 | − | 2.72464i | 0 | ||||
49.20 | 1.42910 | + | 1.70314i | −1.70215 | + | 0.320463i | −0.511048 | + | 2.89830i | 0 | −2.97833 | − | 2.44102i | 3.70709 | − | 0.653660i | −1.81569 | + | 1.04829i | 2.79461 | − | 1.09095i | 0 | ||||
See next 80 embeddings (of 132 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
27.e | even | 9 | 1 | inner |
135.p | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 675.2.u.e | 132 | |
5.b | even | 2 | 1 | inner | 675.2.u.e | 132 | |
5.c | odd | 4 | 1 | 675.2.l.f | ✓ | 66 | |
5.c | odd | 4 | 1 | 675.2.l.g | yes | 66 | |
27.e | even | 9 | 1 | inner | 675.2.u.e | 132 | |
135.p | even | 18 | 1 | inner | 675.2.u.e | 132 | |
135.r | odd | 36 | 1 | 675.2.l.f | ✓ | 66 | |
135.r | odd | 36 | 1 | 675.2.l.g | yes | 66 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
675.2.l.f | ✓ | 66 | 5.c | odd | 4 | 1 | |
675.2.l.f | ✓ | 66 | 135.r | odd | 36 | 1 | |
675.2.l.g | yes | 66 | 5.c | odd | 4 | 1 | |
675.2.l.g | yes | 66 | 135.r | odd | 36 | 1 | |
675.2.u.e | 132 | 1.a | even | 1 | 1 | trivial | |
675.2.u.e | 132 | 5.b | even | 2 | 1 | inner | |
675.2.u.e | 132 | 27.e | even | 9 | 1 | inner | |
675.2.u.e | 132 | 135.p | even | 18 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{132} - 36 T_{2}^{128} - 954 T_{2}^{126} + 1530 T_{2}^{124} + 28719 T_{2}^{122} + 547425 T_{2}^{120} + \cdots + 547981281 \) acting on \(S_{2}^{\mathrm{new}}(675, [\chi])\).