Properties

Label 675.4.b.b.649.1
Level $675$
Weight $4$
Character 675.649
Analytic conductor $39.826$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,4,Mod(649,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.649");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 675.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.8262892539\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 675.649
Dual form 675.4.b.b.649.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000i q^{2} -1.00000 q^{4} -25.0000i q^{7} -21.0000i q^{8} +15.0000 q^{11} -20.0000i q^{13} -75.0000 q^{14} -71.0000 q^{16} -72.0000i q^{17} -2.00000 q^{19} -45.0000i q^{22} +114.000i q^{23} -60.0000 q^{26} +25.0000i q^{28} +30.0000 q^{29} +101.000 q^{31} +45.0000i q^{32} -216.000 q^{34} -430.000i q^{37} +6.00000i q^{38} +30.0000 q^{41} -110.000i q^{43} -15.0000 q^{44} +342.000 q^{46} +330.000i q^{47} -282.000 q^{49} +20.0000i q^{52} +621.000i q^{53} -525.000 q^{56} -90.0000i q^{58} -660.000 q^{59} -376.000 q^{61} -303.000i q^{62} -433.000 q^{64} -250.000i q^{67} +72.0000i q^{68} +360.000 q^{71} -785.000i q^{73} -1290.00 q^{74} +2.00000 q^{76} -375.000i q^{77} -488.000 q^{79} -90.0000i q^{82} +489.000i q^{83} -330.000 q^{86} -315.000i q^{88} -450.000 q^{89} -500.000 q^{91} -114.000i q^{92} +990.000 q^{94} -1105.00i q^{97} +846.000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 30 q^{11} - 150 q^{14} - 142 q^{16} - 4 q^{19} - 120 q^{26} + 60 q^{29} + 202 q^{31} - 432 q^{34} + 60 q^{41} - 30 q^{44} + 684 q^{46} - 564 q^{49} - 1050 q^{56} - 1320 q^{59} - 752 q^{61}+ \cdots + 1980 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 3.00000i − 1.06066i −0.847791 0.530330i \(-0.822068\pi\)
0.847791 0.530330i \(-0.177932\pi\)
\(3\) 0 0
\(4\) −1.00000 −0.125000
\(5\) 0 0
\(6\) 0 0
\(7\) − 25.0000i − 1.34987i −0.737876 0.674937i \(-0.764171\pi\)
0.737876 0.674937i \(-0.235829\pi\)
\(8\) − 21.0000i − 0.928078i
\(9\) 0 0
\(10\) 0 0
\(11\) 15.0000 0.411152 0.205576 0.978641i \(-0.434093\pi\)
0.205576 + 0.978641i \(0.434093\pi\)
\(12\) 0 0
\(13\) − 20.0000i − 0.426692i −0.976977 0.213346i \(-0.931564\pi\)
0.976977 0.213346i \(-0.0684362\pi\)
\(14\) −75.0000 −1.43176
\(15\) 0 0
\(16\) −71.0000 −1.10938
\(17\) − 72.0000i − 1.02721i −0.858027 0.513605i \(-0.828310\pi\)
0.858027 0.513605i \(-0.171690\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.0241490 −0.0120745 0.999927i \(-0.503844\pi\)
−0.0120745 + 0.999927i \(0.503844\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 45.0000i − 0.436092i
\(23\) 114.000i 1.03351i 0.856134 + 0.516753i \(0.172859\pi\)
−0.856134 + 0.516753i \(0.827141\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −60.0000 −0.452576
\(27\) 0 0
\(28\) 25.0000i 0.168734i
\(29\) 30.0000 0.192099 0.0960493 0.995377i \(-0.469379\pi\)
0.0960493 + 0.995377i \(0.469379\pi\)
\(30\) 0 0
\(31\) 101.000 0.585166 0.292583 0.956240i \(-0.405485\pi\)
0.292583 + 0.956240i \(0.405485\pi\)
\(32\) 45.0000i 0.248592i
\(33\) 0 0
\(34\) −216.000 −1.08952
\(35\) 0 0
\(36\) 0 0
\(37\) − 430.000i − 1.91058i −0.295666 0.955291i \(-0.595542\pi\)
0.295666 0.955291i \(-0.404458\pi\)
\(38\) 6.00000i 0.0256139i
\(39\) 0 0
\(40\) 0 0
\(41\) 30.0000 0.114273 0.0571367 0.998366i \(-0.481803\pi\)
0.0571367 + 0.998366i \(0.481803\pi\)
\(42\) 0 0
\(43\) − 110.000i − 0.390113i −0.980792 0.195056i \(-0.937511\pi\)
0.980792 0.195056i \(-0.0624890\pi\)
\(44\) −15.0000 −0.0513940
\(45\) 0 0
\(46\) 342.000 1.09620
\(47\) 330.000i 1.02416i 0.858938 + 0.512079i \(0.171125\pi\)
−0.858938 + 0.512079i \(0.828875\pi\)
\(48\) 0 0
\(49\) −282.000 −0.822157
\(50\) 0 0
\(51\) 0 0
\(52\) 20.0000i 0.0533366i
\(53\) 621.000i 1.60945i 0.593647 + 0.804726i \(0.297688\pi\)
−0.593647 + 0.804726i \(0.702312\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −525.000 −1.25279
\(57\) 0 0
\(58\) − 90.0000i − 0.203751i
\(59\) −660.000 −1.45635 −0.728175 0.685391i \(-0.759631\pi\)
−0.728175 + 0.685391i \(0.759631\pi\)
\(60\) 0 0
\(61\) −376.000 −0.789211 −0.394605 0.918851i \(-0.629119\pi\)
−0.394605 + 0.918851i \(0.629119\pi\)
\(62\) − 303.000i − 0.620662i
\(63\) 0 0
\(64\) −433.000 −0.845703
\(65\) 0 0
\(66\) 0 0
\(67\) − 250.000i − 0.455856i −0.973678 0.227928i \(-0.926805\pi\)
0.973678 0.227928i \(-0.0731951\pi\)
\(68\) 72.0000i 0.128401i
\(69\) 0 0
\(70\) 0 0
\(71\) 360.000 0.601748 0.300874 0.953664i \(-0.402722\pi\)
0.300874 + 0.953664i \(0.402722\pi\)
\(72\) 0 0
\(73\) − 785.000i − 1.25859i −0.777165 0.629297i \(-0.783343\pi\)
0.777165 0.629297i \(-0.216657\pi\)
\(74\) −1290.00 −2.02648
\(75\) 0 0
\(76\) 2.00000 0.00301863
\(77\) − 375.000i − 0.555003i
\(78\) 0 0
\(79\) −488.000 −0.694991 −0.347496 0.937682i \(-0.612968\pi\)
−0.347496 + 0.937682i \(0.612968\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) − 90.0000i − 0.121205i
\(83\) 489.000i 0.646683i 0.946282 + 0.323342i \(0.104806\pi\)
−0.946282 + 0.323342i \(0.895194\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −330.000 −0.413777
\(87\) 0 0
\(88\) − 315.000i − 0.381581i
\(89\) −450.000 −0.535954 −0.267977 0.963425i \(-0.586355\pi\)
−0.267977 + 0.963425i \(0.586355\pi\)
\(90\) 0 0
\(91\) −500.000 −0.575981
\(92\) − 114.000i − 0.129188i
\(93\) 0 0
\(94\) 990.000 1.08628
\(95\) 0 0
\(96\) 0 0
\(97\) − 1105.00i − 1.15666i −0.815804 0.578329i \(-0.803705\pi\)
0.815804 0.578329i \(-0.196295\pi\)
\(98\) 846.000i 0.872030i
\(99\) 0 0
\(100\) 0 0
\(101\) −1425.00 −1.40389 −0.701945 0.712232i \(-0.747685\pi\)
−0.701945 + 0.712232i \(0.747685\pi\)
\(102\) 0 0
\(103\) 1060.00i 1.01403i 0.861938 + 0.507014i \(0.169251\pi\)
−0.861938 + 0.507014i \(0.830749\pi\)
\(104\) −420.000 −0.396004
\(105\) 0 0
\(106\) 1863.00 1.70708
\(107\) − 1485.00i − 1.34169i −0.741600 0.670843i \(-0.765933\pi\)
0.741600 0.670843i \(-0.234067\pi\)
\(108\) 0 0
\(109\) 862.000 0.757474 0.378737 0.925504i \(-0.376359\pi\)
0.378737 + 0.925504i \(0.376359\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1775.00i 1.49752i
\(113\) 690.000i 0.574422i 0.957867 + 0.287211i \(0.0927282\pi\)
−0.957867 + 0.287211i \(0.907272\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −30.0000 −0.0240123
\(117\) 0 0
\(118\) 1980.00i 1.54469i
\(119\) −1800.00 −1.38660
\(120\) 0 0
\(121\) −1106.00 −0.830954
\(122\) 1128.00i 0.837085i
\(123\) 0 0
\(124\) −101.000 −0.0731457
\(125\) 0 0
\(126\) 0 0
\(127\) 1865.00i 1.30309i 0.758611 + 0.651543i \(0.225878\pi\)
−0.758611 + 0.651543i \(0.774122\pi\)
\(128\) 1659.00i 1.14560i
\(129\) 0 0
\(130\) 0 0
\(131\) 1155.00 0.770327 0.385163 0.922848i \(-0.374145\pi\)
0.385163 + 0.922848i \(0.374145\pi\)
\(132\) 0 0
\(133\) 50.0000i 0.0325981i
\(134\) −750.000 −0.483508
\(135\) 0 0
\(136\) −1512.00 −0.953330
\(137\) 2778.00i 1.73241i 0.499686 + 0.866206i \(0.333449\pi\)
−0.499686 + 0.866206i \(0.666551\pi\)
\(138\) 0 0
\(139\) 1924.00 1.17404 0.587020 0.809572i \(-0.300301\pi\)
0.587020 + 0.809572i \(0.300301\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) − 1080.00i − 0.638251i
\(143\) − 300.000i − 0.175435i
\(144\) 0 0
\(145\) 0 0
\(146\) −2355.00 −1.33494
\(147\) 0 0
\(148\) 430.000i 0.238823i
\(149\) 1455.00 0.799988 0.399994 0.916518i \(-0.369012\pi\)
0.399994 + 0.916518i \(0.369012\pi\)
\(150\) 0 0
\(151\) −727.000 −0.391804 −0.195902 0.980623i \(-0.562763\pi\)
−0.195902 + 0.980623i \(0.562763\pi\)
\(152\) 42.0000i 0.0224122i
\(153\) 0 0
\(154\) −1125.00 −0.588669
\(155\) 0 0
\(156\) 0 0
\(157\) 3260.00i 1.65717i 0.559860 + 0.828587i \(0.310855\pi\)
−0.559860 + 0.828587i \(0.689145\pi\)
\(158\) 1464.00i 0.737149i
\(159\) 0 0
\(160\) 0 0
\(161\) 2850.00 1.39510
\(162\) 0 0
\(163\) − 2540.00i − 1.22054i −0.792193 0.610270i \(-0.791061\pi\)
0.792193 0.610270i \(-0.208939\pi\)
\(164\) −30.0000 −0.0142842
\(165\) 0 0
\(166\) 1467.00 0.685911
\(167\) − 3498.00i − 1.62086i −0.585837 0.810429i \(-0.699234\pi\)
0.585837 0.810429i \(-0.300766\pi\)
\(168\) 0 0
\(169\) 1797.00 0.817934
\(170\) 0 0
\(171\) 0 0
\(172\) 110.000i 0.0487641i
\(173\) − 1149.00i − 0.504953i −0.967603 0.252476i \(-0.918755\pi\)
0.967603 0.252476i \(-0.0812450\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1065.00 −0.456122
\(177\) 0 0
\(178\) 1350.00i 0.568465i
\(179\) 315.000 0.131532 0.0657659 0.997835i \(-0.479051\pi\)
0.0657659 + 0.997835i \(0.479051\pi\)
\(180\) 0 0
\(181\) 1136.00 0.466509 0.233255 0.972416i \(-0.425062\pi\)
0.233255 + 0.972416i \(0.425062\pi\)
\(182\) 1500.00i 0.610920i
\(183\) 0 0
\(184\) 2394.00 0.959174
\(185\) 0 0
\(186\) 0 0
\(187\) − 1080.00i − 0.422339i
\(188\) − 330.000i − 0.128020i
\(189\) 0 0
\(190\) 0 0
\(191\) −2460.00 −0.931934 −0.465967 0.884802i \(-0.654293\pi\)
−0.465967 + 0.884802i \(0.654293\pi\)
\(192\) 0 0
\(193\) − 965.000i − 0.359908i −0.983675 0.179954i \(-0.942405\pi\)
0.983675 0.179954i \(-0.0575949\pi\)
\(194\) −3315.00 −1.22682
\(195\) 0 0
\(196\) 282.000 0.102770
\(197\) − 2493.00i − 0.901619i −0.892620 0.450809i \(-0.851135\pi\)
0.892620 0.450809i \(-0.148865\pi\)
\(198\) 0 0
\(199\) 511.000 0.182029 0.0910146 0.995850i \(-0.470989\pi\)
0.0910146 + 0.995850i \(0.470989\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 4275.00i 1.48905i
\(203\) − 750.000i − 0.259309i
\(204\) 0 0
\(205\) 0 0
\(206\) 3180.00 1.07554
\(207\) 0 0
\(208\) 1420.00i 0.473362i
\(209\) −30.0000 −0.00992892
\(210\) 0 0
\(211\) −2086.00 −0.680598 −0.340299 0.940317i \(-0.610528\pi\)
−0.340299 + 0.940317i \(0.610528\pi\)
\(212\) − 621.000i − 0.201181i
\(213\) 0 0
\(214\) −4455.00 −1.42307
\(215\) 0 0
\(216\) 0 0
\(217\) − 2525.00i − 0.789899i
\(218\) − 2586.00i − 0.803422i
\(219\) 0 0
\(220\) 0 0
\(221\) −1440.00 −0.438303
\(222\) 0 0
\(223\) − 5240.00i − 1.57353i −0.617255 0.786763i \(-0.711755\pi\)
0.617255 0.786763i \(-0.288245\pi\)
\(224\) 1125.00 0.335568
\(225\) 0 0
\(226\) 2070.00 0.609267
\(227\) − 2388.00i − 0.698225i −0.937081 0.349113i \(-0.886483\pi\)
0.937081 0.349113i \(-0.113517\pi\)
\(228\) 0 0
\(229\) −182.000 −0.0525192 −0.0262596 0.999655i \(-0.508360\pi\)
−0.0262596 + 0.999655i \(0.508360\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 630.000i − 0.178282i
\(233\) 450.000i 0.126526i 0.997997 + 0.0632628i \(0.0201506\pi\)
−0.997997 + 0.0632628i \(0.979849\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 660.000 0.182044
\(237\) 0 0
\(238\) 5400.00i 1.47071i
\(239\) 5190.00 1.40466 0.702329 0.711853i \(-0.252144\pi\)
0.702329 + 0.711853i \(0.252144\pi\)
\(240\) 0 0
\(241\) −2266.00 −0.605668 −0.302834 0.953043i \(-0.597933\pi\)
−0.302834 + 0.953043i \(0.597933\pi\)
\(242\) 3318.00i 0.881360i
\(243\) 0 0
\(244\) 376.000 0.0986514
\(245\) 0 0
\(246\) 0 0
\(247\) 40.0000i 0.0103042i
\(248\) − 2121.00i − 0.543079i
\(249\) 0 0
\(250\) 0 0
\(251\) 2880.00 0.724239 0.362119 0.932132i \(-0.382053\pi\)
0.362119 + 0.932132i \(0.382053\pi\)
\(252\) 0 0
\(253\) 1710.00i 0.424928i
\(254\) 5595.00 1.38213
\(255\) 0 0
\(256\) 1513.00 0.369385
\(257\) 4188.00i 1.01650i 0.861210 + 0.508250i \(0.169707\pi\)
−0.861210 + 0.508250i \(0.830293\pi\)
\(258\) 0 0
\(259\) −10750.0 −2.57904
\(260\) 0 0
\(261\) 0 0
\(262\) − 3465.00i − 0.817055i
\(263\) − 3030.00i − 0.710410i −0.934788 0.355205i \(-0.884411\pi\)
0.934788 0.355205i \(-0.115589\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 150.000 0.0345755
\(267\) 0 0
\(268\) 250.000i 0.0569820i
\(269\) 3510.00 0.795571 0.397785 0.917479i \(-0.369779\pi\)
0.397785 + 0.917479i \(0.369779\pi\)
\(270\) 0 0
\(271\) 2999.00 0.672237 0.336119 0.941820i \(-0.390886\pi\)
0.336119 + 0.941820i \(0.390886\pi\)
\(272\) 5112.00i 1.13956i
\(273\) 0 0
\(274\) 8334.00 1.83750
\(275\) 0 0
\(276\) 0 0
\(277\) − 7720.00i − 1.67455i −0.546783 0.837274i \(-0.684148\pi\)
0.546783 0.837274i \(-0.315852\pi\)
\(278\) − 5772.00i − 1.24526i
\(279\) 0 0
\(280\) 0 0
\(281\) 7440.00 1.57948 0.789739 0.613443i \(-0.210216\pi\)
0.789739 + 0.613443i \(0.210216\pi\)
\(282\) 0 0
\(283\) − 830.000i − 0.174341i −0.996193 0.0871703i \(-0.972218\pi\)
0.996193 0.0871703i \(-0.0277824\pi\)
\(284\) −360.000 −0.0752186
\(285\) 0 0
\(286\) −900.000 −0.186077
\(287\) − 750.000i − 0.154255i
\(288\) 0 0
\(289\) −271.000 −0.0551598
\(290\) 0 0
\(291\) 0 0
\(292\) 785.000i 0.157324i
\(293\) 546.000i 0.108866i 0.998517 + 0.0544329i \(0.0173351\pi\)
−0.998517 + 0.0544329i \(0.982665\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −9030.00 −1.77317
\(297\) 0 0
\(298\) − 4365.00i − 0.848516i
\(299\) 2280.00 0.440989
\(300\) 0 0
\(301\) −2750.00 −0.526603
\(302\) 2181.00i 0.415571i
\(303\) 0 0
\(304\) 142.000 0.0267903
\(305\) 0 0
\(306\) 0 0
\(307\) − 5560.00i − 1.03364i −0.856096 0.516818i \(-0.827117\pi\)
0.856096 0.516818i \(-0.172883\pi\)
\(308\) 375.000i 0.0693754i
\(309\) 0 0
\(310\) 0 0
\(311\) 8670.00 1.58081 0.790403 0.612587i \(-0.209871\pi\)
0.790403 + 0.612587i \(0.209871\pi\)
\(312\) 0 0
\(313\) − 4565.00i − 0.824374i −0.911099 0.412187i \(-0.864765\pi\)
0.911099 0.412187i \(-0.135235\pi\)
\(314\) 9780.00 1.75770
\(315\) 0 0
\(316\) 488.000 0.0868739
\(317\) − 4233.00i − 0.749997i −0.927025 0.374998i \(-0.877643\pi\)
0.927025 0.374998i \(-0.122357\pi\)
\(318\) 0 0
\(319\) 450.000 0.0789817
\(320\) 0 0
\(321\) 0 0
\(322\) − 8550.00i − 1.47973i
\(323\) 144.000i 0.0248061i
\(324\) 0 0
\(325\) 0 0
\(326\) −7620.00 −1.29458
\(327\) 0 0
\(328\) − 630.000i − 0.106055i
\(329\) 8250.00 1.38248
\(330\) 0 0
\(331\) 542.000 0.0900031 0.0450015 0.998987i \(-0.485671\pi\)
0.0450015 + 0.998987i \(0.485671\pi\)
\(332\) − 489.000i − 0.0808354i
\(333\) 0 0
\(334\) −10494.0 −1.71918
\(335\) 0 0
\(336\) 0 0
\(337\) 5690.00i 0.919745i 0.887985 + 0.459872i \(0.152105\pi\)
−0.887985 + 0.459872i \(0.847895\pi\)
\(338\) − 5391.00i − 0.867550i
\(339\) 0 0
\(340\) 0 0
\(341\) 1515.00 0.240592
\(342\) 0 0
\(343\) − 1525.00i − 0.240065i
\(344\) −2310.00 −0.362055
\(345\) 0 0
\(346\) −3447.00 −0.535583
\(347\) − 5055.00i − 0.782036i −0.920383 0.391018i \(-0.872123\pi\)
0.920383 0.391018i \(-0.127877\pi\)
\(348\) 0 0
\(349\) −1622.00 −0.248778 −0.124389 0.992234i \(-0.539697\pi\)
−0.124389 + 0.992234i \(0.539697\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 675.000i 0.102209i
\(353\) 30.0000i 0.00452334i 0.999997 + 0.00226167i \(0.000719912\pi\)
−0.999997 + 0.00226167i \(0.999280\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 450.000 0.0669942
\(357\) 0 0
\(358\) − 945.000i − 0.139511i
\(359\) −7470.00 −1.09819 −0.549097 0.835759i \(-0.685028\pi\)
−0.549097 + 0.835759i \(0.685028\pi\)
\(360\) 0 0
\(361\) −6855.00 −0.999417
\(362\) − 3408.00i − 0.494808i
\(363\) 0 0
\(364\) 500.000 0.0719976
\(365\) 0 0
\(366\) 0 0
\(367\) − 1375.00i − 0.195571i −0.995208 0.0977853i \(-0.968824\pi\)
0.995208 0.0977853i \(-0.0311758\pi\)
\(368\) − 8094.00i − 1.14655i
\(369\) 0 0
\(370\) 0 0
\(371\) 15525.0 2.17255
\(372\) 0 0
\(373\) 4840.00i 0.671865i 0.941886 + 0.335933i \(0.109051\pi\)
−0.941886 + 0.335933i \(0.890949\pi\)
\(374\) −3240.00 −0.447958
\(375\) 0 0
\(376\) 6930.00 0.950499
\(377\) − 600.000i − 0.0819670i
\(378\) 0 0
\(379\) −1892.00 −0.256426 −0.128213 0.991747i \(-0.540924\pi\)
−0.128213 + 0.991747i \(0.540924\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 7380.00i 0.988465i
\(383\) − 10704.0i − 1.42806i −0.700113 0.714032i \(-0.746867\pi\)
0.700113 0.714032i \(-0.253133\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −2895.00 −0.381740
\(387\) 0 0
\(388\) 1105.00i 0.144582i
\(389\) 7815.00 1.01860 0.509301 0.860588i \(-0.329904\pi\)
0.509301 + 0.860588i \(0.329904\pi\)
\(390\) 0 0
\(391\) 8208.00 1.06163
\(392\) 5922.00i 0.763026i
\(393\) 0 0
\(394\) −7479.00 −0.956311
\(395\) 0 0
\(396\) 0 0
\(397\) 4700.00i 0.594172i 0.954851 + 0.297086i \(0.0960148\pi\)
−0.954851 + 0.297086i \(0.903985\pi\)
\(398\) − 1533.00i − 0.193071i
\(399\) 0 0
\(400\) 0 0
\(401\) 2100.00 0.261519 0.130759 0.991414i \(-0.458258\pi\)
0.130759 + 0.991414i \(0.458258\pi\)
\(402\) 0 0
\(403\) − 2020.00i − 0.249686i
\(404\) 1425.00 0.175486
\(405\) 0 0
\(406\) −2250.00 −0.275038
\(407\) − 6450.00i − 0.785540i
\(408\) 0 0
\(409\) 10753.0 1.30000 0.650002 0.759933i \(-0.274768\pi\)
0.650002 + 0.759933i \(0.274768\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 1060.00i − 0.126754i
\(413\) 16500.0i 1.96589i
\(414\) 0 0
\(415\) 0 0
\(416\) 900.000 0.106072
\(417\) 0 0
\(418\) 90.0000i 0.0105312i
\(419\) 2940.00 0.342789 0.171394 0.985203i \(-0.445173\pi\)
0.171394 + 0.985203i \(0.445173\pi\)
\(420\) 0 0
\(421\) 8696.00 1.00669 0.503346 0.864085i \(-0.332102\pi\)
0.503346 + 0.864085i \(0.332102\pi\)
\(422\) 6258.00i 0.721883i
\(423\) 0 0
\(424\) 13041.0 1.49370
\(425\) 0 0
\(426\) 0 0
\(427\) 9400.00i 1.06533i
\(428\) 1485.00i 0.167711i
\(429\) 0 0
\(430\) 0 0
\(431\) −8370.00 −0.935426 −0.467713 0.883880i \(-0.654922\pi\)
−0.467713 + 0.883880i \(0.654922\pi\)
\(432\) 0 0
\(433\) 5155.00i 0.572133i 0.958210 + 0.286066i \(0.0923478\pi\)
−0.958210 + 0.286066i \(0.907652\pi\)
\(434\) −7575.00 −0.837815
\(435\) 0 0
\(436\) −862.000 −0.0946842
\(437\) − 228.000i − 0.0249582i
\(438\) 0 0
\(439\) 10987.0 1.19449 0.597245 0.802059i \(-0.296262\pi\)
0.597245 + 0.802059i \(0.296262\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 4320.00i 0.464890i
\(443\) 1956.00i 0.209780i 0.994484 + 0.104890i \(0.0334490\pi\)
−0.994484 + 0.104890i \(0.966551\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −15720.0 −1.66898
\(447\) 0 0
\(448\) 10825.0i 1.14159i
\(449\) −8730.00 −0.917582 −0.458791 0.888544i \(-0.651717\pi\)
−0.458791 + 0.888544i \(0.651717\pi\)
\(450\) 0 0
\(451\) 450.000 0.0469838
\(452\) − 690.000i − 0.0718028i
\(453\) 0 0
\(454\) −7164.00 −0.740580
\(455\) 0 0
\(456\) 0 0
\(457\) − 8665.00i − 0.886940i −0.896289 0.443470i \(-0.853747\pi\)
0.896289 0.443470i \(-0.146253\pi\)
\(458\) 546.000i 0.0557050i
\(459\) 0 0
\(460\) 0 0
\(461\) 9825.00 0.992616 0.496308 0.868147i \(-0.334689\pi\)
0.496308 + 0.868147i \(0.334689\pi\)
\(462\) 0 0
\(463\) 5245.00i 0.526470i 0.964732 + 0.263235i \(0.0847895\pi\)
−0.964732 + 0.263235i \(0.915210\pi\)
\(464\) −2130.00 −0.213109
\(465\) 0 0
\(466\) 1350.00 0.134201
\(467\) 11007.0i 1.09067i 0.838218 + 0.545335i \(0.183598\pi\)
−0.838218 + 0.545335i \(0.816402\pi\)
\(468\) 0 0
\(469\) −6250.00 −0.615348
\(470\) 0 0
\(471\) 0 0
\(472\) 13860.0i 1.35161i
\(473\) − 1650.00i − 0.160396i
\(474\) 0 0
\(475\) 0 0
\(476\) 1800.00 0.173325
\(477\) 0 0
\(478\) − 15570.0i − 1.48986i
\(479\) 16950.0 1.61684 0.808419 0.588608i \(-0.200324\pi\)
0.808419 + 0.588608i \(0.200324\pi\)
\(480\) 0 0
\(481\) −8600.00 −0.815231
\(482\) 6798.00i 0.642408i
\(483\) 0 0
\(484\) 1106.00 0.103869
\(485\) 0 0
\(486\) 0 0
\(487\) 10640.0i 0.990030i 0.868885 + 0.495015i \(0.164837\pi\)
−0.868885 + 0.495015i \(0.835163\pi\)
\(488\) 7896.00i 0.732449i
\(489\) 0 0
\(490\) 0 0
\(491\) −1635.00 −0.150278 −0.0751390 0.997173i \(-0.523940\pi\)
−0.0751390 + 0.997173i \(0.523940\pi\)
\(492\) 0 0
\(493\) − 2160.00i − 0.197326i
\(494\) 120.000 0.0109293
\(495\) 0 0
\(496\) −7171.00 −0.649168
\(497\) − 9000.00i − 0.812284i
\(498\) 0 0
\(499\) 15802.0 1.41762 0.708812 0.705397i \(-0.249231\pi\)
0.708812 + 0.705397i \(0.249231\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) − 8640.00i − 0.768171i
\(503\) − 7866.00i − 0.697272i −0.937258 0.348636i \(-0.886645\pi\)
0.937258 0.348636i \(-0.113355\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 5130.00 0.450704
\(507\) 0 0
\(508\) − 1865.00i − 0.162886i
\(509\) −11955.0 −1.04105 −0.520527 0.853845i \(-0.674264\pi\)
−0.520527 + 0.853845i \(0.674264\pi\)
\(510\) 0 0
\(511\) −19625.0 −1.69894
\(512\) 8733.00i 0.753804i
\(513\) 0 0
\(514\) 12564.0 1.07816
\(515\) 0 0
\(516\) 0 0
\(517\) 4950.00i 0.421085i
\(518\) 32250.0i 2.73549i
\(519\) 0 0
\(520\) 0 0
\(521\) −19260.0 −1.61957 −0.809785 0.586727i \(-0.800416\pi\)
−0.809785 + 0.586727i \(0.800416\pi\)
\(522\) 0 0
\(523\) 18520.0i 1.54842i 0.632930 + 0.774209i \(0.281852\pi\)
−0.632930 + 0.774209i \(0.718148\pi\)
\(524\) −1155.00 −0.0962909
\(525\) 0 0
\(526\) −9090.00 −0.753503
\(527\) − 7272.00i − 0.601088i
\(528\) 0 0
\(529\) −829.000 −0.0681351
\(530\) 0 0
\(531\) 0 0
\(532\) − 50.0000i − 0.00407476i
\(533\) − 600.000i − 0.0487596i
\(534\) 0 0
\(535\) 0 0
\(536\) −5250.00 −0.423070
\(537\) 0 0
\(538\) − 10530.0i − 0.843830i
\(539\) −4230.00 −0.338032
\(540\) 0 0
\(541\) 8372.00 0.665324 0.332662 0.943046i \(-0.392053\pi\)
0.332662 + 0.943046i \(0.392053\pi\)
\(542\) − 8997.00i − 0.713015i
\(543\) 0 0
\(544\) 3240.00 0.255356
\(545\) 0 0
\(546\) 0 0
\(547\) 17120.0i 1.33821i 0.743170 + 0.669103i \(0.233321\pi\)
−0.743170 + 0.669103i \(0.766679\pi\)
\(548\) − 2778.00i − 0.216552i
\(549\) 0 0
\(550\) 0 0
\(551\) −60.0000 −0.00463899
\(552\) 0 0
\(553\) 12200.0i 0.938150i
\(554\) −23160.0 −1.77613
\(555\) 0 0
\(556\) −1924.00 −0.146755
\(557\) − 10575.0i − 0.804447i −0.915541 0.402224i \(-0.868237\pi\)
0.915541 0.402224i \(-0.131763\pi\)
\(558\) 0 0
\(559\) −2200.00 −0.166458
\(560\) 0 0
\(561\) 0 0
\(562\) − 22320.0i − 1.67529i
\(563\) 10455.0i 0.782639i 0.920255 + 0.391319i \(0.127981\pi\)
−0.920255 + 0.391319i \(0.872019\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −2490.00 −0.184916
\(567\) 0 0
\(568\) − 7560.00i − 0.558469i
\(569\) −24540.0 −1.80803 −0.904016 0.427498i \(-0.859395\pi\)
−0.904016 + 0.427498i \(0.859395\pi\)
\(570\) 0 0
\(571\) 24644.0 1.80616 0.903082 0.429469i \(-0.141299\pi\)
0.903082 + 0.429469i \(0.141299\pi\)
\(572\) 300.000i 0.0219294i
\(573\) 0 0
\(574\) −2250.00 −0.163612
\(575\) 0 0
\(576\) 0 0
\(577\) − 9610.00i − 0.693361i −0.937983 0.346681i \(-0.887309\pi\)
0.937983 0.346681i \(-0.112691\pi\)
\(578\) 813.000i 0.0585058i
\(579\) 0 0
\(580\) 0 0
\(581\) 12225.0 0.872941
\(582\) 0 0
\(583\) 9315.00i 0.661729i
\(584\) −16485.0 −1.16807
\(585\) 0 0
\(586\) 1638.00 0.115470
\(587\) − 4017.00i − 0.282452i −0.989977 0.141226i \(-0.954896\pi\)
0.989977 0.141226i \(-0.0451044\pi\)
\(588\) 0 0
\(589\) −202.000 −0.0141312
\(590\) 0 0
\(591\) 0 0
\(592\) 30530.0i 2.11955i
\(593\) 594.000i 0.0411343i 0.999788 + 0.0205672i \(0.00654719\pi\)
−0.999788 + 0.0205672i \(0.993453\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1455.00 −0.0999985
\(597\) 0 0
\(598\) − 6840.00i − 0.467740i
\(599\) 8790.00 0.599582 0.299791 0.954005i \(-0.403083\pi\)
0.299791 + 0.954005i \(0.403083\pi\)
\(600\) 0 0
\(601\) 9371.00 0.636025 0.318013 0.948087i \(-0.396985\pi\)
0.318013 + 0.948087i \(0.396985\pi\)
\(602\) 8250.00i 0.558546i
\(603\) 0 0
\(604\) 727.000 0.0489755
\(605\) 0 0
\(606\) 0 0
\(607\) − 14560.0i − 0.973595i −0.873515 0.486798i \(-0.838165\pi\)
0.873515 0.486798i \(-0.161835\pi\)
\(608\) − 90.0000i − 0.00600326i
\(609\) 0 0
\(610\) 0 0
\(611\) 6600.00 0.437001
\(612\) 0 0
\(613\) 18250.0i 1.20246i 0.799074 + 0.601232i \(0.205323\pi\)
−0.799074 + 0.601232i \(0.794677\pi\)
\(614\) −16680.0 −1.09634
\(615\) 0 0
\(616\) −7875.00 −0.515086
\(617\) − 19662.0i − 1.28292i −0.767156 0.641461i \(-0.778329\pi\)
0.767156 0.641461i \(-0.221671\pi\)
\(618\) 0 0
\(619\) −12044.0 −0.782050 −0.391025 0.920380i \(-0.627879\pi\)
−0.391025 + 0.920380i \(0.627879\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 26010.0i − 1.67670i
\(623\) 11250.0i 0.723470i
\(624\) 0 0
\(625\) 0 0
\(626\) −13695.0 −0.874381
\(627\) 0 0
\(628\) − 3260.00i − 0.207147i
\(629\) −30960.0 −1.96257
\(630\) 0 0
\(631\) 14879.0 0.938706 0.469353 0.883011i \(-0.344487\pi\)
0.469353 + 0.883011i \(0.344487\pi\)
\(632\) 10248.0i 0.645006i
\(633\) 0 0
\(634\) −12699.0 −0.795492
\(635\) 0 0
\(636\) 0 0
\(637\) 5640.00i 0.350808i
\(638\) − 1350.00i − 0.0837727i
\(639\) 0 0
\(640\) 0 0
\(641\) −8850.00 −0.545326 −0.272663 0.962110i \(-0.587904\pi\)
−0.272663 + 0.962110i \(0.587904\pi\)
\(642\) 0 0
\(643\) − 18380.0i − 1.12727i −0.826023 0.563636i \(-0.809402\pi\)
0.826023 0.563636i \(-0.190598\pi\)
\(644\) −2850.00 −0.174388
\(645\) 0 0
\(646\) 432.000 0.0263109
\(647\) − 3888.00i − 0.236249i −0.992999 0.118124i \(-0.962312\pi\)
0.992999 0.118124i \(-0.0376882\pi\)
\(648\) 0 0
\(649\) −9900.00 −0.598781
\(650\) 0 0
\(651\) 0 0
\(652\) 2540.00i 0.152568i
\(653\) − 6789.00i − 0.406852i −0.979090 0.203426i \(-0.934792\pi\)
0.979090 0.203426i \(-0.0652076\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −2130.00 −0.126772
\(657\) 0 0
\(658\) − 24750.0i − 1.46635i
\(659\) 28335.0 1.67492 0.837462 0.546496i \(-0.184038\pi\)
0.837462 + 0.546496i \(0.184038\pi\)
\(660\) 0 0
\(661\) −6082.00 −0.357886 −0.178943 0.983859i \(-0.557268\pi\)
−0.178943 + 0.983859i \(0.557268\pi\)
\(662\) − 1626.00i − 0.0954627i
\(663\) 0 0
\(664\) 10269.0 0.600172
\(665\) 0 0
\(666\) 0 0
\(667\) 3420.00i 0.198535i
\(668\) 3498.00i 0.202607i
\(669\) 0 0
\(670\) 0 0
\(671\) −5640.00 −0.324486
\(672\) 0 0
\(673\) − 9965.00i − 0.570762i −0.958414 0.285381i \(-0.907880\pi\)
0.958414 0.285381i \(-0.0921201\pi\)
\(674\) 17070.0 0.975537
\(675\) 0 0
\(676\) −1797.00 −0.102242
\(677\) − 8130.00i − 0.461538i −0.973009 0.230769i \(-0.925876\pi\)
0.973009 0.230769i \(-0.0741242\pi\)
\(678\) 0 0
\(679\) −27625.0 −1.56134
\(680\) 0 0
\(681\) 0 0
\(682\) − 4545.00i − 0.255186i
\(683\) 33516.0i 1.87768i 0.344356 + 0.938839i \(0.388097\pi\)
−0.344356 + 0.938839i \(0.611903\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −4575.00 −0.254627
\(687\) 0 0
\(688\) 7810.00i 0.432781i
\(689\) 12420.0 0.686741
\(690\) 0 0
\(691\) −22084.0 −1.21580 −0.607898 0.794015i \(-0.707987\pi\)
−0.607898 + 0.794015i \(0.707987\pi\)
\(692\) 1149.00i 0.0631191i
\(693\) 0 0
\(694\) −15165.0 −0.829475
\(695\) 0 0
\(696\) 0 0
\(697\) − 2160.00i − 0.117383i
\(698\) 4866.00i 0.263869i
\(699\) 0 0
\(700\) 0 0
\(701\) 10395.0 0.560077 0.280038 0.959989i \(-0.409653\pi\)
0.280038 + 0.959989i \(0.409653\pi\)
\(702\) 0 0
\(703\) 860.000i 0.0461387i
\(704\) −6495.00 −0.347712
\(705\) 0 0
\(706\) 90.0000 0.00479773
\(707\) 35625.0i 1.89507i
\(708\) 0 0
\(709\) 4804.00 0.254468 0.127234 0.991873i \(-0.459390\pi\)
0.127234 + 0.991873i \(0.459390\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 9450.00i 0.497407i
\(713\) 11514.0i 0.604772i
\(714\) 0 0
\(715\) 0 0
\(716\) −315.000 −0.0164415
\(717\) 0 0
\(718\) 22410.0i 1.16481i
\(719\) 10980.0 0.569520 0.284760 0.958599i \(-0.408086\pi\)
0.284760 + 0.958599i \(0.408086\pi\)
\(720\) 0 0
\(721\) 26500.0 1.36881
\(722\) 20565.0i 1.06004i
\(723\) 0 0
\(724\) −1136.00 −0.0583137
\(725\) 0 0
\(726\) 0 0
\(727\) − 25945.0i − 1.32359i −0.749687 0.661793i \(-0.769796\pi\)
0.749687 0.661793i \(-0.230204\pi\)
\(728\) 10500.0i 0.534555i
\(729\) 0 0
\(730\) 0 0
\(731\) −7920.00 −0.400727
\(732\) 0 0
\(733\) − 18650.0i − 0.939773i −0.882727 0.469886i \(-0.844295\pi\)
0.882727 0.469886i \(-0.155705\pi\)
\(734\) −4125.00 −0.207434
\(735\) 0 0
\(736\) −5130.00 −0.256922
\(737\) − 3750.00i − 0.187426i
\(738\) 0 0
\(739\) 5128.00 0.255259 0.127630 0.991822i \(-0.459263\pi\)
0.127630 + 0.991822i \(0.459263\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 46575.0i − 2.30434i
\(743\) − 32700.0i − 1.61460i −0.590142 0.807299i \(-0.700928\pi\)
0.590142 0.807299i \(-0.299072\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 14520.0 0.712621
\(747\) 0 0
\(748\) 1080.00i 0.0527924i
\(749\) −37125.0 −1.81111
\(750\) 0 0
\(751\) 21161.0 1.02820 0.514098 0.857731i \(-0.328127\pi\)
0.514098 + 0.857731i \(0.328127\pi\)
\(752\) − 23430.0i − 1.13618i
\(753\) 0 0
\(754\) −1800.00 −0.0869392
\(755\) 0 0
\(756\) 0 0
\(757\) 7130.00i 0.342331i 0.985242 + 0.171165i \(0.0547532\pi\)
−0.985242 + 0.171165i \(0.945247\pi\)
\(758\) 5676.00i 0.271981i
\(759\) 0 0
\(760\) 0 0
\(761\) 3360.00 0.160052 0.0800262 0.996793i \(-0.474500\pi\)
0.0800262 + 0.996793i \(0.474500\pi\)
\(762\) 0 0
\(763\) − 21550.0i − 1.02249i
\(764\) 2460.00 0.116492
\(765\) 0 0
\(766\) −32112.0 −1.51469
\(767\) 13200.0i 0.621414i
\(768\) 0 0
\(769\) −33473.0 −1.56966 −0.784829 0.619712i \(-0.787249\pi\)
−0.784829 + 0.619712i \(0.787249\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 965.000i 0.0449885i
\(773\) − 3546.00i − 0.164995i −0.996591 0.0824973i \(-0.973710\pi\)
0.996591 0.0824973i \(-0.0262896\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −23205.0 −1.07347
\(777\) 0 0
\(778\) − 23445.0i − 1.08039i
\(779\) −60.0000 −0.00275959
\(780\) 0 0
\(781\) 5400.00 0.247410
\(782\) − 24624.0i − 1.12603i
\(783\) 0 0
\(784\) 20022.0 0.912081
\(785\) 0 0
\(786\) 0 0
\(787\) − 31840.0i − 1.44215i −0.692856 0.721076i \(-0.743648\pi\)
0.692856 0.721076i \(-0.256352\pi\)
\(788\) 2493.00i 0.112702i
\(789\) 0 0
\(790\) 0 0
\(791\) 17250.0 0.775397
\(792\) 0 0
\(793\) 7520.00i 0.336750i
\(794\) 14100.0 0.630214
\(795\) 0 0
\(796\) −511.000 −0.0227537
\(797\) 15717.0i 0.698525i 0.937025 + 0.349263i \(0.113568\pi\)
−0.937025 + 0.349263i \(0.886432\pi\)
\(798\) 0 0
\(799\) 23760.0 1.05203
\(800\) 0 0
\(801\) 0 0
\(802\) − 6300.00i − 0.277382i
\(803\) − 11775.0i − 0.517473i
\(804\) 0 0
\(805\) 0 0
\(806\) −6060.00 −0.264832
\(807\) 0 0
\(808\) 29925.0i 1.30292i
\(809\) 10530.0 0.457621 0.228810 0.973471i \(-0.426516\pi\)
0.228810 + 0.973471i \(0.426516\pi\)
\(810\) 0 0
\(811\) −26782.0 −1.15961 −0.579805 0.814755i \(-0.696871\pi\)
−0.579805 + 0.814755i \(0.696871\pi\)
\(812\) 750.000i 0.0324136i
\(813\) 0 0
\(814\) −19350.0 −0.833191
\(815\) 0 0
\(816\) 0 0
\(817\) 220.000i 0.00942084i
\(818\) − 32259.0i − 1.37886i
\(819\) 0 0
\(820\) 0 0
\(821\) −10110.0 −0.429770 −0.214885 0.976639i \(-0.568938\pi\)
−0.214885 + 0.976639i \(0.568938\pi\)
\(822\) 0 0
\(823\) 12535.0i 0.530914i 0.964123 + 0.265457i \(0.0855229\pi\)
−0.964123 + 0.265457i \(0.914477\pi\)
\(824\) 22260.0 0.941097
\(825\) 0 0
\(826\) 49500.0 2.08514
\(827\) − 9792.00i − 0.411731i −0.978580 0.205865i \(-0.933999\pi\)
0.978580 0.205865i \(-0.0660009\pi\)
\(828\) 0 0
\(829\) 4534.00 0.189955 0.0949773 0.995479i \(-0.469722\pi\)
0.0949773 + 0.995479i \(0.469722\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 8660.00i 0.360855i
\(833\) 20304.0i 0.844528i
\(834\) 0 0
\(835\) 0 0
\(836\) 30.0000 0.00124111
\(837\) 0 0
\(838\) − 8820.00i − 0.363582i
\(839\) −8880.00 −0.365401 −0.182701 0.983169i \(-0.558484\pi\)
−0.182701 + 0.983169i \(0.558484\pi\)
\(840\) 0 0
\(841\) −23489.0 −0.963098
\(842\) − 26088.0i − 1.06776i
\(843\) 0 0
\(844\) 2086.00 0.0850747
\(845\) 0 0
\(846\) 0 0
\(847\) 27650.0i 1.12168i
\(848\) − 44091.0i − 1.78548i
\(849\) 0 0
\(850\) 0 0
\(851\) 49020.0 1.97460
\(852\) 0 0
\(853\) − 2270.00i − 0.0911176i −0.998962 0.0455588i \(-0.985493\pi\)
0.998962 0.0455588i \(-0.0145068\pi\)
\(854\) 28200.0 1.12996
\(855\) 0 0
\(856\) −31185.0 −1.24519
\(857\) 19608.0i 0.781560i 0.920484 + 0.390780i \(0.127795\pi\)
−0.920484 + 0.390780i \(0.872205\pi\)
\(858\) 0 0
\(859\) 952.000 0.0378135 0.0189068 0.999821i \(-0.493981\pi\)
0.0189068 + 0.999821i \(0.493981\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 25110.0i 0.992169i
\(863\) − 17604.0i − 0.694377i −0.937795 0.347188i \(-0.887136\pi\)
0.937795 0.347188i \(-0.112864\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 15465.0 0.606838
\(867\) 0 0
\(868\) 2525.00i 0.0987374i
\(869\) −7320.00 −0.285747
\(870\) 0 0
\(871\) −5000.00 −0.194510
\(872\) − 18102.0i − 0.702994i
\(873\) 0 0
\(874\) −684.000 −0.0264721
\(875\) 0 0
\(876\) 0 0
\(877\) 21890.0i 0.842842i 0.906865 + 0.421421i \(0.138469\pi\)
−0.906865 + 0.421421i \(0.861531\pi\)
\(878\) − 32961.0i − 1.26695i
\(879\) 0 0
\(880\) 0 0
\(881\) −23940.0 −0.915504 −0.457752 0.889080i \(-0.651345\pi\)
−0.457752 + 0.889080i \(0.651345\pi\)
\(882\) 0 0
\(883\) 34990.0i 1.33353i 0.745268 + 0.666765i \(0.232322\pi\)
−0.745268 + 0.666765i \(0.767678\pi\)
\(884\) 1440.00 0.0547878
\(885\) 0 0
\(886\) 5868.00 0.222505
\(887\) 22188.0i 0.839910i 0.907545 + 0.419955i \(0.137954\pi\)
−0.907545 + 0.419955i \(0.862046\pi\)
\(888\) 0 0
\(889\) 46625.0 1.75900
\(890\) 0 0
\(891\) 0 0
\(892\) 5240.00i 0.196691i
\(893\) − 660.000i − 0.0247324i
\(894\) 0 0
\(895\) 0 0
\(896\) 41475.0 1.54641
\(897\) 0 0
\(898\) 26190.0i 0.973242i
\(899\) 3030.00 0.112410
\(900\) 0 0
\(901\) 44712.0 1.65324
\(902\) − 1350.00i − 0.0498338i
\(903\) 0 0
\(904\) 14490.0 0.533109
\(905\) 0 0
\(906\) 0 0
\(907\) 37370.0i 1.36808i 0.729444 + 0.684041i \(0.239779\pi\)
−0.729444 + 0.684041i \(0.760221\pi\)
\(908\) 2388.00i 0.0872782i
\(909\) 0 0
\(910\) 0 0
\(911\) −40710.0 −1.48055 −0.740276 0.672303i \(-0.765305\pi\)
−0.740276 + 0.672303i \(0.765305\pi\)
\(912\) 0 0
\(913\) 7335.00i 0.265885i
\(914\) −25995.0 −0.940742
\(915\) 0 0
\(916\) 182.000 0.00656490
\(917\) − 28875.0i − 1.03984i
\(918\) 0 0
\(919\) −20981.0 −0.753100 −0.376550 0.926396i \(-0.622890\pi\)
−0.376550 + 0.926396i \(0.622890\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 29475.0i − 1.05283i
\(923\) − 7200.00i − 0.256762i
\(924\) 0 0
\(925\) 0 0
\(926\) 15735.0 0.558406
\(927\) 0 0
\(928\) 1350.00i 0.0477542i
\(929\) 20100.0 0.709860 0.354930 0.934893i \(-0.384505\pi\)
0.354930 + 0.934893i \(0.384505\pi\)
\(930\) 0 0
\(931\) 564.000 0.0198543
\(932\) − 450.000i − 0.0158157i
\(933\) 0 0
\(934\) 33021.0 1.15683
\(935\) 0 0
\(936\) 0 0
\(937\) 15635.0i 0.545115i 0.962139 + 0.272558i \(0.0878696\pi\)
−0.962139 + 0.272558i \(0.912130\pi\)
\(938\) 18750.0i 0.652675i
\(939\) 0 0
\(940\) 0 0
\(941\) −23955.0 −0.829873 −0.414937 0.909850i \(-0.636196\pi\)
−0.414937 + 0.909850i \(0.636196\pi\)
\(942\) 0 0
\(943\) 3420.00i 0.118102i
\(944\) 46860.0 1.61564
\(945\) 0 0
\(946\) −4950.00 −0.170125
\(947\) 36393.0i 1.24880i 0.781105 + 0.624400i \(0.214656\pi\)
−0.781105 + 0.624400i \(0.785344\pi\)
\(948\) 0 0
\(949\) −15700.0 −0.537032
\(950\) 0 0
\(951\) 0 0
\(952\) 37800.0i 1.28688i
\(953\) 43020.0i 1.46228i 0.682227 + 0.731141i \(0.261012\pi\)
−0.682227 + 0.731141i \(0.738988\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −5190.00 −0.175582
\(957\) 0 0
\(958\) − 50850.0i − 1.71492i
\(959\) 69450.0 2.33854
\(960\) 0 0
\(961\) −19590.0 −0.657581
\(962\) 25800.0i 0.864683i
\(963\) 0 0
\(964\) 2266.00 0.0757084
\(965\) 0 0
\(966\) 0 0
\(967\) − 43585.0i − 1.44943i −0.689049 0.724715i \(-0.741971\pi\)
0.689049 0.724715i \(-0.258029\pi\)
\(968\) 23226.0i 0.771190i
\(969\) 0 0
\(970\) 0 0
\(971\) 43335.0 1.43222 0.716110 0.697987i \(-0.245921\pi\)
0.716110 + 0.697987i \(0.245921\pi\)
\(972\) 0 0
\(973\) − 48100.0i − 1.58480i
\(974\) 31920.0 1.05008
\(975\) 0 0
\(976\) 26696.0 0.875531
\(977\) − 30390.0i − 0.995151i −0.867421 0.497575i \(-0.834224\pi\)
0.867421 0.497575i \(-0.165776\pi\)
\(978\) 0 0
\(979\) −6750.00 −0.220358
\(980\) 0 0
\(981\) 0 0
\(982\) 4905.00i 0.159394i
\(983\) − 59226.0i − 1.92168i −0.277096 0.960842i \(-0.589372\pi\)
0.277096 0.960842i \(-0.410628\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −6480.00 −0.209295
\(987\) 0 0
\(988\) − 40.0000i − 0.00128803i
\(989\) 12540.0 0.403184
\(990\) 0 0
\(991\) 8399.00 0.269226 0.134613 0.990898i \(-0.457021\pi\)
0.134613 + 0.990898i \(0.457021\pi\)
\(992\) 4545.00i 0.145468i
\(993\) 0 0
\(994\) −27000.0 −0.861557
\(995\) 0 0
\(996\) 0 0
\(997\) 13340.0i 0.423753i 0.977296 + 0.211877i \(0.0679575\pi\)
−0.977296 + 0.211877i \(0.932042\pi\)
\(998\) − 47406.0i − 1.50362i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.4.b.b.649.1 2
3.2 odd 2 675.4.b.a.649.2 2
5.2 odd 4 675.4.a.j.1.1 1
5.3 odd 4 27.4.a.a.1.1 1
5.4 even 2 inner 675.4.b.b.649.2 2
15.2 even 4 675.4.a.a.1.1 1
15.8 even 4 27.4.a.b.1.1 yes 1
15.14 odd 2 675.4.b.a.649.1 2
20.3 even 4 432.4.a.a.1.1 1
35.13 even 4 1323.4.a.d.1.1 1
40.3 even 4 1728.4.a.bd.1.1 1
40.13 odd 4 1728.4.a.bc.1.1 1
45.13 odd 12 81.4.c.c.55.1 2
45.23 even 12 81.4.c.a.55.1 2
45.38 even 12 81.4.c.a.28.1 2
45.43 odd 12 81.4.c.c.28.1 2
60.23 odd 4 432.4.a.n.1.1 1
105.83 odd 4 1323.4.a.k.1.1 1
120.53 even 4 1728.4.a.c.1.1 1
120.83 odd 4 1728.4.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.4.a.a.1.1 1 5.3 odd 4
27.4.a.b.1.1 yes 1 15.8 even 4
81.4.c.a.28.1 2 45.38 even 12
81.4.c.a.55.1 2 45.23 even 12
81.4.c.c.28.1 2 45.43 odd 12
81.4.c.c.55.1 2 45.13 odd 12
432.4.a.a.1.1 1 20.3 even 4
432.4.a.n.1.1 1 60.23 odd 4
675.4.a.a.1.1 1 15.2 even 4
675.4.a.j.1.1 1 5.2 odd 4
675.4.b.a.649.1 2 15.14 odd 2
675.4.b.a.649.2 2 3.2 odd 2
675.4.b.b.649.1 2 1.1 even 1 trivial
675.4.b.b.649.2 2 5.4 even 2 inner
1323.4.a.d.1.1 1 35.13 even 4
1323.4.a.k.1.1 1 105.83 odd 4
1728.4.a.c.1.1 1 120.53 even 4
1728.4.a.d.1.1 1 120.83 odd 4
1728.4.a.bc.1.1 1 40.13 odd 4
1728.4.a.bd.1.1 1 40.3 even 4