Properties

Label 675.5.c.p.26.4
Level $675$
Weight $5$
Character 675.26
Analytic conductor $69.775$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,5,Mod(26,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.26");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 675.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(69.7747250816\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 73x^{4} + 1456x^{2} + 4500 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{3}\cdot 5 \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 26.4
Root \(1.94025i\) of defining polynomial
Character \(\chi\) \(=\) 675.26
Dual form 675.5.c.p.26.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.94025i q^{2} +12.2354 q^{4} +50.3522 q^{7} +54.7837i q^{8} -202.956i q^{11} -183.564 q^{13} +97.6958i q^{14} +89.4731 q^{16} +174.739i q^{17} +306.208 q^{19} +393.785 q^{22} +121.013i q^{23} -356.160i q^{26} +616.082 q^{28} -1431.82i q^{29} +1115.55 q^{31} +1050.14i q^{32} -339.038 q^{34} +1645.59 q^{37} +594.120i q^{38} -510.825i q^{41} +544.361 q^{43} -2483.26i q^{44} -234.794 q^{46} -4157.23i q^{47} +134.346 q^{49} -2245.99 q^{52} +1814.46i q^{53} +2758.48i q^{56} +2778.09 q^{58} +4837.65i q^{59} -3605.33 q^{61} +2164.44i q^{62} -605.961 q^{64} -1367.51 q^{67} +2138.01i q^{68} -2401.14i q^{71} -2473.24 q^{73} +3192.85i q^{74} +3746.59 q^{76} -10219.3i q^{77} +11646.0 q^{79} +991.127 q^{82} -10062.9i q^{83} +1056.20i q^{86} +11118.7 q^{88} -8373.34i q^{89} -9242.87 q^{91} +1480.64i q^{92} +8066.04 q^{94} -1573.80 q^{97} +260.665i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 50 q^{4} - 4 q^{7} - 566 q^{13} - 638 q^{16} + 1124 q^{19} - 1402 q^{22} + 3584 q^{28} - 2582 q^{31} + 1558 q^{34} - 2040 q^{37} - 1922 q^{43} - 5862 q^{46} + 6782 q^{49} + 834 q^{52} + 7234 q^{58}+ \cdots + 27792 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.94025i 0.485062i 0.970144 + 0.242531i \(0.0779776\pi\)
−0.970144 + 0.242531i \(0.922022\pi\)
\(3\) 0 0
\(4\) 12.2354 0.764715
\(5\) 0 0
\(6\) 0 0
\(7\) 50.3522 1.02760 0.513798 0.857911i \(-0.328238\pi\)
0.513798 + 0.857911i \(0.328238\pi\)
\(8\) 54.7837i 0.855996i
\(9\) 0 0
\(10\) 0 0
\(11\) − 202.956i − 1.67732i −0.544653 0.838662i \(-0.683338\pi\)
0.544653 0.838662i \(-0.316662\pi\)
\(12\) 0 0
\(13\) −183.564 −1.08618 −0.543090 0.839675i \(-0.682746\pi\)
−0.543090 + 0.839675i \(0.682746\pi\)
\(14\) 97.6958i 0.498448i
\(15\) 0 0
\(16\) 89.4731 0.349504
\(17\) 174.739i 0.604635i 0.953207 + 0.302317i \(0.0977603\pi\)
−0.953207 + 0.302317i \(0.902240\pi\)
\(18\) 0 0
\(19\) 306.208 0.848223 0.424111 0.905610i \(-0.360587\pi\)
0.424111 + 0.905610i \(0.360587\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 393.785 0.813606
\(23\) 121.013i 0.228757i 0.993437 + 0.114379i \(0.0364877\pi\)
−0.993437 + 0.114379i \(0.963512\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) − 356.160i − 0.526864i
\(27\) 0 0
\(28\) 616.082 0.785818
\(29\) − 1431.82i − 1.70252i −0.524743 0.851261i \(-0.675838\pi\)
0.524743 0.851261i \(-0.324162\pi\)
\(30\) 0 0
\(31\) 1115.55 1.16082 0.580411 0.814324i \(-0.302892\pi\)
0.580411 + 0.814324i \(0.302892\pi\)
\(32\) 1050.14i 1.02553i
\(33\) 0 0
\(34\) −339.038 −0.293285
\(35\) 0 0
\(36\) 0 0
\(37\) 1645.59 1.20204 0.601019 0.799235i \(-0.294762\pi\)
0.601019 + 0.799235i \(0.294762\pi\)
\(38\) 594.120i 0.411440i
\(39\) 0 0
\(40\) 0 0
\(41\) − 510.825i − 0.303882i −0.988390 0.151941i \(-0.951448\pi\)
0.988390 0.151941i \(-0.0485523\pi\)
\(42\) 0 0
\(43\) 544.361 0.294408 0.147204 0.989106i \(-0.452973\pi\)
0.147204 + 0.989106i \(0.452973\pi\)
\(44\) − 2483.26i − 1.28267i
\(45\) 0 0
\(46\) −234.794 −0.110961
\(47\) − 4157.23i − 1.88195i −0.338478 0.940974i \(-0.609912\pi\)
0.338478 0.940974i \(-0.390088\pi\)
\(48\) 0 0
\(49\) 134.346 0.0559544
\(50\) 0 0
\(51\) 0 0
\(52\) −2245.99 −0.830618
\(53\) 1814.46i 0.645946i 0.946408 + 0.322973i \(0.104682\pi\)
−0.946408 + 0.322973i \(0.895318\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 2758.48i 0.879618i
\(57\) 0 0
\(58\) 2778.09 0.825828
\(59\) 4837.65i 1.38973i 0.719140 + 0.694866i \(0.244536\pi\)
−0.719140 + 0.694866i \(0.755464\pi\)
\(60\) 0 0
\(61\) −3605.33 −0.968915 −0.484457 0.874815i \(-0.660983\pi\)
−0.484457 + 0.874815i \(0.660983\pi\)
\(62\) 2164.44i 0.563070i
\(63\) 0 0
\(64\) −605.961 −0.147940
\(65\) 0 0
\(66\) 0 0
\(67\) −1367.51 −0.304635 −0.152317 0.988332i \(-0.548674\pi\)
−0.152317 + 0.988332i \(0.548674\pi\)
\(68\) 2138.01i 0.462373i
\(69\) 0 0
\(70\) 0 0
\(71\) − 2401.14i − 0.476322i −0.971226 0.238161i \(-0.923455\pi\)
0.971226 0.238161i \(-0.0765446\pi\)
\(72\) 0 0
\(73\) −2473.24 −0.464109 −0.232055 0.972703i \(-0.574545\pi\)
−0.232055 + 0.972703i \(0.574545\pi\)
\(74\) 3192.85i 0.583062i
\(75\) 0 0
\(76\) 3746.59 0.648649
\(77\) − 10219.3i − 1.72361i
\(78\) 0 0
\(79\) 11646.0 1.86604 0.933022 0.359820i \(-0.117162\pi\)
0.933022 + 0.359820i \(0.117162\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 991.127 0.147401
\(83\) − 10062.9i − 1.46071i −0.683066 0.730357i \(-0.739354\pi\)
0.683066 0.730357i \(-0.260646\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1056.20i 0.142806i
\(87\) 0 0
\(88\) 11118.7 1.43578
\(89\) − 8373.34i − 1.05711i −0.848900 0.528553i \(-0.822735\pi\)
0.848900 0.528553i \(-0.177265\pi\)
\(90\) 0 0
\(91\) −9242.87 −1.11615
\(92\) 1480.64i 0.174934i
\(93\) 0 0
\(94\) 8066.04 0.912862
\(95\) 0 0
\(96\) 0 0
\(97\) −1573.80 −0.167266 −0.0836328 0.996497i \(-0.526652\pi\)
−0.0836328 + 0.996497i \(0.526652\pi\)
\(98\) 260.665i 0.0271413i
\(99\) 0 0
\(100\) 0 0
\(101\) 11677.7i 1.14476i 0.819988 + 0.572380i \(0.193980\pi\)
−0.819988 + 0.572380i \(0.806020\pi\)
\(102\) 0 0
\(103\) 13464.4 1.26915 0.634576 0.772861i \(-0.281175\pi\)
0.634576 + 0.772861i \(0.281175\pi\)
\(104\) − 10056.3i − 0.929765i
\(105\) 0 0
\(106\) −3520.50 −0.313324
\(107\) − 4631.07i − 0.404495i −0.979334 0.202248i \(-0.935175\pi\)
0.979334 0.202248i \(-0.0648246\pi\)
\(108\) 0 0
\(109\) 18127.8 1.52578 0.762890 0.646528i \(-0.223780\pi\)
0.762890 + 0.646528i \(0.223780\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 4505.17 0.359149
\(113\) − 12304.8i − 0.963647i −0.876268 0.481823i \(-0.839975\pi\)
0.876268 0.481823i \(-0.160025\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) − 17519.0i − 1.30194i
\(117\) 0 0
\(118\) −9386.25 −0.674106
\(119\) 8798.52i 0.621321i
\(120\) 0 0
\(121\) −26550.2 −1.81341
\(122\) − 6995.23i − 0.469984i
\(123\) 0 0
\(124\) 13649.2 0.887697
\(125\) 0 0
\(126\) 0 0
\(127\) 9955.91 0.617267 0.308634 0.951181i \(-0.400128\pi\)
0.308634 + 0.951181i \(0.400128\pi\)
\(128\) 15626.5i 0.953767i
\(129\) 0 0
\(130\) 0 0
\(131\) 155.782i 0.00907767i 0.999990 + 0.00453884i \(0.00144476\pi\)
−0.999990 + 0.00453884i \(0.998555\pi\)
\(132\) 0 0
\(133\) 15418.3 0.871630
\(134\) − 2653.30i − 0.147767i
\(135\) 0 0
\(136\) −9572.88 −0.517565
\(137\) 23957.9i 1.27646i 0.769844 + 0.638232i \(0.220334\pi\)
−0.769844 + 0.638232i \(0.779666\pi\)
\(138\) 0 0
\(139\) 8399.21 0.434719 0.217360 0.976092i \(-0.430256\pi\)
0.217360 + 0.976092i \(0.430256\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 4658.81 0.231046
\(143\) 37255.5i 1.82187i
\(144\) 0 0
\(145\) 0 0
\(146\) − 4798.69i − 0.225122i
\(147\) 0 0
\(148\) 20134.5 0.919216
\(149\) − 388.709i − 0.0175086i −0.999962 0.00875432i \(-0.997213\pi\)
0.999962 0.00875432i \(-0.00278662\pi\)
\(150\) 0 0
\(151\) 27587.9 1.20994 0.604972 0.796247i \(-0.293184\pi\)
0.604972 + 0.796247i \(0.293184\pi\)
\(152\) 16775.2i 0.726075i
\(153\) 0 0
\(154\) 19828.0 0.836058
\(155\) 0 0
\(156\) 0 0
\(157\) −34802.8 −1.41194 −0.705968 0.708244i \(-0.749488\pi\)
−0.705968 + 0.708244i \(0.749488\pi\)
\(158\) 22596.1i 0.905146i
\(159\) 0 0
\(160\) 0 0
\(161\) 6093.25i 0.235070i
\(162\) 0 0
\(163\) 37147.8 1.39816 0.699081 0.715043i \(-0.253593\pi\)
0.699081 + 0.715043i \(0.253593\pi\)
\(164\) − 6250.17i − 0.232383i
\(165\) 0 0
\(166\) 19524.4 0.708536
\(167\) 17254.1i 0.618672i 0.950953 + 0.309336i \(0.100107\pi\)
−0.950953 + 0.309336i \(0.899893\pi\)
\(168\) 0 0
\(169\) 5134.86 0.179786
\(170\) 0 0
\(171\) 0 0
\(172\) 6660.50 0.225139
\(173\) − 16749.1i − 0.559629i −0.960054 0.279815i \(-0.909727\pi\)
0.960054 0.279815i \(-0.0902730\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 18159.1i − 0.586232i
\(177\) 0 0
\(178\) 16246.3 0.512762
\(179\) 37065.5i 1.15681i 0.815748 + 0.578407i \(0.196325\pi\)
−0.815748 + 0.578407i \(0.803675\pi\)
\(180\) 0 0
\(181\) −25651.5 −0.782990 −0.391495 0.920180i \(-0.628042\pi\)
−0.391495 + 0.920180i \(0.628042\pi\)
\(182\) − 17933.5i − 0.541404i
\(183\) 0 0
\(184\) −6629.52 −0.195815
\(185\) 0 0
\(186\) 0 0
\(187\) 35464.5 1.01417
\(188\) − 50865.5i − 1.43915i
\(189\) 0 0
\(190\) 0 0
\(191\) 11801.5i 0.323498i 0.986832 + 0.161749i \(0.0517135\pi\)
−0.986832 + 0.161749i \(0.948286\pi\)
\(192\) 0 0
\(193\) 30954.0 0.831002 0.415501 0.909593i \(-0.363606\pi\)
0.415501 + 0.909593i \(0.363606\pi\)
\(194\) − 3053.56i − 0.0811341i
\(195\) 0 0
\(196\) 1643.79 0.0427892
\(197\) − 12462.4i − 0.321120i −0.987026 0.160560i \(-0.948670\pi\)
0.987026 0.160560i \(-0.0513301\pi\)
\(198\) 0 0
\(199\) 68252.0 1.72349 0.861746 0.507340i \(-0.169371\pi\)
0.861746 + 0.507340i \(0.169371\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −22657.6 −0.555280
\(203\) − 72095.4i − 1.74951i
\(204\) 0 0
\(205\) 0 0
\(206\) 26124.3i 0.615617i
\(207\) 0 0
\(208\) −16424.1 −0.379624
\(209\) − 62146.9i − 1.42274i
\(210\) 0 0
\(211\) −21887.4 −0.491621 −0.245810 0.969318i \(-0.579054\pi\)
−0.245810 + 0.969318i \(0.579054\pi\)
\(212\) 22200.7i 0.493964i
\(213\) 0 0
\(214\) 8985.42 0.196205
\(215\) 0 0
\(216\) 0 0
\(217\) 56170.4 1.19286
\(218\) 35172.4i 0.740098i
\(219\) 0 0
\(220\) 0 0
\(221\) − 32075.9i − 0.656742i
\(222\) 0 0
\(223\) −5919.40 −0.119033 −0.0595166 0.998227i \(-0.518956\pi\)
−0.0595166 + 0.998227i \(0.518956\pi\)
\(224\) 52876.9i 1.05383i
\(225\) 0 0
\(226\) 23874.4 0.467428
\(227\) 55687.9i 1.08071i 0.841437 + 0.540355i \(0.181710\pi\)
−0.841437 + 0.540355i \(0.818290\pi\)
\(228\) 0 0
\(229\) 6312.99 0.120383 0.0601914 0.998187i \(-0.480829\pi\)
0.0601914 + 0.998187i \(0.480829\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 78440.5 1.45735
\(233\) − 84453.4i − 1.55563i −0.628495 0.777814i \(-0.716329\pi\)
0.628495 0.777814i \(-0.283671\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 59190.8i 1.06275i
\(237\) 0 0
\(238\) −17071.3 −0.301379
\(239\) 106001.i 1.85572i 0.372930 + 0.927860i \(0.378353\pi\)
−0.372930 + 0.927860i \(0.621647\pi\)
\(240\) 0 0
\(241\) −22592.3 −0.388979 −0.194490 0.980905i \(-0.562305\pi\)
−0.194490 + 0.980905i \(0.562305\pi\)
\(242\) − 51513.9i − 0.879618i
\(243\) 0 0
\(244\) −44112.8 −0.740944
\(245\) 0 0
\(246\) 0 0
\(247\) −56208.9 −0.921322
\(248\) 61113.9i 0.993658i
\(249\) 0 0
\(250\) 0 0
\(251\) 6641.52i 0.105419i 0.998610 + 0.0527096i \(0.0167858\pi\)
−0.998610 + 0.0527096i \(0.983214\pi\)
\(252\) 0 0
\(253\) 24560.2 0.383700
\(254\) 19316.9i 0.299413i
\(255\) 0 0
\(256\) −40014.7 −0.610576
\(257\) − 63640.5i − 0.963534i −0.876299 0.481767i \(-0.839995\pi\)
0.876299 0.481767i \(-0.160005\pi\)
\(258\) 0 0
\(259\) 82859.0 1.23521
\(260\) 0 0
\(261\) 0 0
\(262\) −302.256 −0.00440323
\(263\) 63237.1i 0.914241i 0.889405 + 0.457120i \(0.151119\pi\)
−0.889405 + 0.457120i \(0.848881\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 29915.3i 0.422795i
\(267\) 0 0
\(268\) −16732.0 −0.232959
\(269\) − 3204.84i − 0.0442896i −0.999755 0.0221448i \(-0.992951\pi\)
0.999755 0.0221448i \(-0.00704949\pi\)
\(270\) 0 0
\(271\) 38026.4 0.517781 0.258891 0.965907i \(-0.416643\pi\)
0.258891 + 0.965907i \(0.416643\pi\)
\(272\) 15634.5i 0.211322i
\(273\) 0 0
\(274\) −46484.3 −0.619164
\(275\) 0 0
\(276\) 0 0
\(277\) −118697. −1.54696 −0.773481 0.633819i \(-0.781486\pi\)
−0.773481 + 0.633819i \(0.781486\pi\)
\(278\) 16296.5i 0.210866i
\(279\) 0 0
\(280\) 0 0
\(281\) − 79375.0i − 1.00524i −0.864506 0.502622i \(-0.832369\pi\)
0.864506 0.502622i \(-0.167631\pi\)
\(282\) 0 0
\(283\) 10423.0 0.130143 0.0650716 0.997881i \(-0.479272\pi\)
0.0650716 + 0.997881i \(0.479272\pi\)
\(284\) − 29379.0i − 0.364251i
\(285\) 0 0
\(286\) −72284.9 −0.883722
\(287\) − 25721.2i − 0.312268i
\(288\) 0 0
\(289\) 52987.1 0.634417
\(290\) 0 0
\(291\) 0 0
\(292\) −30261.2 −0.354911
\(293\) 108970.i 1.26932i 0.772792 + 0.634659i \(0.218859\pi\)
−0.772792 + 0.634659i \(0.781141\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 90151.5i 1.02894i
\(297\) 0 0
\(298\) 754.192 0.00849277
\(299\) − 22213.6i − 0.248471i
\(300\) 0 0
\(301\) 27409.8 0.302533
\(302\) 53527.4i 0.586897i
\(303\) 0 0
\(304\) 27397.4 0.296457
\(305\) 0 0
\(306\) 0 0
\(307\) −29250.9 −0.310357 −0.155179 0.987886i \(-0.549595\pi\)
−0.155179 + 0.987886i \(0.549595\pi\)
\(308\) − 125038.i − 1.31807i
\(309\) 0 0
\(310\) 0 0
\(311\) − 93436.3i − 0.966039i −0.875609 0.483020i \(-0.839540\pi\)
0.875609 0.483020i \(-0.160460\pi\)
\(312\) 0 0
\(313\) −135052. −1.37852 −0.689258 0.724516i \(-0.742063\pi\)
−0.689258 + 0.724516i \(0.742063\pi\)
\(314\) − 67526.0i − 0.684876i
\(315\) 0 0
\(316\) 142494. 1.42699
\(317\) 167909.i 1.67092i 0.549549 + 0.835462i \(0.314800\pi\)
−0.549549 + 0.835462i \(0.685200\pi\)
\(318\) 0 0
\(319\) −290597. −2.85568
\(320\) 0 0
\(321\) 0 0
\(322\) −11822.4 −0.114024
\(323\) 53506.7i 0.512865i
\(324\) 0 0
\(325\) 0 0
\(326\) 72075.8i 0.678195i
\(327\) 0 0
\(328\) 27984.9 0.260122
\(329\) − 209326.i − 1.93388i
\(330\) 0 0
\(331\) −159004. −1.45129 −0.725644 0.688071i \(-0.758458\pi\)
−0.725644 + 0.688071i \(0.758458\pi\)
\(332\) − 123123.i − 1.11703i
\(333\) 0 0
\(334\) −33477.3 −0.300094
\(335\) 0 0
\(336\) 0 0
\(337\) −195916. −1.72508 −0.862541 0.505987i \(-0.831128\pi\)
−0.862541 + 0.505987i \(0.831128\pi\)
\(338\) 9962.90i 0.0872072i
\(339\) 0 0
\(340\) 0 0
\(341\) − 226408.i − 1.94707i
\(342\) 0 0
\(343\) −114131. −0.970098
\(344\) 29822.1i 0.252012i
\(345\) 0 0
\(346\) 32497.5 0.271455
\(347\) − 145963.i − 1.21223i −0.795378 0.606113i \(-0.792728\pi\)
0.795378 0.606113i \(-0.207272\pi\)
\(348\) 0 0
\(349\) −217782. −1.78801 −0.894006 0.448055i \(-0.852117\pi\)
−0.894006 + 0.448055i \(0.852117\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 213132. 1.72014
\(353\) 410.870i 0.00329727i 0.999999 + 0.00164864i \(0.000524777\pi\)
−0.999999 + 0.00164864i \(0.999475\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) − 102451.i − 0.808385i
\(357\) 0 0
\(358\) −71916.2 −0.561126
\(359\) − 147600.i − 1.14524i −0.819821 0.572620i \(-0.805927\pi\)
0.819821 0.572620i \(-0.194073\pi\)
\(360\) 0 0
\(361\) −36557.4 −0.280518
\(362\) − 49770.3i − 0.379799i
\(363\) 0 0
\(364\) −113091. −0.853540
\(365\) 0 0
\(366\) 0 0
\(367\) 103326. 0.767145 0.383572 0.923511i \(-0.374694\pi\)
0.383572 + 0.923511i \(0.374694\pi\)
\(368\) 10827.4i 0.0799516i
\(369\) 0 0
\(370\) 0 0
\(371\) 91362.2i 0.663771i
\(372\) 0 0
\(373\) −48216.2 −0.346558 −0.173279 0.984873i \(-0.555436\pi\)
−0.173279 + 0.984873i \(0.555436\pi\)
\(374\) 68809.8i 0.491934i
\(375\) 0 0
\(376\) 227748. 1.61094
\(377\) 262831.i 1.84924i
\(378\) 0 0
\(379\) 173643. 1.20887 0.604433 0.796656i \(-0.293400\pi\)
0.604433 + 0.796656i \(0.293400\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −22897.9 −0.156917
\(383\) − 195296.i − 1.33136i −0.746238 0.665679i \(-0.768142\pi\)
0.746238 0.665679i \(-0.231858\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 60058.4i 0.403087i
\(387\) 0 0
\(388\) −19256.2 −0.127910
\(389\) − 39786.7i − 0.262929i −0.991321 0.131465i \(-0.958032\pi\)
0.991321 0.131465i \(-0.0419679\pi\)
\(390\) 0 0
\(391\) −21145.7 −0.138315
\(392\) 7360.00i 0.0478967i
\(393\) 0 0
\(394\) 24180.1 0.155763
\(395\) 0 0
\(396\) 0 0
\(397\) 59732.1 0.378989 0.189495 0.981882i \(-0.439315\pi\)
0.189495 + 0.981882i \(0.439315\pi\)
\(398\) 132426.i 0.836000i
\(399\) 0 0
\(400\) 0 0
\(401\) 233569.i 1.45253i 0.687414 + 0.726266i \(0.258746\pi\)
−0.687414 + 0.726266i \(0.741254\pi\)
\(402\) 0 0
\(403\) −204775. −1.26086
\(404\) 142882.i 0.875416i
\(405\) 0 0
\(406\) 139883. 0.848618
\(407\) − 333982.i − 2.01620i
\(408\) 0 0
\(409\) −331803. −1.98350 −0.991752 0.128168i \(-0.959090\pi\)
−0.991752 + 0.128168i \(0.959090\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 164743. 0.970539
\(413\) 243587.i 1.42808i
\(414\) 0 0
\(415\) 0 0
\(416\) − 192768.i − 1.11391i
\(417\) 0 0
\(418\) 120580. 0.690119
\(419\) 207488.i 1.18186i 0.806723 + 0.590930i \(0.201239\pi\)
−0.806723 + 0.590930i \(0.798761\pi\)
\(420\) 0 0
\(421\) 190580. 1.07526 0.537631 0.843181i \(-0.319320\pi\)
0.537631 + 0.843181i \(0.319320\pi\)
\(422\) − 42467.1i − 0.238466i
\(423\) 0 0
\(424\) −99403.0 −0.552927
\(425\) 0 0
\(426\) 0 0
\(427\) −181536. −0.995653
\(428\) − 56663.2i − 0.309324i
\(429\) 0 0
\(430\) 0 0
\(431\) − 43553.5i − 0.234460i −0.993105 0.117230i \(-0.962599\pi\)
0.993105 0.117230i \(-0.0374015\pi\)
\(432\) 0 0
\(433\) −123115. −0.656650 −0.328325 0.944565i \(-0.606484\pi\)
−0.328325 + 0.944565i \(0.606484\pi\)
\(434\) 108984.i 0.578609i
\(435\) 0 0
\(436\) 221802. 1.16679
\(437\) 37055.1i 0.194037i
\(438\) 0 0
\(439\) 125357. 0.650459 0.325229 0.945635i \(-0.394558\pi\)
0.325229 + 0.945635i \(0.394558\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 62235.2 0.318560
\(443\) − 67781.5i − 0.345385i −0.984976 0.172693i \(-0.944753\pi\)
0.984976 0.172693i \(-0.0552468\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) − 11485.1i − 0.0577385i
\(447\) 0 0
\(448\) −30511.5 −0.152022
\(449\) 11399.8i 0.0565462i 0.999600 + 0.0282731i \(0.00900081\pi\)
−0.999600 + 0.0282731i \(0.990999\pi\)
\(450\) 0 0
\(451\) −103675. −0.509708
\(452\) − 150555.i − 0.736915i
\(453\) 0 0
\(454\) −108048. −0.524211
\(455\) 0 0
\(456\) 0 0
\(457\) 173541. 0.830939 0.415470 0.909607i \(-0.363617\pi\)
0.415470 + 0.909607i \(0.363617\pi\)
\(458\) 12248.8i 0.0583931i
\(459\) 0 0
\(460\) 0 0
\(461\) 207824.i 0.977900i 0.872312 + 0.488950i \(0.162620\pi\)
−0.872312 + 0.488950i \(0.837380\pi\)
\(462\) 0 0
\(463\) −295939. −1.38051 −0.690256 0.723565i \(-0.742502\pi\)
−0.690256 + 0.723565i \(0.742502\pi\)
\(464\) − 128109.i − 0.595038i
\(465\) 0 0
\(466\) 163861. 0.754575
\(467\) 38962.8i 0.178655i 0.996002 + 0.0893277i \(0.0284718\pi\)
−0.996002 + 0.0893277i \(0.971528\pi\)
\(468\) 0 0
\(469\) −68856.9 −0.313042
\(470\) 0 0
\(471\) 0 0
\(472\) −265025. −1.18960
\(473\) − 110481.i − 0.493818i
\(474\) 0 0
\(475\) 0 0
\(476\) 107654.i 0.475133i
\(477\) 0 0
\(478\) −205667. −0.900138
\(479\) − 42930.4i − 0.187109i −0.995614 0.0935543i \(-0.970177\pi\)
0.995614 0.0935543i \(-0.0298229\pi\)
\(480\) 0 0
\(481\) −302071. −1.30563
\(482\) − 43834.7i − 0.188679i
\(483\) 0 0
\(484\) −324853. −1.38675
\(485\) 0 0
\(486\) 0 0
\(487\) 242477. 1.02238 0.511191 0.859467i \(-0.329204\pi\)
0.511191 + 0.859467i \(0.329204\pi\)
\(488\) − 197514.i − 0.829387i
\(489\) 0 0
\(490\) 0 0
\(491\) 423092.i 1.75498i 0.479598 + 0.877488i \(0.340783\pi\)
−0.479598 + 0.877488i \(0.659217\pi\)
\(492\) 0 0
\(493\) 250196. 1.02940
\(494\) − 109059.i − 0.446898i
\(495\) 0 0
\(496\) 99811.6 0.405712
\(497\) − 120903.i − 0.489467i
\(498\) 0 0
\(499\) −152654. −0.613065 −0.306533 0.951860i \(-0.599169\pi\)
−0.306533 + 0.951860i \(0.599169\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −12886.2 −0.0511348
\(503\) − 334692.i − 1.32285i −0.750013 0.661423i \(-0.769953\pi\)
0.750013 0.661423i \(-0.230047\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 47652.9i 0.186118i
\(507\) 0 0
\(508\) 121815. 0.472034
\(509\) 63575.3i 0.245388i 0.992445 + 0.122694i \(0.0391533\pi\)
−0.992445 + 0.122694i \(0.960847\pi\)
\(510\) 0 0
\(511\) −124533. −0.476917
\(512\) 172386.i 0.657600i
\(513\) 0 0
\(514\) 123478. 0.467374
\(515\) 0 0
\(516\) 0 0
\(517\) −843734. −3.15664
\(518\) 160767.i 0.599153i
\(519\) 0 0
\(520\) 0 0
\(521\) − 412565.i − 1.51991i −0.649977 0.759954i \(-0.725222\pi\)
0.649977 0.759954i \(-0.274778\pi\)
\(522\) 0 0
\(523\) −436558. −1.59602 −0.798011 0.602643i \(-0.794114\pi\)
−0.798011 + 0.602643i \(0.794114\pi\)
\(524\) 1906.06i 0.00694183i
\(525\) 0 0
\(526\) −122696. −0.443463
\(527\) 194930.i 0.701873i
\(528\) 0 0
\(529\) 265197. 0.947670
\(530\) 0 0
\(531\) 0 0
\(532\) 188649. 0.666549
\(533\) 93769.3i 0.330070i
\(534\) 0 0
\(535\) 0 0
\(536\) − 74917.1i − 0.260766i
\(537\) 0 0
\(538\) 6218.18 0.0214832
\(539\) − 27266.4i − 0.0938536i
\(540\) 0 0
\(541\) −386165. −1.31941 −0.659703 0.751526i \(-0.729318\pi\)
−0.659703 + 0.751526i \(0.729318\pi\)
\(542\) 73780.6i 0.251156i
\(543\) 0 0
\(544\) −183501. −0.620069
\(545\) 0 0
\(546\) 0 0
\(547\) −99445.7 −0.332362 −0.166181 0.986095i \(-0.553144\pi\)
−0.166181 + 0.986095i \(0.553144\pi\)
\(548\) 293136.i 0.976131i
\(549\) 0 0
\(550\) 0 0
\(551\) − 438436.i − 1.44412i
\(552\) 0 0
\(553\) 586401. 1.91754
\(554\) − 230301.i − 0.750372i
\(555\) 0 0
\(556\) 102768. 0.332436
\(557\) 220057.i 0.709292i 0.935001 + 0.354646i \(0.115399\pi\)
−0.935001 + 0.354646i \(0.884601\pi\)
\(558\) 0 0
\(559\) −99925.3 −0.319780
\(560\) 0 0
\(561\) 0 0
\(562\) 154007. 0.487605
\(563\) − 73858.7i − 0.233016i −0.993190 0.116508i \(-0.962830\pi\)
0.993190 0.116508i \(-0.0371700\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 20223.3i 0.0631275i
\(567\) 0 0
\(568\) 131543. 0.407730
\(569\) 517855.i 1.59950i 0.600335 + 0.799749i \(0.295034\pi\)
−0.600335 + 0.799749i \(0.704966\pi\)
\(570\) 0 0
\(571\) −30998.5 −0.0950754 −0.0475377 0.998869i \(-0.515137\pi\)
−0.0475377 + 0.998869i \(0.515137\pi\)
\(572\) 455838.i 1.39321i
\(573\) 0 0
\(574\) 49905.5 0.151469
\(575\) 0 0
\(576\) 0 0
\(577\) −42846.7 −0.128696 −0.0643481 0.997928i \(-0.520497\pi\)
−0.0643481 + 0.997928i \(0.520497\pi\)
\(578\) 102808.i 0.307731i
\(579\) 0 0
\(580\) 0 0
\(581\) − 506687.i − 1.50102i
\(582\) 0 0
\(583\) 368256. 1.08346
\(584\) − 135493.i − 0.397276i
\(585\) 0 0
\(586\) −211428. −0.615698
\(587\) 329934.i 0.957528i 0.877944 + 0.478764i \(0.158915\pi\)
−0.877944 + 0.478764i \(0.841085\pi\)
\(588\) 0 0
\(589\) 341590. 0.984635
\(590\) 0 0
\(591\) 0 0
\(592\) 147236. 0.420117
\(593\) 167618.i 0.476664i 0.971184 + 0.238332i \(0.0766006\pi\)
−0.971184 + 0.238332i \(0.923399\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) − 4756.03i − 0.0133891i
\(597\) 0 0
\(598\) 43099.9 0.120524
\(599\) 227547.i 0.634188i 0.948394 + 0.317094i \(0.102707\pi\)
−0.948394 + 0.317094i \(0.897293\pi\)
\(600\) 0 0
\(601\) 46077.2 0.127567 0.0637833 0.997964i \(-0.479683\pi\)
0.0637833 + 0.997964i \(0.479683\pi\)
\(602\) 53181.8i 0.146747i
\(603\) 0 0
\(604\) 337550. 0.925262
\(605\) 0 0
\(606\) 0 0
\(607\) −277108. −0.752095 −0.376047 0.926600i \(-0.622717\pi\)
−0.376047 + 0.926600i \(0.622717\pi\)
\(608\) 321562.i 0.869875i
\(609\) 0 0
\(610\) 0 0
\(611\) 763118.i 2.04413i
\(612\) 0 0
\(613\) −315023. −0.838343 −0.419171 0.907907i \(-0.637679\pi\)
−0.419171 + 0.907907i \(0.637679\pi\)
\(614\) − 56753.9i − 0.150543i
\(615\) 0 0
\(616\) 559851. 1.47540
\(617\) − 282133.i − 0.741112i −0.928810 0.370556i \(-0.879167\pi\)
0.928810 0.370556i \(-0.120833\pi\)
\(618\) 0 0
\(619\) 288014. 0.751679 0.375839 0.926685i \(-0.377354\pi\)
0.375839 + 0.926685i \(0.377354\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 181290. 0.468589
\(623\) − 421616.i − 1.08628i
\(624\) 0 0
\(625\) 0 0
\(626\) − 262034.i − 0.668665i
\(627\) 0 0
\(628\) −425828. −1.07973
\(629\) 287549.i 0.726793i
\(630\) 0 0
\(631\) −77926.3 −0.195716 −0.0978578 0.995200i \(-0.531199\pi\)
−0.0978578 + 0.995200i \(0.531199\pi\)
\(632\) 638010.i 1.59733i
\(633\) 0 0
\(634\) −325786. −0.810501
\(635\) 0 0
\(636\) 0 0
\(637\) −24661.2 −0.0607765
\(638\) − 563830.i − 1.38518i
\(639\) 0 0
\(640\) 0 0
\(641\) − 339129.i − 0.825372i −0.910873 0.412686i \(-0.864591\pi\)
0.910873 0.412686i \(-0.135409\pi\)
\(642\) 0 0
\(643\) 178034. 0.430606 0.215303 0.976547i \(-0.430926\pi\)
0.215303 + 0.976547i \(0.430926\pi\)
\(644\) 74553.6i 0.179762i
\(645\) 0 0
\(646\) −103816. −0.248771
\(647\) − 778198.i − 1.85901i −0.368809 0.929505i \(-0.620234\pi\)
0.368809 0.929505i \(-0.379766\pi\)
\(648\) 0 0
\(649\) 981832. 2.33103
\(650\) 0 0
\(651\) 0 0
\(652\) 454519. 1.06920
\(653\) 570456.i 1.33782i 0.743346 + 0.668908i \(0.233238\pi\)
−0.743346 + 0.668908i \(0.766762\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) − 45705.1i − 0.106208i
\(657\) 0 0
\(658\) 406143. 0.938053
\(659\) − 493094.i − 1.13543i −0.823227 0.567713i \(-0.807828\pi\)
0.823227 0.567713i \(-0.192172\pi\)
\(660\) 0 0
\(661\) −654379. −1.49771 −0.748853 0.662736i \(-0.769395\pi\)
−0.748853 + 0.662736i \(0.769395\pi\)
\(662\) − 308508.i − 0.703964i
\(663\) 0 0
\(664\) 551281. 1.25036
\(665\) 0 0
\(666\) 0 0
\(667\) 173268. 0.389464
\(668\) 211112.i 0.473108i
\(669\) 0 0
\(670\) 0 0
\(671\) 731724.i 1.62518i
\(672\) 0 0
\(673\) −1427.22 −0.00315109 −0.00157554 0.999999i \(-0.500502\pi\)
−0.00157554 + 0.999999i \(0.500502\pi\)
\(674\) − 380125.i − 0.836771i
\(675\) 0 0
\(676\) 62827.3 0.137485
\(677\) − 397819.i − 0.867976i −0.900919 0.433988i \(-0.857106\pi\)
0.900919 0.433988i \(-0.142894\pi\)
\(678\) 0 0
\(679\) −79244.4 −0.171881
\(680\) 0 0
\(681\) 0 0
\(682\) 439287. 0.944450
\(683\) − 137477.i − 0.294707i −0.989084 0.147353i \(-0.952925\pi\)
0.989084 0.147353i \(-0.0470755\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) − 221442.i − 0.470557i
\(687\) 0 0
\(688\) 48705.7 0.102897
\(689\) − 333070.i − 0.701613i
\(690\) 0 0
\(691\) −307963. −0.644975 −0.322488 0.946574i \(-0.604519\pi\)
−0.322488 + 0.946574i \(0.604519\pi\)
\(692\) − 204933.i − 0.427957i
\(693\) 0 0
\(694\) 283204. 0.588005
\(695\) 0 0
\(696\) 0 0
\(697\) 89261.3 0.183737
\(698\) − 422550.i − 0.867296i
\(699\) 0 0
\(700\) 0 0
\(701\) 779311.i 1.58590i 0.609289 + 0.792948i \(0.291455\pi\)
−0.609289 + 0.792948i \(0.708545\pi\)
\(702\) 0 0
\(703\) 503893. 1.01959
\(704\) 122984.i 0.248143i
\(705\) 0 0
\(706\) −797.189 −0.00159938
\(707\) 587998.i 1.17635i
\(708\) 0 0
\(709\) 350809. 0.697876 0.348938 0.937146i \(-0.386542\pi\)
0.348938 + 0.937146i \(0.386542\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 458723. 0.904878
\(713\) 134995.i 0.265546i
\(714\) 0 0
\(715\) 0 0
\(716\) 453512.i 0.884633i
\(717\) 0 0
\(718\) 286380. 0.555512
\(719\) 840579.i 1.62600i 0.582263 + 0.813001i \(0.302167\pi\)
−0.582263 + 0.813001i \(0.697833\pi\)
\(720\) 0 0
\(721\) 677964. 1.30418
\(722\) − 70930.5i − 0.136069i
\(723\) 0 0
\(724\) −313858. −0.598764
\(725\) 0 0
\(726\) 0 0
\(727\) −1.01200e6 −1.91475 −0.957374 0.288851i \(-0.906727\pi\)
−0.957374 + 0.288851i \(0.906727\pi\)
\(728\) − 506359.i − 0.955423i
\(729\) 0 0
\(730\) 0 0
\(731\) 95121.4i 0.178010i
\(732\) 0 0
\(733\) 421087. 0.783725 0.391863 0.920024i \(-0.371831\pi\)
0.391863 + 0.920024i \(0.371831\pi\)
\(734\) 200478.i 0.372113i
\(735\) 0 0
\(736\) −127080. −0.234597
\(737\) 277544.i 0.510971i
\(738\) 0 0
\(739\) −282437. −0.517170 −0.258585 0.965989i \(-0.583256\pi\)
−0.258585 + 0.965989i \(0.583256\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −177265. −0.321970
\(743\) − 369786.i − 0.669842i −0.942246 0.334921i \(-0.891290\pi\)
0.942246 0.334921i \(-0.108710\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) − 93551.4i − 0.168102i
\(747\) 0 0
\(748\) 433923. 0.775550
\(749\) − 233185.i − 0.415658i
\(750\) 0 0
\(751\) 86095.1 0.152651 0.0763253 0.997083i \(-0.475681\pi\)
0.0763253 + 0.997083i \(0.475681\pi\)
\(752\) − 371960.i − 0.657749i
\(753\) 0 0
\(754\) −509958. −0.896998
\(755\) 0 0
\(756\) 0 0
\(757\) 189172. 0.330115 0.165058 0.986284i \(-0.447219\pi\)
0.165058 + 0.986284i \(0.447219\pi\)
\(758\) 336910.i 0.586374i
\(759\) 0 0
\(760\) 0 0
\(761\) − 473747.i − 0.818045i −0.912524 0.409022i \(-0.865870\pi\)
0.912524 0.409022i \(-0.134130\pi\)
\(762\) 0 0
\(763\) 912775. 1.56789
\(764\) 144397.i 0.247384i
\(765\) 0 0
\(766\) 378922. 0.645791
\(767\) − 888021.i − 1.50950i
\(768\) 0 0
\(769\) 783721. 1.32528 0.662642 0.748936i \(-0.269435\pi\)
0.662642 + 0.748936i \(0.269435\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 378736. 0.635480
\(773\) 393774.i 0.659004i 0.944155 + 0.329502i \(0.106881\pi\)
−0.944155 + 0.329502i \(0.893119\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) − 86218.7i − 0.143179i
\(777\) 0 0
\(778\) 77196.0 0.127537
\(779\) − 156419.i − 0.257759i
\(780\) 0 0
\(781\) −487326. −0.798947
\(782\) − 41027.8i − 0.0670911i
\(783\) 0 0
\(784\) 12020.4 0.0195563
\(785\) 0 0
\(786\) 0 0
\(787\) 262539. 0.423881 0.211940 0.977283i \(-0.432022\pi\)
0.211940 + 0.977283i \(0.432022\pi\)
\(788\) − 152482.i − 0.245566i
\(789\) 0 0
\(790\) 0 0
\(791\) − 619574.i − 0.990240i
\(792\) 0 0
\(793\) 661810. 1.05242
\(794\) 115895.i 0.183833i
\(795\) 0 0
\(796\) 835094. 1.31798
\(797\) 433451.i 0.682375i 0.939995 + 0.341187i \(0.110829\pi\)
−0.939995 + 0.341187i \(0.889171\pi\)
\(798\) 0 0
\(799\) 726431. 1.13789
\(800\) 0 0
\(801\) 0 0
\(802\) −453181. −0.704568
\(803\) 501959.i 0.778461i
\(804\) 0 0
\(805\) 0 0
\(806\) − 397314.i − 0.611595i
\(807\) 0 0
\(808\) −639748. −0.979910
\(809\) 394934.i 0.603431i 0.953398 + 0.301716i \(0.0975593\pi\)
−0.953398 + 0.301716i \(0.902441\pi\)
\(810\) 0 0
\(811\) −795473. −1.20944 −0.604719 0.796439i \(-0.706715\pi\)
−0.604719 + 0.796439i \(0.706715\pi\)
\(812\) − 882119.i − 1.33787i
\(813\) 0 0
\(814\) 648008. 0.977984
\(815\) 0 0
\(816\) 0 0
\(817\) 166688. 0.249724
\(818\) − 643779.i − 0.962122i
\(819\) 0 0
\(820\) 0 0
\(821\) 288613.i 0.428183i 0.976814 + 0.214092i \(0.0686791\pi\)
−0.976814 + 0.214092i \(0.931321\pi\)
\(822\) 0 0
\(823\) −90831.5 −0.134103 −0.0670513 0.997750i \(-0.521359\pi\)
−0.0670513 + 0.997750i \(0.521359\pi\)
\(824\) 737632.i 1.08639i
\(825\) 0 0
\(826\) −472618. −0.692708
\(827\) − 442580.i − 0.647114i −0.946209 0.323557i \(-0.895121\pi\)
0.946209 0.323557i \(-0.104879\pi\)
\(828\) 0 0
\(829\) −259965. −0.378273 −0.189137 0.981951i \(-0.560569\pi\)
−0.189137 + 0.981951i \(0.560569\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 111233. 0.160689
\(833\) 23475.6i 0.0338320i
\(834\) 0 0
\(835\) 0 0
\(836\) − 760394.i − 1.08799i
\(837\) 0 0
\(838\) −402579. −0.573275
\(839\) − 413062.i − 0.586802i −0.955989 0.293401i \(-0.905213\pi\)
0.955989 0.293401i \(-0.0947871\pi\)
\(840\) 0 0
\(841\) −1.34283e6 −1.89858
\(842\) 369773.i 0.521568i
\(843\) 0 0
\(844\) −267803. −0.375950
\(845\) 0 0
\(846\) 0 0
\(847\) −1.33686e6 −1.86346
\(848\) 162345.i 0.225761i
\(849\) 0 0
\(850\) 0 0
\(851\) 199137.i 0.274975i
\(852\) 0 0
\(853\) −48283.6 −0.0663593 −0.0331796 0.999449i \(-0.510563\pi\)
−0.0331796 + 0.999449i \(0.510563\pi\)
\(854\) − 352226.i − 0.482953i
\(855\) 0 0
\(856\) 253707. 0.346246
\(857\) 639554.i 0.870794i 0.900238 + 0.435397i \(0.143392\pi\)
−0.900238 + 0.435397i \(0.856608\pi\)
\(858\) 0 0
\(859\) 391575. 0.530675 0.265337 0.964156i \(-0.414517\pi\)
0.265337 + 0.964156i \(0.414517\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 84504.6 0.113728
\(863\) 1.20719e6i 1.62089i 0.585816 + 0.810444i \(0.300774\pi\)
−0.585816 + 0.810444i \(0.699226\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) − 238873.i − 0.318516i
\(867\) 0 0
\(868\) 687269. 0.912195
\(869\) − 2.36362e6i − 3.12996i
\(870\) 0 0
\(871\) 251025. 0.330888
\(872\) 993108.i 1.30606i
\(873\) 0 0
\(874\) −71896.0 −0.0941200
\(875\) 0 0
\(876\) 0 0
\(877\) 413297. 0.537357 0.268678 0.963230i \(-0.413413\pi\)
0.268678 + 0.963230i \(0.413413\pi\)
\(878\) 243224.i 0.315513i
\(879\) 0 0
\(880\) 0 0
\(881\) 789955.i 1.01777i 0.860834 + 0.508886i \(0.169943\pi\)
−0.860834 + 0.508886i \(0.830057\pi\)
\(882\) 0 0
\(883\) −558493. −0.716302 −0.358151 0.933664i \(-0.616593\pi\)
−0.358151 + 0.933664i \(0.616593\pi\)
\(884\) − 392463.i − 0.502220i
\(885\) 0 0
\(886\) 131513. 0.167533
\(887\) − 124383.i − 0.158093i −0.996871 0.0790465i \(-0.974812\pi\)
0.996871 0.0790465i \(-0.0251876\pi\)
\(888\) 0 0
\(889\) 501302. 0.634302
\(890\) 0 0
\(891\) 0 0
\(892\) −72426.5 −0.0910265
\(893\) − 1.27298e6i − 1.59631i
\(894\) 0 0
\(895\) 0 0
\(896\) 786830.i 0.980088i
\(897\) 0 0
\(898\) −22118.4 −0.0274284
\(899\) − 1.59727e6i − 1.97632i
\(900\) 0 0
\(901\) −317058. −0.390561
\(902\) − 201155.i − 0.247240i
\(903\) 0 0
\(904\) 674103. 0.824877
\(905\) 0 0
\(906\) 0 0
\(907\) 683001. 0.830246 0.415123 0.909765i \(-0.363739\pi\)
0.415123 + 0.909765i \(0.363739\pi\)
\(908\) 681366.i 0.826435i
\(909\) 0 0
\(910\) 0 0
\(911\) − 683114.i − 0.823107i −0.911386 0.411553i \(-0.864986\pi\)
0.911386 0.411553i \(-0.135014\pi\)
\(912\) 0 0
\(913\) −2.04232e6 −2.45009
\(914\) 336712.i 0.403057i
\(915\) 0 0
\(916\) 77242.2 0.0920585
\(917\) 7843.97i 0.00932819i
\(918\) 0 0
\(919\) 247081. 0.292556 0.146278 0.989244i \(-0.453271\pi\)
0.146278 + 0.989244i \(0.453271\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −403230. −0.474342
\(923\) 440764.i 0.517372i
\(924\) 0 0
\(925\) 0 0
\(926\) − 574195.i − 0.669633i
\(927\) 0 0
\(928\) 1.50361e6 1.74598
\(929\) 377632.i 0.437560i 0.975774 + 0.218780i \(0.0702077\pi\)
−0.975774 + 0.218780i \(0.929792\pi\)
\(930\) 0 0
\(931\) 41138.0 0.0474618
\(932\) − 1.03333e6i − 1.18961i
\(933\) 0 0
\(934\) −75597.4 −0.0866589
\(935\) 0 0
\(936\) 0 0
\(937\) 987404. 1.12465 0.562323 0.826918i \(-0.309908\pi\)
0.562323 + 0.826918i \(0.309908\pi\)
\(938\) − 133599.i − 0.151845i
\(939\) 0 0
\(940\) 0 0
\(941\) − 795104.i − 0.897934i −0.893548 0.448967i \(-0.851792\pi\)
0.893548 0.448967i \(-0.148208\pi\)
\(942\) 0 0
\(943\) 61816.3 0.0695151
\(944\) 432840.i 0.485717i
\(945\) 0 0
\(946\) 214361. 0.239532
\(947\) 1.54212e6i 1.71956i 0.510665 + 0.859780i \(0.329399\pi\)
−0.510665 + 0.859780i \(0.670601\pi\)
\(948\) 0 0
\(949\) 453998. 0.504106
\(950\) 0 0
\(951\) 0 0
\(952\) −482016. −0.531848
\(953\) 706894.i 0.778339i 0.921166 + 0.389169i \(0.127238\pi\)
−0.921166 + 0.389169i \(0.872762\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 1.29696e6i 1.41910i
\(957\) 0 0
\(958\) 83295.6 0.0907593
\(959\) 1.20634e6i 1.31169i
\(960\) 0 0
\(961\) 320929. 0.347506
\(962\) − 586093.i − 0.633310i
\(963\) 0 0
\(964\) −276427. −0.297458
\(965\) 0 0
\(966\) 0 0
\(967\) 619740. 0.662761 0.331380 0.943497i \(-0.392486\pi\)
0.331380 + 0.943497i \(0.392486\pi\)
\(968\) − 1.45452e6i − 1.55227i
\(969\) 0 0
\(970\) 0 0
\(971\) − 777633.i − 0.824776i −0.911008 0.412388i \(-0.864695\pi\)
0.911008 0.412388i \(-0.135305\pi\)
\(972\) 0 0
\(973\) 422919. 0.446716
\(974\) 470466.i 0.495919i
\(975\) 0 0
\(976\) −322580. −0.338640
\(977\) − 1.35355e6i − 1.41802i −0.705196 0.709012i \(-0.749141\pi\)
0.705196 0.709012i \(-0.250859\pi\)
\(978\) 0 0
\(979\) −1.69942e6 −1.77311
\(980\) 0 0
\(981\) 0 0
\(982\) −820902. −0.851272
\(983\) 1.41672e6i 1.46614i 0.680151 + 0.733072i \(0.261914\pi\)
−0.680151 + 0.733072i \(0.738086\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 485441.i 0.499325i
\(987\) 0 0
\(988\) −687741. −0.704549
\(989\) 65874.6i 0.0673481i
\(990\) 0 0
\(991\) −697784. −0.710516 −0.355258 0.934768i \(-0.615607\pi\)
−0.355258 + 0.934768i \(0.615607\pi\)
\(992\) 1.17148e6i 1.19045i
\(993\) 0 0
\(994\) 234581. 0.237422
\(995\) 0 0
\(996\) 0 0
\(997\) −537542. −0.540782 −0.270391 0.962751i \(-0.587153\pi\)
−0.270391 + 0.962751i \(0.587153\pi\)
\(998\) − 296186.i − 0.297375i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.5.c.p.26.4 6
3.2 odd 2 inner 675.5.c.p.26.3 6
5.2 odd 4 675.5.d.l.674.6 12
5.3 odd 4 675.5.d.l.674.7 12
5.4 even 2 135.5.c.c.26.3 6
15.2 even 4 675.5.d.l.674.8 12
15.8 even 4 675.5.d.l.674.5 12
15.14 odd 2 135.5.c.c.26.4 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.5.c.c.26.3 6 5.4 even 2
135.5.c.c.26.4 yes 6 15.14 odd 2
675.5.c.p.26.3 6 3.2 odd 2 inner
675.5.c.p.26.4 6 1.1 even 1 trivial
675.5.d.l.674.5 12 15.8 even 4
675.5.d.l.674.6 12 5.2 odd 4
675.5.d.l.674.7 12 5.3 odd 4
675.5.d.l.674.8 12 15.2 even 4