Properties

Label 675.3.c.r
Level $675$
Weight $3$
Character orbit 675.c
Analytic conductor $18.392$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,3,Mod(26,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.26");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 675.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3924178443\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.60217600.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 16x^{4} + 64x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{4} - 2) q^{4} + (\beta_{4} - \beta_{2} - 2) q^{7} + (\beta_{5} + \beta_{3} - 2 \beta_1) q^{8} + (\beta_{5} - 2 \beta_1) q^{11} + ( - 2 \beta_{4} - 3 \beta_{2} + 4) q^{13} + (\beta_{5} - 7 \beta_1) q^{14}+ \cdots + ( - 3 \beta_{5} - 5 \beta_{3} + 22 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 14 q^{4} - 16 q^{7} + 22 q^{13} + 46 q^{16} - 16 q^{19} + 86 q^{22} + 212 q^{28} - 56 q^{31} - 80 q^{34} + 150 q^{37} - 92 q^{43} + 234 q^{46} + 74 q^{49} - 354 q^{52} - 104 q^{58} - 46 q^{61} - 342 q^{64}+ \cdots + 162 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 16x^{4} + 64x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 10\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} + 6\nu^{2} - 10 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -4\nu^{3} - 31\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} + 9\nu^{2} + 5 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 3\nu^{5} + 43\nu^{3} + 148\nu ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + 8\beta_1 ) / 9 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{4} - 2\beta_{2} - 15 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -10\beta_{3} - 62\beta_1 ) / 9 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -2\beta_{4} + 6\beta_{2} + 40 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 6\beta_{5} + 94\beta_{3} + 494\beta_1 ) / 9 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
26.1
2.69399i
2.94600i
0.252000i
0.252000i
2.94600i
2.69399i
3.69399i 0 −9.64560 0 0 −9.20921 20.8548i 0 0
26.2 1.94600i 0 0.213103 0 0 −6.41178 8.19868i 0 0
26.3 1.25200i 0 2.43250 0 0 7.62099 8.05349i 0 0
26.4 1.25200i 0 2.43250 0 0 7.62099 8.05349i 0 0
26.5 1.94600i 0 0.213103 0 0 −6.41178 8.19868i 0 0
26.6 3.69399i 0 −9.64560 0 0 −9.20921 20.8548i 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 26.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 675.3.c.r 6
3.b odd 2 1 inner 675.3.c.r 6
5.b even 2 1 675.3.c.s yes 6
5.c odd 4 1 675.3.d.j 6
5.c odd 4 1 675.3.d.k 6
15.d odd 2 1 675.3.c.s yes 6
15.e even 4 1 675.3.d.j 6
15.e even 4 1 675.3.d.k 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
675.3.c.r 6 1.a even 1 1 trivial
675.3.c.r 6 3.b odd 2 1 inner
675.3.c.s yes 6 5.b even 2 1
675.3.c.s yes 6 15.d odd 2 1
675.3.d.j 6 5.c odd 4 1
675.3.d.j 6 15.e even 4 1
675.3.d.k 6 5.c odd 4 1
675.3.d.k 6 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(675, [\chi])\):

\( T_{2}^{6} + 19T_{2}^{4} + 79T_{2}^{2} + 81 \) Copy content Toggle raw display
\( T_{7}^{3} + 8T_{7}^{2} - 60T_{7} - 450 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 19 T^{4} + \cdots + 81 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( (T^{3} + 8 T^{2} + \cdots - 450)^{2} \) Copy content Toggle raw display
$11$ \( T^{6} + 499 T^{4} + \cdots + 455625 \) Copy content Toggle raw display
$13$ \( (T^{3} - 11 T^{2} + \cdots + 4475)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} + 952 T^{4} + \cdots + 544644 \) Copy content Toggle raw display
$19$ \( (T^{3} + 8 T^{2} + \cdots + 766)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + 1503 T^{4} + \cdots + 1476225 \) Copy content Toggle raw display
$29$ \( T^{6} + 544 T^{4} + \cdots + 202500 \) Copy content Toggle raw display
$31$ \( (T^{3} + 28 T^{2} + \cdots - 20484)^{2} \) Copy content Toggle raw display
$37$ \( (T^{3} - 75 T^{2} + \cdots + 36125)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + 6904 T^{4} + \cdots + 590490000 \) Copy content Toggle raw display
$43$ \( (T^{3} + 46 T^{2} + \cdots + 7250)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 30381535809 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 153173607876 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 10115330625 \) Copy content Toggle raw display
$61$ \( (T^{3} + 23 T^{2} + \cdots + 63331)^{2} \) Copy content Toggle raw display
$67$ \( (T^{3} - 4 T^{2} + \cdots + 7650)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} + 16939 T^{4} + \cdots + 14630625 \) Copy content Toggle raw display
$73$ \( (T^{3} - 212 T^{2} + \cdots + 160700)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} - 158 T^{2} + \cdots + 141930)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 15804 T^{4} + \cdots + 273042576 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 1117354702500 \) Copy content Toggle raw display
$97$ \( (T^{3} - 81 T^{2} + \cdots - 272275)^{2} \) Copy content Toggle raw display
show more
show less