Properties

Label 675.4.a.s.1.1
Level $675$
Weight $4$
Character 675.1
Self dual yes
Analytic conductor $39.826$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,4,Mod(1,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 675.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.8262892539\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1772.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 12x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 135)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(3.67370\) of defining polynomial
Character \(\chi\) \(=\) 675.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.58488 q^{2} -1.31841 q^{4} +22.8935 q^{7} +24.0869 q^{8} -11.0828 q^{11} +11.6368 q^{13} -59.1769 q^{14} -51.7145 q^{16} +10.0643 q^{17} +117.865 q^{19} +28.6477 q^{22} +172.441 q^{23} -30.0798 q^{26} -30.1831 q^{28} -178.321 q^{29} +140.528 q^{31} -59.0200 q^{32} -26.0149 q^{34} -250.074 q^{37} -304.666 q^{38} -361.569 q^{41} +360.707 q^{43} +14.6117 q^{44} -445.738 q^{46} -600.121 q^{47} +181.114 q^{49} -15.3421 q^{52} +201.312 q^{53} +551.435 q^{56} +460.937 q^{58} -415.772 q^{59} -54.6270 q^{61} -363.248 q^{62} +566.275 q^{64} +531.079 q^{67} -13.2689 q^{68} +933.534 q^{71} +560.199 q^{73} +646.409 q^{74} -155.394 q^{76} -253.725 q^{77} +810.781 q^{79} +934.611 q^{82} +538.210 q^{83} -932.384 q^{86} -266.951 q^{88} -686.173 q^{89} +266.408 q^{91} -227.348 q^{92} +1551.24 q^{94} -714.655 q^{97} -468.156 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 5 q^{2} + 17 q^{4} + 4 q^{7} + 75 q^{8} - 5 q^{11} - 7 q^{13} - 60 q^{14} + 161 q^{16} + 155 q^{17} - 50 q^{19} + 229 q^{22} + 285 q^{23} - 185 q^{26} + 334 q^{28} - 115 q^{29} - 115 q^{31} + 775 q^{32}+ \cdots - 305 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.58488 −0.913892 −0.456946 0.889494i \(-0.651057\pi\)
−0.456946 + 0.889494i \(0.651057\pi\)
\(3\) 0 0
\(4\) −1.31841 −0.164802
\(5\) 0 0
\(6\) 0 0
\(7\) 22.8935 1.23613 0.618067 0.786125i \(-0.287916\pi\)
0.618067 + 0.786125i \(0.287916\pi\)
\(8\) 24.0869 1.06450
\(9\) 0 0
\(10\) 0 0
\(11\) −11.0828 −0.303781 −0.151891 0.988397i \(-0.548536\pi\)
−0.151891 + 0.988397i \(0.548536\pi\)
\(12\) 0 0
\(13\) 11.6368 0.248267 0.124134 0.992266i \(-0.460385\pi\)
0.124134 + 0.992266i \(0.460385\pi\)
\(14\) −59.1769 −1.12969
\(15\) 0 0
\(16\) −51.7145 −0.808039
\(17\) 10.0643 0.143585 0.0717926 0.997420i \(-0.477128\pi\)
0.0717926 + 0.997420i \(0.477128\pi\)
\(18\) 0 0
\(19\) 117.865 1.42316 0.711579 0.702606i \(-0.247980\pi\)
0.711579 + 0.702606i \(0.247980\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 28.6477 0.277623
\(23\) 172.441 1.56332 0.781661 0.623704i \(-0.214373\pi\)
0.781661 + 0.623704i \(0.214373\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −30.0798 −0.226889
\(27\) 0 0
\(28\) −30.1831 −0.203717
\(29\) −178.321 −1.14184 −0.570919 0.821006i \(-0.693413\pi\)
−0.570919 + 0.821006i \(0.693413\pi\)
\(30\) 0 0
\(31\) 140.528 0.814182 0.407091 0.913388i \(-0.366543\pi\)
0.407091 + 0.913388i \(0.366543\pi\)
\(32\) −59.0200 −0.326043
\(33\) 0 0
\(34\) −26.0149 −0.131221
\(35\) 0 0
\(36\) 0 0
\(37\) −250.074 −1.11113 −0.555566 0.831473i \(-0.687498\pi\)
−0.555566 + 0.831473i \(0.687498\pi\)
\(38\) −304.666 −1.30061
\(39\) 0 0
\(40\) 0 0
\(41\) −361.569 −1.37726 −0.688629 0.725114i \(-0.741787\pi\)
−0.688629 + 0.725114i \(0.741787\pi\)
\(42\) 0 0
\(43\) 360.707 1.27924 0.639620 0.768691i \(-0.279092\pi\)
0.639620 + 0.768691i \(0.279092\pi\)
\(44\) 14.6117 0.0500636
\(45\) 0 0
\(46\) −445.738 −1.42871
\(47\) −600.121 −1.86248 −0.931241 0.364405i \(-0.881273\pi\)
−0.931241 + 0.364405i \(0.881273\pi\)
\(48\) 0 0
\(49\) 181.114 0.528028
\(50\) 0 0
\(51\) 0 0
\(52\) −15.3421 −0.0409149
\(53\) 201.312 0.521742 0.260871 0.965374i \(-0.415990\pi\)
0.260871 + 0.965374i \(0.415990\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 551.435 1.31587
\(57\) 0 0
\(58\) 460.937 1.04352
\(59\) −415.772 −0.917438 −0.458719 0.888581i \(-0.651692\pi\)
−0.458719 + 0.888581i \(0.651692\pi\)
\(60\) 0 0
\(61\) −54.6270 −0.114660 −0.0573301 0.998355i \(-0.518259\pi\)
−0.0573301 + 0.998355i \(0.518259\pi\)
\(62\) −363.248 −0.744074
\(63\) 0 0
\(64\) 566.275 1.10601
\(65\) 0 0
\(66\) 0 0
\(67\) 531.079 0.968382 0.484191 0.874962i \(-0.339114\pi\)
0.484191 + 0.874962i \(0.339114\pi\)
\(68\) −13.2689 −0.0236631
\(69\) 0 0
\(70\) 0 0
\(71\) 933.534 1.56042 0.780212 0.625515i \(-0.215111\pi\)
0.780212 + 0.625515i \(0.215111\pi\)
\(72\) 0 0
\(73\) 560.199 0.898169 0.449085 0.893489i \(-0.351750\pi\)
0.449085 + 0.893489i \(0.351750\pi\)
\(74\) 646.409 1.01545
\(75\) 0 0
\(76\) −155.394 −0.234539
\(77\) −253.725 −0.375514
\(78\) 0 0
\(79\) 810.781 1.15468 0.577342 0.816503i \(-0.304090\pi\)
0.577342 + 0.816503i \(0.304090\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 934.611 1.25867
\(83\) 538.210 0.711762 0.355881 0.934531i \(-0.384181\pi\)
0.355881 + 0.934531i \(0.384181\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −932.384 −1.16909
\(87\) 0 0
\(88\) −266.951 −0.323376
\(89\) −686.173 −0.817238 −0.408619 0.912705i \(-0.633990\pi\)
−0.408619 + 0.912705i \(0.633990\pi\)
\(90\) 0 0
\(91\) 266.408 0.306892
\(92\) −227.348 −0.257638
\(93\) 0 0
\(94\) 1551.24 1.70211
\(95\) 0 0
\(96\) 0 0
\(97\) −714.655 −0.748064 −0.374032 0.927416i \(-0.622025\pi\)
−0.374032 + 0.927416i \(0.622025\pi\)
\(98\) −468.156 −0.482560
\(99\) 0 0
\(100\) 0 0
\(101\) −973.907 −0.959479 −0.479739 0.877411i \(-0.659269\pi\)
−0.479739 + 0.877411i \(0.659269\pi\)
\(102\) 0 0
\(103\) 759.229 0.726301 0.363151 0.931730i \(-0.381701\pi\)
0.363151 + 0.931730i \(0.381701\pi\)
\(104\) 280.296 0.264281
\(105\) 0 0
\(106\) −520.366 −0.476815
\(107\) 1832.06 1.65525 0.827625 0.561282i \(-0.189692\pi\)
0.827625 + 0.561282i \(0.189692\pi\)
\(108\) 0 0
\(109\) 1370.91 1.20467 0.602335 0.798244i \(-0.294237\pi\)
0.602335 + 0.798244i \(0.294237\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1183.93 −0.998844
\(113\) 583.567 0.485817 0.242909 0.970049i \(-0.421898\pi\)
0.242909 + 0.970049i \(0.421898\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 235.100 0.188177
\(117\) 0 0
\(118\) 1074.72 0.838439
\(119\) 230.407 0.177491
\(120\) 0 0
\(121\) −1208.17 −0.907717
\(122\) 141.204 0.104787
\(123\) 0 0
\(124\) −185.274 −0.134178
\(125\) 0 0
\(126\) 0 0
\(127\) 2432.76 1.69978 0.849891 0.526958i \(-0.176667\pi\)
0.849891 + 0.526958i \(0.176667\pi\)
\(128\) −991.592 −0.684728
\(129\) 0 0
\(130\) 0 0
\(131\) −501.073 −0.334191 −0.167095 0.985941i \(-0.553439\pi\)
−0.167095 + 0.985941i \(0.553439\pi\)
\(132\) 0 0
\(133\) 2698.34 1.75922
\(134\) −1372.77 −0.884996
\(135\) 0 0
\(136\) 242.418 0.152847
\(137\) 2523.07 1.57343 0.786716 0.617316i \(-0.211780\pi\)
0.786716 + 0.617316i \(0.211780\pi\)
\(138\) 0 0
\(139\) −638.842 −0.389826 −0.194913 0.980821i \(-0.562442\pi\)
−0.194913 + 0.980821i \(0.562442\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −2413.07 −1.42606
\(143\) −128.969 −0.0754189
\(144\) 0 0
\(145\) 0 0
\(146\) −1448.05 −0.820829
\(147\) 0 0
\(148\) 329.700 0.183116
\(149\) 2674.13 1.47029 0.735146 0.677909i \(-0.237114\pi\)
0.735146 + 0.677909i \(0.237114\pi\)
\(150\) 0 0
\(151\) −1036.68 −0.558700 −0.279350 0.960189i \(-0.590119\pi\)
−0.279350 + 0.960189i \(0.590119\pi\)
\(152\) 2839.00 1.51496
\(153\) 0 0
\(154\) 655.847 0.343179
\(155\) 0 0
\(156\) 0 0
\(157\) 381.858 0.194112 0.0970560 0.995279i \(-0.469057\pi\)
0.0970560 + 0.995279i \(0.469057\pi\)
\(158\) −2095.77 −1.05526
\(159\) 0 0
\(160\) 0 0
\(161\) 3947.78 1.93248
\(162\) 0 0
\(163\) −2421.17 −1.16344 −0.581719 0.813390i \(-0.697620\pi\)
−0.581719 + 0.813390i \(0.697620\pi\)
\(164\) 476.697 0.226974
\(165\) 0 0
\(166\) −1391.21 −0.650473
\(167\) −3535.76 −1.63836 −0.819178 0.573540i \(-0.805570\pi\)
−0.819178 + 0.573540i \(0.805570\pi\)
\(168\) 0 0
\(169\) −2061.58 −0.938363
\(170\) 0 0
\(171\) 0 0
\(172\) −475.561 −0.210821
\(173\) 3143.88 1.38165 0.690824 0.723023i \(-0.257248\pi\)
0.690824 + 0.723023i \(0.257248\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 573.142 0.245467
\(177\) 0 0
\(178\) 1773.67 0.746867
\(179\) 3299.06 1.37756 0.688780 0.724970i \(-0.258147\pi\)
0.688780 + 0.724970i \(0.258147\pi\)
\(180\) 0 0
\(181\) 1875.10 0.770026 0.385013 0.922911i \(-0.374197\pi\)
0.385013 + 0.922911i \(0.374197\pi\)
\(182\) −688.632 −0.280466
\(183\) 0 0
\(184\) 4153.57 1.66416
\(185\) 0 0
\(186\) 0 0
\(187\) −111.541 −0.0436185
\(188\) 791.207 0.306940
\(189\) 0 0
\(190\) 0 0
\(191\) 1361.62 0.515829 0.257915 0.966168i \(-0.416965\pi\)
0.257915 + 0.966168i \(0.416965\pi\)
\(192\) 0 0
\(193\) −2234.20 −0.833271 −0.416636 0.909074i \(-0.636791\pi\)
−0.416636 + 0.909074i \(0.636791\pi\)
\(194\) 1847.29 0.683650
\(195\) 0 0
\(196\) −238.782 −0.0870199
\(197\) −346.625 −0.125360 −0.0626801 0.998034i \(-0.519965\pi\)
−0.0626801 + 0.998034i \(0.519965\pi\)
\(198\) 0 0
\(199\) 4198.77 1.49569 0.747846 0.663872i \(-0.231088\pi\)
0.747846 + 0.663872i \(0.231088\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 2517.43 0.876860
\(203\) −4082.39 −1.41146
\(204\) 0 0
\(205\) 0 0
\(206\) −1962.51 −0.663761
\(207\) 0 0
\(208\) −601.792 −0.200610
\(209\) −1306.27 −0.432329
\(210\) 0 0
\(211\) 4728.46 1.54275 0.771375 0.636380i \(-0.219569\pi\)
0.771375 + 0.636380i \(0.219569\pi\)
\(212\) −265.412 −0.0859839
\(213\) 0 0
\(214\) −4735.64 −1.51272
\(215\) 0 0
\(216\) 0 0
\(217\) 3217.19 1.00644
\(218\) −3543.62 −1.10094
\(219\) 0 0
\(220\) 0 0
\(221\) 117.116 0.0356475
\(222\) 0 0
\(223\) −2430.16 −0.729756 −0.364878 0.931055i \(-0.618889\pi\)
−0.364878 + 0.931055i \(0.618889\pi\)
\(224\) −1351.18 −0.403032
\(225\) 0 0
\(226\) −1508.45 −0.443985
\(227\) −584.687 −0.170956 −0.0854780 0.996340i \(-0.527242\pi\)
−0.0854780 + 0.996340i \(0.527242\pi\)
\(228\) 0 0
\(229\) −4731.77 −1.36543 −0.682717 0.730683i \(-0.739202\pi\)
−0.682717 + 0.730683i \(0.739202\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −4295.20 −1.21549
\(233\) 1228.45 0.345401 0.172701 0.984974i \(-0.444751\pi\)
0.172701 + 0.984974i \(0.444751\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 548.159 0.151195
\(237\) 0 0
\(238\) −595.574 −0.162207
\(239\) 120.545 0.0326253 0.0163126 0.999867i \(-0.494807\pi\)
0.0163126 + 0.999867i \(0.494807\pi\)
\(240\) 0 0
\(241\) 1732.56 0.463086 0.231543 0.972825i \(-0.425623\pi\)
0.231543 + 0.972825i \(0.425623\pi\)
\(242\) 3122.97 0.829555
\(243\) 0 0
\(244\) 72.0209 0.0188962
\(245\) 0 0
\(246\) 0 0
\(247\) 1371.57 0.353324
\(248\) 3384.90 0.866699
\(249\) 0 0
\(250\) 0 0
\(251\) 3287.82 0.826793 0.413397 0.910551i \(-0.364342\pi\)
0.413397 + 0.910551i \(0.364342\pi\)
\(252\) 0 0
\(253\) −1911.13 −0.474908
\(254\) −6288.38 −1.55342
\(255\) 0 0
\(256\) −1967.06 −0.480239
\(257\) −1489.82 −0.361605 −0.180803 0.983519i \(-0.557870\pi\)
−0.180803 + 0.983519i \(0.557870\pi\)
\(258\) 0 0
\(259\) −5725.07 −1.37351
\(260\) 0 0
\(261\) 0 0
\(262\) 1295.21 0.305414
\(263\) 710.144 0.166499 0.0832497 0.996529i \(-0.473470\pi\)
0.0832497 + 0.996529i \(0.473470\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −6974.87 −1.60773
\(267\) 0 0
\(268\) −700.181 −0.159591
\(269\) −3667.61 −0.831294 −0.415647 0.909526i \(-0.636445\pi\)
−0.415647 + 0.909526i \(0.636445\pi\)
\(270\) 0 0
\(271\) −1990.45 −0.446166 −0.223083 0.974799i \(-0.571612\pi\)
−0.223083 + 0.974799i \(0.571612\pi\)
\(272\) −520.469 −0.116022
\(273\) 0 0
\(274\) −6521.81 −1.43795
\(275\) 0 0
\(276\) 0 0
\(277\) −8314.68 −1.80354 −0.901770 0.432215i \(-0.857732\pi\)
−0.901770 + 0.432215i \(0.857732\pi\)
\(278\) 1651.33 0.356259
\(279\) 0 0
\(280\) 0 0
\(281\) −5765.13 −1.22391 −0.611955 0.790892i \(-0.709617\pi\)
−0.611955 + 0.790892i \(0.709617\pi\)
\(282\) 0 0
\(283\) −457.561 −0.0961102 −0.0480551 0.998845i \(-0.515302\pi\)
−0.0480551 + 0.998845i \(0.515302\pi\)
\(284\) −1230.78 −0.257160
\(285\) 0 0
\(286\) 333.368 0.0689247
\(287\) −8277.59 −1.70248
\(288\) 0 0
\(289\) −4811.71 −0.979383
\(290\) 0 0
\(291\) 0 0
\(292\) −738.574 −0.148020
\(293\) 5302.82 1.05732 0.528659 0.848834i \(-0.322695\pi\)
0.528659 + 0.848834i \(0.322695\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −6023.51 −1.18280
\(297\) 0 0
\(298\) −6912.30 −1.34369
\(299\) 2006.66 0.388122
\(300\) 0 0
\(301\) 8257.86 1.58131
\(302\) 2679.68 0.510591
\(303\) 0 0
\(304\) −6095.31 −1.14997
\(305\) 0 0
\(306\) 0 0
\(307\) 6583.54 1.22392 0.611959 0.790890i \(-0.290382\pi\)
0.611959 + 0.790890i \(0.290382\pi\)
\(308\) 334.514 0.0618853
\(309\) 0 0
\(310\) 0 0
\(311\) 8128.05 1.48199 0.740996 0.671510i \(-0.234354\pi\)
0.740996 + 0.671510i \(0.234354\pi\)
\(312\) 0 0
\(313\) 5207.63 0.940424 0.470212 0.882554i \(-0.344177\pi\)
0.470212 + 0.882554i \(0.344177\pi\)
\(314\) −987.056 −0.177397
\(315\) 0 0
\(316\) −1068.94 −0.190294
\(317\) −3262.34 −0.578016 −0.289008 0.957327i \(-0.593325\pi\)
−0.289008 + 0.957327i \(0.593325\pi\)
\(318\) 0 0
\(319\) 1976.29 0.346869
\(320\) 0 0
\(321\) 0 0
\(322\) −10204.5 −1.76607
\(323\) 1186.22 0.204345
\(324\) 0 0
\(325\) 0 0
\(326\) 6258.41 1.06326
\(327\) 0 0
\(328\) −8709.09 −1.46610
\(329\) −13738.9 −2.30228
\(330\) 0 0
\(331\) 10360.5 1.72043 0.860216 0.509930i \(-0.170329\pi\)
0.860216 + 0.509930i \(0.170329\pi\)
\(332\) −709.583 −0.117299
\(333\) 0 0
\(334\) 9139.51 1.49728
\(335\) 0 0
\(336\) 0 0
\(337\) 3735.26 0.603777 0.301888 0.953343i \(-0.402383\pi\)
0.301888 + 0.953343i \(0.402383\pi\)
\(338\) 5328.94 0.857563
\(339\) 0 0
\(340\) 0 0
\(341\) −1557.45 −0.247333
\(342\) 0 0
\(343\) −3706.15 −0.583421
\(344\) 8688.34 1.36176
\(345\) 0 0
\(346\) −8126.55 −1.26268
\(347\) 197.010 0.0304785 0.0152393 0.999884i \(-0.495149\pi\)
0.0152393 + 0.999884i \(0.495149\pi\)
\(348\) 0 0
\(349\) −7334.20 −1.12490 −0.562451 0.826831i \(-0.690141\pi\)
−0.562451 + 0.826831i \(0.690141\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 654.107 0.0990456
\(353\) 4616.28 0.696034 0.348017 0.937488i \(-0.386855\pi\)
0.348017 + 0.937488i \(0.386855\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 904.659 0.134682
\(357\) 0 0
\(358\) −8527.66 −1.25894
\(359\) 1153.79 0.169623 0.0848115 0.996397i \(-0.472971\pi\)
0.0848115 + 0.996397i \(0.472971\pi\)
\(360\) 0 0
\(361\) 7033.09 1.02538
\(362\) −4846.89 −0.703721
\(363\) 0 0
\(364\) −351.236 −0.0505763
\(365\) 0 0
\(366\) 0 0
\(367\) 3449.05 0.490569 0.245285 0.969451i \(-0.421119\pi\)
0.245285 + 0.969451i \(0.421119\pi\)
\(368\) −8917.69 −1.26322
\(369\) 0 0
\(370\) 0 0
\(371\) 4608.74 0.644943
\(372\) 0 0
\(373\) −362.880 −0.0503732 −0.0251866 0.999683i \(-0.508018\pi\)
−0.0251866 + 0.999683i \(0.508018\pi\)
\(374\) 288.319 0.0398626
\(375\) 0 0
\(376\) −14455.1 −1.98262
\(377\) −2075.09 −0.283481
\(378\) 0 0
\(379\) −7719.79 −1.04628 −0.523139 0.852248i \(-0.675239\pi\)
−0.523139 + 0.852248i \(0.675239\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −3519.62 −0.471412
\(383\) −5673.66 −0.756946 −0.378473 0.925612i \(-0.623551\pi\)
−0.378473 + 0.925612i \(0.623551\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 5775.13 0.761520
\(387\) 0 0
\(388\) 942.210 0.123282
\(389\) 8180.45 1.06623 0.533117 0.846041i \(-0.321020\pi\)
0.533117 + 0.846041i \(0.321020\pi\)
\(390\) 0 0
\(391\) 1735.49 0.224470
\(392\) 4362.47 0.562087
\(393\) 0 0
\(394\) 895.982 0.114566
\(395\) 0 0
\(396\) 0 0
\(397\) 12940.5 1.63594 0.817968 0.575263i \(-0.195100\pi\)
0.817968 + 0.575263i \(0.195100\pi\)
\(398\) −10853.3 −1.36690
\(399\) 0 0
\(400\) 0 0
\(401\) −6581.29 −0.819586 −0.409793 0.912179i \(-0.634399\pi\)
−0.409793 + 0.912179i \(0.634399\pi\)
\(402\) 0 0
\(403\) 1635.30 0.202135
\(404\) 1284.01 0.158124
\(405\) 0 0
\(406\) 10552.5 1.28993
\(407\) 2771.52 0.337541
\(408\) 0 0
\(409\) 4921.85 0.595036 0.297518 0.954716i \(-0.403841\pi\)
0.297518 + 0.954716i \(0.403841\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −1000.98 −0.119696
\(413\) −9518.48 −1.13408
\(414\) 0 0
\(415\) 0 0
\(416\) −686.806 −0.0809457
\(417\) 0 0
\(418\) 3376.55 0.395102
\(419\) 3914.29 0.456385 0.228193 0.973616i \(-0.426718\pi\)
0.228193 + 0.973616i \(0.426718\pi\)
\(420\) 0 0
\(421\) −5258.76 −0.608780 −0.304390 0.952547i \(-0.598453\pi\)
−0.304390 + 0.952547i \(0.598453\pi\)
\(422\) −12222.5 −1.40991
\(423\) 0 0
\(424\) 4848.99 0.555395
\(425\) 0 0
\(426\) 0 0
\(427\) −1250.60 −0.141735
\(428\) −2415.41 −0.272788
\(429\) 0 0
\(430\) 0 0
\(431\) −14350.1 −1.60376 −0.801881 0.597484i \(-0.796167\pi\)
−0.801881 + 0.597484i \(0.796167\pi\)
\(432\) 0 0
\(433\) −863.149 −0.0957974 −0.0478987 0.998852i \(-0.515252\pi\)
−0.0478987 + 0.998852i \(0.515252\pi\)
\(434\) −8316.04 −0.919776
\(435\) 0 0
\(436\) −1807.42 −0.198532
\(437\) 20324.7 2.22486
\(438\) 0 0
\(439\) −16142.1 −1.75494 −0.877470 0.479632i \(-0.840770\pi\)
−0.877470 + 0.479632i \(0.840770\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −302.731 −0.0325780
\(443\) 5884.09 0.631065 0.315532 0.948915i \(-0.397817\pi\)
0.315532 + 0.948915i \(0.397817\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 6281.67 0.666918
\(447\) 0 0
\(448\) 12964.0 1.36717
\(449\) 16858.4 1.77193 0.885965 0.463753i \(-0.153497\pi\)
0.885965 + 0.463753i \(0.153497\pi\)
\(450\) 0 0
\(451\) 4007.20 0.418385
\(452\) −769.382 −0.0800635
\(453\) 0 0
\(454\) 1511.34 0.156235
\(455\) 0 0
\(456\) 0 0
\(457\) −7623.04 −0.780286 −0.390143 0.920754i \(-0.627574\pi\)
−0.390143 + 0.920754i \(0.627574\pi\)
\(458\) 12231.1 1.24786
\(459\) 0 0
\(460\) 0 0
\(461\) 4079.39 0.412139 0.206070 0.978537i \(-0.433933\pi\)
0.206070 + 0.978537i \(0.433933\pi\)
\(462\) 0 0
\(463\) 5499.22 0.551988 0.275994 0.961159i \(-0.410993\pi\)
0.275994 + 0.961159i \(0.410993\pi\)
\(464\) 9221.75 0.922649
\(465\) 0 0
\(466\) −3175.40 −0.315660
\(467\) 6422.51 0.636399 0.318199 0.948024i \(-0.396922\pi\)
0.318199 + 0.948024i \(0.396922\pi\)
\(468\) 0 0
\(469\) 12158.3 1.19705
\(470\) 0 0
\(471\) 0 0
\(472\) −10014.7 −0.976615
\(473\) −3997.65 −0.388609
\(474\) 0 0
\(475\) 0 0
\(476\) −303.772 −0.0292507
\(477\) 0 0
\(478\) −311.595 −0.0298160
\(479\) −198.760 −0.0189595 −0.00947973 0.999955i \(-0.503018\pi\)
−0.00947973 + 0.999955i \(0.503018\pi\)
\(480\) 0 0
\(481\) −2910.06 −0.275858
\(482\) −4478.44 −0.423211
\(483\) 0 0
\(484\) 1592.87 0.149593
\(485\) 0 0
\(486\) 0 0
\(487\) 1308.73 0.121774 0.0608871 0.998145i \(-0.480607\pi\)
0.0608871 + 0.998145i \(0.480607\pi\)
\(488\) −1315.80 −0.122056
\(489\) 0 0
\(490\) 0 0
\(491\) 12474.8 1.14660 0.573300 0.819346i \(-0.305663\pi\)
0.573300 + 0.819346i \(0.305663\pi\)
\(492\) 0 0
\(493\) −1794.67 −0.163951
\(494\) −3545.34 −0.322900
\(495\) 0 0
\(496\) −7267.35 −0.657890
\(497\) 21371.9 1.92889
\(498\) 0 0
\(499\) 3146.82 0.282307 0.141153 0.989988i \(-0.454919\pi\)
0.141153 + 0.989988i \(0.454919\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −8498.60 −0.755600
\(503\) 5419.35 0.480391 0.240196 0.970725i \(-0.422788\pi\)
0.240196 + 0.970725i \(0.422788\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 4940.03 0.434014
\(507\) 0 0
\(508\) −3207.38 −0.280127
\(509\) −17194.6 −1.49732 −0.748660 0.662954i \(-0.769302\pi\)
−0.748660 + 0.662954i \(0.769302\pi\)
\(510\) 0 0
\(511\) 12824.9 1.11026
\(512\) 13017.3 1.12361
\(513\) 0 0
\(514\) 3851.01 0.330468
\(515\) 0 0
\(516\) 0 0
\(517\) 6651.02 0.565787
\(518\) 14798.6 1.25524
\(519\) 0 0
\(520\) 0 0
\(521\) −19829.5 −1.66746 −0.833730 0.552172i \(-0.813799\pi\)
−0.833730 + 0.552172i \(0.813799\pi\)
\(522\) 0 0
\(523\) −5392.82 −0.450882 −0.225441 0.974257i \(-0.572382\pi\)
−0.225441 + 0.974257i \(0.572382\pi\)
\(524\) 660.621 0.0550752
\(525\) 0 0
\(526\) −1835.63 −0.152162
\(527\) 1414.32 0.116904
\(528\) 0 0
\(529\) 17568.8 1.44397
\(530\) 0 0
\(531\) 0 0
\(532\) −3557.53 −0.289922
\(533\) −4207.52 −0.341928
\(534\) 0 0
\(535\) 0 0
\(536\) 12792.1 1.03085
\(537\) 0 0
\(538\) 9480.32 0.759713
\(539\) −2007.25 −0.160405
\(540\) 0 0
\(541\) −11475.8 −0.911984 −0.455992 0.889984i \(-0.650715\pi\)
−0.455992 + 0.889984i \(0.650715\pi\)
\(542\) 5145.06 0.407747
\(543\) 0 0
\(544\) −593.994 −0.0468149
\(545\) 0 0
\(546\) 0 0
\(547\) 7929.09 0.619787 0.309893 0.950771i \(-0.399707\pi\)
0.309893 + 0.950771i \(0.399707\pi\)
\(548\) −3326.44 −0.259304
\(549\) 0 0
\(550\) 0 0
\(551\) −21017.7 −1.62502
\(552\) 0 0
\(553\) 18561.6 1.42734
\(554\) 21492.4 1.64824
\(555\) 0 0
\(556\) 842.257 0.0642440
\(557\) −9519.36 −0.724144 −0.362072 0.932150i \(-0.617931\pi\)
−0.362072 + 0.932150i \(0.617931\pi\)
\(558\) 0 0
\(559\) 4197.49 0.317594
\(560\) 0 0
\(561\) 0 0
\(562\) 14902.1 1.11852
\(563\) −11922.3 −0.892476 −0.446238 0.894914i \(-0.647237\pi\)
−0.446238 + 0.894914i \(0.647237\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1182.74 0.0878343
\(567\) 0 0
\(568\) 22486.0 1.66108
\(569\) −17591.4 −1.29608 −0.648042 0.761605i \(-0.724412\pi\)
−0.648042 + 0.761605i \(0.724412\pi\)
\(570\) 0 0
\(571\) 8250.73 0.604698 0.302349 0.953197i \(-0.402229\pi\)
0.302349 + 0.953197i \(0.402229\pi\)
\(572\) 170.034 0.0124292
\(573\) 0 0
\(574\) 21396.5 1.55588
\(575\) 0 0
\(576\) 0 0
\(577\) 15922.4 1.14880 0.574401 0.818574i \(-0.305235\pi\)
0.574401 + 0.818574i \(0.305235\pi\)
\(578\) 12437.7 0.895050
\(579\) 0 0
\(580\) 0 0
\(581\) 12321.5 0.879833
\(582\) 0 0
\(583\) −2231.10 −0.158495
\(584\) 13493.5 0.956103
\(585\) 0 0
\(586\) −13707.1 −0.966274
\(587\) −9589.65 −0.674288 −0.337144 0.941453i \(-0.609461\pi\)
−0.337144 + 0.941453i \(0.609461\pi\)
\(588\) 0 0
\(589\) 16563.3 1.15871
\(590\) 0 0
\(591\) 0 0
\(592\) 12932.4 0.897837
\(593\) 5311.77 0.367838 0.183919 0.982941i \(-0.441122\pi\)
0.183919 + 0.982941i \(0.441122\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −3525.61 −0.242307
\(597\) 0 0
\(598\) −5186.98 −0.354701
\(599\) 6346.04 0.432875 0.216437 0.976296i \(-0.430556\pi\)
0.216437 + 0.976296i \(0.430556\pi\)
\(600\) 0 0
\(601\) −9813.33 −0.666047 −0.333023 0.942919i \(-0.608069\pi\)
−0.333023 + 0.942919i \(0.608069\pi\)
\(602\) −21345.6 −1.44515
\(603\) 0 0
\(604\) 1366.77 0.0920746
\(605\) 0 0
\(606\) 0 0
\(607\) 4170.95 0.278902 0.139451 0.990229i \(-0.455466\pi\)
0.139451 + 0.990229i \(0.455466\pi\)
\(608\) −6956.38 −0.464011
\(609\) 0 0
\(610\) 0 0
\(611\) −6983.50 −0.462393
\(612\) 0 0
\(613\) 3157.32 0.208031 0.104016 0.994576i \(-0.466831\pi\)
0.104016 + 0.994576i \(0.466831\pi\)
\(614\) −17017.6 −1.11853
\(615\) 0 0
\(616\) −6111.45 −0.399736
\(617\) −2962.95 −0.193329 −0.0966643 0.995317i \(-0.530817\pi\)
−0.0966643 + 0.995317i \(0.530817\pi\)
\(618\) 0 0
\(619\) 4695.72 0.304906 0.152453 0.988311i \(-0.451283\pi\)
0.152453 + 0.988311i \(0.451283\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −21010.0 −1.35438
\(623\) −15708.9 −1.01022
\(624\) 0 0
\(625\) 0 0
\(626\) −13461.1 −0.859446
\(627\) 0 0
\(628\) −503.447 −0.0319900
\(629\) −2516.81 −0.159542
\(630\) 0 0
\(631\) −17397.6 −1.09760 −0.548800 0.835954i \(-0.684915\pi\)
−0.548800 + 0.835954i \(0.684915\pi\)
\(632\) 19529.2 1.22916
\(633\) 0 0
\(634\) 8432.74 0.528244
\(635\) 0 0
\(636\) 0 0
\(637\) 2107.59 0.131092
\(638\) −5108.47 −0.317000
\(639\) 0 0
\(640\) 0 0
\(641\) 6903.46 0.425383 0.212691 0.977119i \(-0.431777\pi\)
0.212691 + 0.977119i \(0.431777\pi\)
\(642\) 0 0
\(643\) 12132.1 0.744079 0.372039 0.928217i \(-0.378659\pi\)
0.372039 + 0.928217i \(0.378659\pi\)
\(644\) −5204.80 −0.318475
\(645\) 0 0
\(646\) −3066.24 −0.186749
\(647\) 16784.3 1.01988 0.509939 0.860211i \(-0.329668\pi\)
0.509939 + 0.860211i \(0.329668\pi\)
\(648\) 0 0
\(649\) 4607.92 0.278700
\(650\) 0 0
\(651\) 0 0
\(652\) 3192.10 0.191736
\(653\) −15711.5 −0.941561 −0.470781 0.882250i \(-0.656028\pi\)
−0.470781 + 0.882250i \(0.656028\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 18698.4 1.11288
\(657\) 0 0
\(658\) 35513.3 2.10403
\(659\) 20227.0 1.19565 0.597825 0.801626i \(-0.296032\pi\)
0.597825 + 0.801626i \(0.296032\pi\)
\(660\) 0 0
\(661\) 14986.8 0.881875 0.440938 0.897538i \(-0.354646\pi\)
0.440938 + 0.897538i \(0.354646\pi\)
\(662\) −26780.5 −1.57229
\(663\) 0 0
\(664\) 12963.8 0.757672
\(665\) 0 0
\(666\) 0 0
\(667\) −30749.7 −1.78506
\(668\) 4661.59 0.270004
\(669\) 0 0
\(670\) 0 0
\(671\) 605.420 0.0348316
\(672\) 0 0
\(673\) −6833.74 −0.391414 −0.195707 0.980662i \(-0.562700\pi\)
−0.195707 + 0.980662i \(0.562700\pi\)
\(674\) −9655.19 −0.551787
\(675\) 0 0
\(676\) 2718.02 0.154644
\(677\) −30439.3 −1.72803 −0.864015 0.503467i \(-0.832058\pi\)
−0.864015 + 0.503467i \(0.832058\pi\)
\(678\) 0 0
\(679\) −16361.0 −0.924707
\(680\) 0 0
\(681\) 0 0
\(682\) 4025.81 0.226036
\(683\) −9675.88 −0.542075 −0.271038 0.962569i \(-0.587367\pi\)
−0.271038 + 0.962569i \(0.587367\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 9579.94 0.533184
\(687\) 0 0
\(688\) −18653.8 −1.03368
\(689\) 2342.63 0.129531
\(690\) 0 0
\(691\) 13410.6 0.738295 0.369147 0.929371i \(-0.379650\pi\)
0.369147 + 0.929371i \(0.379650\pi\)
\(692\) −4144.94 −0.227698
\(693\) 0 0
\(694\) −509.247 −0.0278541
\(695\) 0 0
\(696\) 0 0
\(697\) −3638.93 −0.197754
\(698\) 18958.0 1.02804
\(699\) 0 0
\(700\) 0 0
\(701\) 12796.5 0.689466 0.344733 0.938701i \(-0.387969\pi\)
0.344733 + 0.938701i \(0.387969\pi\)
\(702\) 0 0
\(703\) −29474.9 −1.58132
\(704\) −6275.92 −0.335984
\(705\) 0 0
\(706\) −11932.5 −0.636100
\(707\) −22296.2 −1.18604
\(708\) 0 0
\(709\) 4849.33 0.256869 0.128435 0.991718i \(-0.459005\pi\)
0.128435 + 0.991718i \(0.459005\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −16527.8 −0.869952
\(713\) 24232.8 1.27283
\(714\) 0 0
\(715\) 0 0
\(716\) −4349.52 −0.227024
\(717\) 0 0
\(718\) −2982.40 −0.155017
\(719\) −33988.7 −1.76296 −0.881479 0.472224i \(-0.843451\pi\)
−0.881479 + 0.472224i \(0.843451\pi\)
\(720\) 0 0
\(721\) 17381.4 0.897806
\(722\) −18179.7 −0.937088
\(723\) 0 0
\(724\) −2472.15 −0.126902
\(725\) 0 0
\(726\) 0 0
\(727\) 16312.3 0.832170 0.416085 0.909326i \(-0.363402\pi\)
0.416085 + 0.909326i \(0.363402\pi\)
\(728\) 6416.96 0.326687
\(729\) 0 0
\(730\) 0 0
\(731\) 3630.26 0.183680
\(732\) 0 0
\(733\) 37831.8 1.90634 0.953172 0.302430i \(-0.0977980\pi\)
0.953172 + 0.302430i \(0.0977980\pi\)
\(734\) −8915.36 −0.448327
\(735\) 0 0
\(736\) −10177.5 −0.509710
\(737\) −5885.84 −0.294176
\(738\) 0 0
\(739\) −16860.9 −0.839295 −0.419647 0.907687i \(-0.637846\pi\)
−0.419647 + 0.907687i \(0.637846\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −11913.0 −0.589408
\(743\) 406.077 0.0200505 0.0100253 0.999950i \(-0.496809\pi\)
0.0100253 + 0.999950i \(0.496809\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 937.999 0.0460357
\(747\) 0 0
\(748\) 147.056 0.00718839
\(749\) 41942.3 2.04611
\(750\) 0 0
\(751\) −15106.3 −0.734004 −0.367002 0.930220i \(-0.619616\pi\)
−0.367002 + 0.930220i \(0.619616\pi\)
\(752\) 31034.9 1.50496
\(753\) 0 0
\(754\) 5363.84 0.259071
\(755\) 0 0
\(756\) 0 0
\(757\) 14265.4 0.684919 0.342460 0.939533i \(-0.388740\pi\)
0.342460 + 0.939533i \(0.388740\pi\)
\(758\) 19954.7 0.956184
\(759\) 0 0
\(760\) 0 0
\(761\) −23001.3 −1.09566 −0.547828 0.836591i \(-0.684545\pi\)
−0.547828 + 0.836591i \(0.684545\pi\)
\(762\) 0 0
\(763\) 31384.9 1.48913
\(764\) −1795.18 −0.0850095
\(765\) 0 0
\(766\) 14665.7 0.691767
\(767\) −4838.26 −0.227770
\(768\) 0 0
\(769\) 12294.6 0.576535 0.288267 0.957550i \(-0.406921\pi\)
0.288267 + 0.957550i \(0.406921\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 2945.60 0.137324
\(773\) 5938.46 0.276315 0.138158 0.990410i \(-0.455882\pi\)
0.138158 + 0.990410i \(0.455882\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −17213.9 −0.796316
\(777\) 0 0
\(778\) −21145.5 −0.974423
\(779\) −42616.2 −1.96006
\(780\) 0 0
\(781\) −10346.2 −0.474027
\(782\) −4486.04 −0.205141
\(783\) 0 0
\(784\) −9366.19 −0.426667
\(785\) 0 0
\(786\) 0 0
\(787\) −32425.0 −1.46865 −0.734325 0.678798i \(-0.762501\pi\)
−0.734325 + 0.678798i \(0.762501\pi\)
\(788\) 456.994 0.0206596
\(789\) 0 0
\(790\) 0 0
\(791\) 13359.9 0.600535
\(792\) 0 0
\(793\) −635.685 −0.0284664
\(794\) −33449.7 −1.49507
\(795\) 0 0
\(796\) −5535.71 −0.246492
\(797\) −20990.4 −0.932897 −0.466449 0.884548i \(-0.654467\pi\)
−0.466449 + 0.884548i \(0.654467\pi\)
\(798\) 0 0
\(799\) −6039.79 −0.267425
\(800\) 0 0
\(801\) 0 0
\(802\) 17011.8 0.749013
\(803\) −6208.58 −0.272847
\(804\) 0 0
\(805\) 0 0
\(806\) −4227.06 −0.184729
\(807\) 0 0
\(808\) −23458.4 −1.02137
\(809\) 4943.95 0.214858 0.107429 0.994213i \(-0.465738\pi\)
0.107429 + 0.994213i \(0.465738\pi\)
\(810\) 0 0
\(811\) −19844.5 −0.859230 −0.429615 0.903012i \(-0.641351\pi\)
−0.429615 + 0.903012i \(0.641351\pi\)
\(812\) 5382.27 0.232612
\(813\) 0 0
\(814\) −7164.03 −0.308476
\(815\) 0 0
\(816\) 0 0
\(817\) 42514.7 1.82056
\(818\) −12722.4 −0.543798
\(819\) 0 0
\(820\) 0 0
\(821\) −12608.2 −0.535969 −0.267985 0.963423i \(-0.586358\pi\)
−0.267985 + 0.963423i \(0.586358\pi\)
\(822\) 0 0
\(823\) −24843.4 −1.05223 −0.526116 0.850413i \(-0.676352\pi\)
−0.526116 + 0.850413i \(0.676352\pi\)
\(824\) 18287.5 0.773149
\(825\) 0 0
\(826\) 24604.1 1.03642
\(827\) 33361.1 1.40276 0.701379 0.712789i \(-0.252568\pi\)
0.701379 + 0.712789i \(0.252568\pi\)
\(828\) 0 0
\(829\) −5049.62 −0.211557 −0.105778 0.994390i \(-0.533733\pi\)
−0.105778 + 0.994390i \(0.533733\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 6589.65 0.274585
\(833\) 1822.78 0.0758170
\(834\) 0 0
\(835\) 0 0
\(836\) 1722.21 0.0712485
\(837\) 0 0
\(838\) −10117.9 −0.417087
\(839\) 17464.7 0.718650 0.359325 0.933213i \(-0.383007\pi\)
0.359325 + 0.933213i \(0.383007\pi\)
\(840\) 0 0
\(841\) 7409.22 0.303793
\(842\) 13593.3 0.556359
\(843\) 0 0
\(844\) −6234.06 −0.254248
\(845\) 0 0
\(846\) 0 0
\(847\) −27659.3 −1.12206
\(848\) −10410.7 −0.421587
\(849\) 0 0
\(850\) 0 0
\(851\) −43122.9 −1.73706
\(852\) 0 0
\(853\) −2746.47 −0.110243 −0.0551216 0.998480i \(-0.517555\pi\)
−0.0551216 + 0.998480i \(0.517555\pi\)
\(854\) 3232.66 0.129531
\(855\) 0 0
\(856\) 44128.7 1.76202
\(857\) 15656.8 0.624069 0.312034 0.950071i \(-0.398990\pi\)
0.312034 + 0.950071i \(0.398990\pi\)
\(858\) 0 0
\(859\) −34507.3 −1.37063 −0.685317 0.728245i \(-0.740336\pi\)
−0.685317 + 0.728245i \(0.740336\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 37093.3 1.46567
\(863\) 26576.7 1.04830 0.524150 0.851626i \(-0.324383\pi\)
0.524150 + 0.851626i \(0.324383\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 2231.13 0.0875485
\(867\) 0 0
\(868\) −4241.58 −0.165863
\(869\) −8985.73 −0.350771
\(870\) 0 0
\(871\) 6180.07 0.240418
\(872\) 33020.9 1.28237
\(873\) 0 0
\(874\) −52536.8 −2.03328
\(875\) 0 0
\(876\) 0 0
\(877\) 13399.5 0.515927 0.257963 0.966155i \(-0.416949\pi\)
0.257963 + 0.966155i \(0.416949\pi\)
\(878\) 41725.2 1.60383
\(879\) 0 0
\(880\) 0 0
\(881\) 44435.4 1.69928 0.849641 0.527362i \(-0.176819\pi\)
0.849641 + 0.527362i \(0.176819\pi\)
\(882\) 0 0
\(883\) 11162.1 0.425408 0.212704 0.977117i \(-0.431773\pi\)
0.212704 + 0.977117i \(0.431773\pi\)
\(884\) −154.408 −0.00587477
\(885\) 0 0
\(886\) −15209.7 −0.576725
\(887\) 11591.2 0.438776 0.219388 0.975638i \(-0.429594\pi\)
0.219388 + 0.975638i \(0.429594\pi\)
\(888\) 0 0
\(889\) 55694.4 2.10116
\(890\) 0 0
\(891\) 0 0
\(892\) 3203.96 0.120265
\(893\) −70733.1 −2.65061
\(894\) 0 0
\(895\) 0 0
\(896\) −22701.0 −0.846415
\(897\) 0 0
\(898\) −43576.8 −1.61935
\(899\) −25059.1 −0.929663
\(900\) 0 0
\(901\) 2026.06 0.0749144
\(902\) −10358.1 −0.382359
\(903\) 0 0
\(904\) 14056.3 0.517154
\(905\) 0 0
\(906\) 0 0
\(907\) −8652.39 −0.316756 −0.158378 0.987379i \(-0.550626\pi\)
−0.158378 + 0.987379i \(0.550626\pi\)
\(908\) 770.859 0.0281738
\(909\) 0 0
\(910\) 0 0
\(911\) 36712.4 1.33517 0.667583 0.744536i \(-0.267329\pi\)
0.667583 + 0.744536i \(0.267329\pi\)
\(912\) 0 0
\(913\) −5964.88 −0.216220
\(914\) 19704.6 0.713097
\(915\) 0 0
\(916\) 6238.43 0.225026
\(917\) −11471.3 −0.413104
\(918\) 0 0
\(919\) −42003.3 −1.50768 −0.753841 0.657057i \(-0.771801\pi\)
−0.753841 + 0.657057i \(0.771801\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −10544.7 −0.376651
\(923\) 10863.4 0.387402
\(924\) 0 0
\(925\) 0 0
\(926\) −14214.8 −0.504457
\(927\) 0 0
\(928\) 10524.5 0.372288
\(929\) 13112.6 0.463090 0.231545 0.972824i \(-0.425622\pi\)
0.231545 + 0.972824i \(0.425622\pi\)
\(930\) 0 0
\(931\) 21346.9 0.751468
\(932\) −1619.61 −0.0569227
\(933\) 0 0
\(934\) −16601.4 −0.581600
\(935\) 0 0
\(936\) 0 0
\(937\) −49863.5 −1.73849 −0.869247 0.494378i \(-0.835396\pi\)
−0.869247 + 0.494378i \(0.835396\pi\)
\(938\) −31427.6 −1.09397
\(939\) 0 0
\(940\) 0 0
\(941\) 9352.28 0.323991 0.161996 0.986791i \(-0.448207\pi\)
0.161996 + 0.986791i \(0.448207\pi\)
\(942\) 0 0
\(943\) −62349.3 −2.15310
\(944\) 21501.4 0.741326
\(945\) 0 0
\(946\) 10333.4 0.355147
\(947\) −4011.39 −0.137648 −0.0688239 0.997629i \(-0.521925\pi\)
−0.0688239 + 0.997629i \(0.521925\pi\)
\(948\) 0 0
\(949\) 6518.94 0.222986
\(950\) 0 0
\(951\) 0 0
\(952\) 5549.80 0.188939
\(953\) −39128.6 −1.33001 −0.665005 0.746839i \(-0.731571\pi\)
−0.665005 + 0.746839i \(0.731571\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −158.929 −0.00537670
\(957\) 0 0
\(958\) 513.770 0.0173269
\(959\) 57761.9 1.94497
\(960\) 0 0
\(961\) −10042.8 −0.337108
\(962\) 7522.15 0.252104
\(963\) 0 0
\(964\) −2284.22 −0.0763174
\(965\) 0 0
\(966\) 0 0
\(967\) −17635.0 −0.586456 −0.293228 0.956043i \(-0.594729\pi\)
−0.293228 + 0.956043i \(0.594729\pi\)
\(968\) −29101.2 −0.966267
\(969\) 0 0
\(970\) 0 0
\(971\) −26827.3 −0.886642 −0.443321 0.896363i \(-0.646200\pi\)
−0.443321 + 0.896363i \(0.646200\pi\)
\(972\) 0 0
\(973\) −14625.3 −0.481877
\(974\) −3382.90 −0.111288
\(975\) 0 0
\(976\) 2825.01 0.0926498
\(977\) 8343.63 0.273221 0.136610 0.990625i \(-0.456379\pi\)
0.136610 + 0.990625i \(0.456379\pi\)
\(978\) 0 0
\(979\) 7604.72 0.248261
\(980\) 0 0
\(981\) 0 0
\(982\) −32245.8 −1.04787
\(983\) 36890.1 1.19696 0.598479 0.801138i \(-0.295772\pi\)
0.598479 + 0.801138i \(0.295772\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 4639.00 0.149833
\(987\) 0 0
\(988\) −1808.30 −0.0582283
\(989\) 62200.7 1.99987
\(990\) 0 0
\(991\) −24259.3 −0.777619 −0.388810 0.921318i \(-0.627114\pi\)
−0.388810 + 0.921318i \(0.627114\pi\)
\(992\) −8293.99 −0.265458
\(993\) 0 0
\(994\) −55243.7 −1.76280
\(995\) 0 0
\(996\) 0 0
\(997\) −31700.2 −1.00698 −0.503488 0.864002i \(-0.667950\pi\)
−0.503488 + 0.864002i \(0.667950\pi\)
\(998\) −8134.15 −0.257998
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.4.a.s.1.1 3
3.2 odd 2 675.4.a.p.1.3 3
5.2 odd 4 675.4.b.m.649.2 6
5.3 odd 4 675.4.b.m.649.5 6
5.4 even 2 135.4.a.e.1.3 3
15.2 even 4 675.4.b.n.649.5 6
15.8 even 4 675.4.b.n.649.2 6
15.14 odd 2 135.4.a.h.1.1 yes 3
20.19 odd 2 2160.4.a.bi.1.3 3
45.4 even 6 405.4.e.v.136.1 6
45.14 odd 6 405.4.e.q.136.3 6
45.29 odd 6 405.4.e.q.271.3 6
45.34 even 6 405.4.e.v.271.1 6
60.59 even 2 2160.4.a.bq.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.4.a.e.1.3 3 5.4 even 2
135.4.a.h.1.1 yes 3 15.14 odd 2
405.4.e.q.136.3 6 45.14 odd 6
405.4.e.q.271.3 6 45.29 odd 6
405.4.e.v.136.1 6 45.4 even 6
405.4.e.v.271.1 6 45.34 even 6
675.4.a.p.1.3 3 3.2 odd 2
675.4.a.s.1.1 3 1.1 even 1 trivial
675.4.b.m.649.2 6 5.2 odd 4
675.4.b.m.649.5 6 5.3 odd 4
675.4.b.n.649.2 6 15.8 even 4
675.4.b.n.649.5 6 15.2 even 4
2160.4.a.bi.1.3 3 20.19 odd 2
2160.4.a.bq.1.3 3 60.59 even 2