Properties

Label 676.1.t.a.107.1
Level $676$
Weight $1$
Character 676.107
Analytic conductor $0.337$
Analytic rank $0$
Dimension $24$
Projective image $D_{39}$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [676,1,Mod(3,676)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(676, base_ring=CyclotomicField(78))
 
chi = DirichletCharacter(H, H._module([39, 62]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("676.3");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 676.t (of order \(78\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.337367948540\)
Analytic rank: \(0\)
Dimension: \(24\)
Coefficient field: \(\Q(\zeta_{39})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} - x^{23} + x^{21} - x^{20} + x^{18} - x^{17} + x^{15} - x^{14} + x^{12} - x^{10} + x^{9} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{39}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{39} - \cdots)\)

Embedding invariants

Embedding label 107.1
Root \(0.799443 + 0.600742i\) of defining polynomial
Character \(\chi\) \(=\) 676.107
Dual form 676.1.t.a.139.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.428693 - 0.903450i) q^{2} +(-0.632445 - 0.774605i) q^{4} +(1.49217 - 1.32194i) q^{5} +(-0.970942 + 0.239316i) q^{8} +(-0.996757 + 0.0804666i) q^{9} +(-0.554631 - 1.91481i) q^{10} +(0.278217 + 0.960518i) q^{13} +(-0.200026 + 0.979791i) q^{16} +(-0.351915 + 1.21495i) q^{17} +(-0.354605 + 0.935016i) q^{18} +(-1.96770 - 0.319782i) q^{20} +(0.358488 - 2.95242i) q^{25} +(0.987050 + 0.160411i) q^{26} +(-0.724653 + 1.52717i) q^{29} +(0.799443 + 0.600742i) q^{32} +(0.946784 + 0.838778i) q^{34} +(0.692724 + 0.721202i) q^{36} +(1.51660 - 1.13965i) q^{37} +(-1.13245 + 1.64063i) q^{40} +(-0.0345234 - 0.856690i) q^{41} +(-1.38096 + 1.43773i) q^{45} +(-0.845190 - 0.534466i) q^{49} +(-2.51368 - 1.58956i) q^{50} +(0.568065 - 0.822984i) q^{52} +(-0.540266 + 0.133164i) q^{53} +(1.06907 + 1.30938i) q^{58} +(-0.0557864 + 0.0580798i) q^{61} +(0.885456 - 0.464723i) q^{64} +(1.68490 + 1.06547i) q^{65} +(1.16367 - 0.495795i) q^{68} +(0.948536 - 0.316668i) q^{72} +(-0.568065 + 0.822984i) q^{73} +(-0.379463 - 1.85873i) q^{74} +(0.996757 + 1.72643i) q^{80} +(0.987050 - 0.160411i) q^{81} +(-0.788777 - 0.336066i) q^{82} +(1.08098 + 2.27812i) q^{85} +(0.748511 + 1.29646i) q^{89} +(0.706910 + 1.86397i) q^{90} +(0.228667 - 0.0763402i) q^{97} +(-0.845190 + 0.534466i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{2} + q^{4} + 2 q^{5} - 2 q^{8} + q^{9} - q^{10} + q^{13} + q^{16} - q^{17} - 2 q^{18} - q^{20} + q^{26} - q^{29} + q^{32} + 2 q^{34} + q^{36} - q^{37} - 11 q^{40} - q^{41} - q^{45}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/676\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(509\)
\(\chi(n)\) \(-1\) \(e\left(\frac{25}{39}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.428693 0.903450i 0.428693 0.903450i
\(3\) 0 0 −0.0402659 0.999189i \(-0.512821\pi\)
0.0402659 + 0.999189i \(0.487179\pi\)
\(4\) −0.632445 0.774605i −0.632445 0.774605i
\(5\) 1.49217 1.32194i 1.49217 1.32194i 0.692724 0.721202i \(-0.256410\pi\)
0.799443 0.600742i \(-0.205128\pi\)
\(6\) 0 0
\(7\) 0 0 0.278217 0.960518i \(-0.410256\pi\)
−0.278217 + 0.960518i \(0.589744\pi\)
\(8\) −0.970942 + 0.239316i −0.970942 + 0.239316i
\(9\) −0.996757 + 0.0804666i −0.996757 + 0.0804666i
\(10\) −0.554631 1.91481i −0.554631 1.91481i
\(11\) 0 0 −0.996757 0.0804666i \(-0.974359\pi\)
0.996757 + 0.0804666i \(0.0256410\pi\)
\(12\) 0 0
\(13\) 0.278217 + 0.960518i 0.278217 + 0.960518i
\(14\) 0 0
\(15\) 0 0
\(16\) −0.200026 + 0.979791i −0.200026 + 0.979791i
\(17\) −0.351915 + 1.21495i −0.351915 + 1.21495i 0.568065 + 0.822984i \(0.307692\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(18\) −0.354605 + 0.935016i −0.354605 + 0.935016i
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) −1.96770 0.319782i −1.96770 0.319782i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) 0 0
\(25\) 0.358488 2.95242i 0.358488 2.95242i
\(26\) 0.987050 + 0.160411i 0.987050 + 0.160411i
\(27\) 0 0
\(28\) 0 0
\(29\) −0.724653 + 1.52717i −0.724653 + 1.52717i 0.120537 + 0.992709i \(0.461538\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(30\) 0 0
\(31\) 0 0 −0.120537 0.992709i \(-0.538462\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(32\) 0.799443 + 0.600742i 0.799443 + 0.600742i
\(33\) 0 0
\(34\) 0.946784 + 0.838778i 0.946784 + 0.838778i
\(35\) 0 0
\(36\) 0.692724 + 0.721202i 0.692724 + 0.721202i
\(37\) 1.51660 1.13965i 1.51660 1.13965i 0.568065 0.822984i \(-0.307692\pi\)
0.948536 0.316668i \(-0.102564\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −1.13245 + 1.64063i −1.13245 + 1.64063i
\(41\) −0.0345234 0.856690i −0.0345234 0.856690i −0.919979 0.391967i \(-0.871795\pi\)
0.885456 0.464723i \(-0.153846\pi\)
\(42\) 0 0
\(43\) 0 0 −0.799443 0.600742i \(-0.794872\pi\)
0.799443 + 0.600742i \(0.205128\pi\)
\(44\) 0 0
\(45\) −1.38096 + 1.43773i −1.38096 + 1.43773i
\(46\) 0 0
\(47\) 0 0 −0.354605 0.935016i \(-0.615385\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(48\) 0 0
\(49\) −0.845190 0.534466i −0.845190 0.534466i
\(50\) −2.51368 1.58956i −2.51368 1.58956i
\(51\) 0 0
\(52\) 0.568065 0.822984i 0.568065 0.822984i
\(53\) −0.540266 + 0.133164i −0.540266 + 0.133164i −0.500000 0.866025i \(-0.666667\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 1.06907 + 1.30938i 1.06907 + 1.30938i
\(59\) 0 0 −0.200026 0.979791i \(-0.564103\pi\)
0.200026 + 0.979791i \(0.435897\pi\)
\(60\) 0 0
\(61\) −0.0557864 + 0.0580798i −0.0557864 + 0.0580798i −0.748511 0.663123i \(-0.769231\pi\)
0.692724 + 0.721202i \(0.256410\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.885456 0.464723i 0.885456 0.464723i
\(65\) 1.68490 + 1.06547i 1.68490 + 1.06547i
\(66\) 0 0
\(67\) 0 0 0.632445 0.774605i \(-0.282051\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(68\) 1.16367 0.495795i 1.16367 0.495795i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.845190 0.534466i \(-0.179487\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(72\) 0.948536 0.316668i 0.948536 0.316668i
\(73\) −0.568065 + 0.822984i −0.568065 + 0.822984i −0.996757 0.0804666i \(-0.974359\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(74\) −0.379463 1.85873i −0.379463 1.85873i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.354605 0.935016i \(-0.615385\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(80\) 0.996757 + 1.72643i 0.996757 + 1.72643i
\(81\) 0.987050 0.160411i 0.987050 0.160411i
\(82\) −0.788777 0.336066i −0.788777 0.336066i
\(83\) 0 0 0.885456 0.464723i \(-0.153846\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(84\) 0 0
\(85\) 1.08098 + 2.27812i 1.08098 + 2.27812i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0.748511 + 1.29646i 0.748511 + 1.29646i 0.948536 + 0.316668i \(0.102564\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(90\) 0.706910 + 1.86397i 0.706910 + 1.86397i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.228667 0.0763402i 0.228667 0.0763402i −0.200026 0.979791i \(-0.564103\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(98\) −0.845190 + 0.534466i −0.845190 + 0.534466i
\(99\) 0 0
\(100\) −2.51368 + 1.58956i −2.51368 + 1.58956i
\(101\) −1.47094 + 0.626710i −1.47094 + 0.626710i −0.970942 0.239316i \(-0.923077\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) 0 0
\(103\) 0 0 −0.885456 0.464723i \(-0.846154\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(104\) −0.500000 0.866025i −0.500000 0.866025i
\(105\) 0 0
\(106\) −0.111301 + 0.545190i −0.111301 + 0.545190i
\(107\) 0 0 −0.948536 0.316668i \(-0.897436\pi\)
0.948536 + 0.316668i \(0.102564\pi\)
\(108\) 0 0
\(109\) −0.0854858 + 0.704039i −0.0854858 + 0.704039i 0.885456 + 0.464723i \(0.153846\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.0161084 0.399727i 0.0161084 0.399727i −0.970942 0.239316i \(-0.923077\pi\)
0.987050 0.160411i \(-0.0512821\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.64126 0.404534i 1.64126 0.404534i
\(117\) −0.354605 0.935016i −0.354605 0.935016i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.987050 + 0.160411i 0.987050 + 0.160411i
\(122\) 0.0285570 + 0.0752986i 0.0285570 + 0.0752986i
\(123\) 0 0
\(124\) 0 0
\(125\) −2.23556 3.23877i −2.23556 3.23877i
\(126\) 0 0
\(127\) 0 0 0.632445 0.774605i \(-0.282051\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(128\) −0.0402659 0.999189i −0.0402659 0.999189i
\(129\) 0 0
\(130\) 1.68490 1.06547i 1.68490 1.06547i
\(131\) 0 0 −0.568065 0.822984i \(-0.692308\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.0509320 1.26386i 0.0509320 1.26386i
\(137\) −0.319818 0.240328i −0.319818 0.240328i 0.428693 0.903450i \(-0.358974\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(138\) 0 0
\(139\) 0 0 0.948536 0.316668i \(-0.102564\pi\)
−0.948536 + 0.316668i \(0.897436\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0.120537 0.992709i 0.120537 0.992709i
\(145\) 0.937537 + 3.23675i 0.937537 + 3.23675i
\(146\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(147\) 0 0
\(148\) −1.84195 0.453999i −1.84195 0.453999i
\(149\) −1.81613 0.295150i −1.81613 0.295150i −0.845190 0.534466i \(-0.820513\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(150\) 0 0
\(151\) 0 0 0.354605 0.935016i \(-0.384615\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(152\) 0 0
\(153\) 0.253011 1.23933i 0.253011 1.23933i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1.37723 1.22012i 1.37723 1.22012i 0.428693 0.903450i \(-0.358974\pi\)
0.948536 0.316668i \(-0.102564\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 1.98705 0.160411i 1.98705 0.160411i
\(161\) 0 0
\(162\) 0.278217 0.960518i 0.278217 0.960518i
\(163\) 0 0 −0.919979 0.391967i \(-0.871795\pi\)
0.919979 + 0.391967i \(0.128205\pi\)
\(164\) −0.641762 + 0.568552i −0.641762 + 0.568552i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.428693 0.903450i \(-0.358974\pi\)
−0.428693 + 0.903450i \(0.641026\pi\)
\(168\) 0 0
\(169\) −0.845190 + 0.534466i −0.845190 + 0.534466i
\(170\) 2.52158 2.52158
\(171\) 0 0
\(172\) 0 0
\(173\) −1.12001 1.37176i −1.12001 1.37176i −0.919979 0.391967i \(-0.871795\pi\)
−0.200026 0.979791i \(-0.564103\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 1.49217 0.120460i 1.49217 0.120460i
\(179\) 0 0 −0.278217 0.960518i \(-0.589744\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(180\) 1.98705 + 0.160411i 1.98705 + 0.160411i
\(181\) −1.03702 + 0.918722i −1.03702 + 0.918722i −0.996757 0.0804666i \(-0.974359\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.756466 3.70541i 0.756466 3.70541i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 0 0
\(193\) −0.511909 1.76731i −0.511909 1.76731i −0.632445 0.774605i \(-0.717949\pi\)
0.120537 0.992709i \(-0.461538\pi\)
\(194\) 0.0290582 0.239316i 0.0290582 0.239316i
\(195\) 0 0
\(196\) 0.120537 + 0.992709i 0.120537 + 0.992709i
\(197\) −1.62920 + 0.694138i −1.62920 + 0.694138i −0.996757 0.0804666i \(-0.974359\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(198\) 0 0
\(199\) 0 0 0.948536 0.316668i \(-0.102564\pi\)
−0.948536 + 0.316668i \(0.897436\pi\)
\(200\) 0.358488 + 2.95242i 0.358488 + 2.95242i
\(201\) 0 0
\(202\) −0.0643806 + 1.59759i −0.0643806 + 1.59759i
\(203\) 0 0
\(204\) 0 0
\(205\) −1.18401 1.23269i −1.18401 1.23269i
\(206\) 0 0
\(207\) 0 0
\(208\) −0.996757 + 0.0804666i −0.996757 + 0.0804666i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.632445 0.774605i \(-0.282051\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(212\) 0.444838 + 0.334274i 0.444838 + 0.334274i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0.599417 + 0.379048i 0.599417 + 0.379048i
\(219\) 0 0
\(220\) 0 0
\(221\) −1.26489 −1.26489
\(222\) 0 0
\(223\) 0 0 −0.948536 0.316668i \(-0.897436\pi\)
0.948536 + 0.316668i \(0.102564\pi\)
\(224\) 0 0
\(225\) −0.119755 + 2.97169i −0.119755 + 2.97169i
\(226\) −0.354228 0.185913i −0.354228 0.185913i
\(227\) 0 0 −0.632445 0.774605i \(-0.717949\pi\)
0.632445 + 0.774605i \(0.282051\pi\)
\(228\) 0 0
\(229\) −0.234068 + 1.92773i −0.234068 + 1.92773i 0.120537 + 0.992709i \(0.461538\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.338119 1.65622i 0.338119 1.65622i
\(233\) 0.213460 0.112032i 0.213460 0.112032i −0.354605 0.935016i \(-0.615385\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(234\) −0.996757 0.0804666i −0.996757 0.0804666i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −0.0763874 + 0.0255019i −0.0763874 + 0.0255019i −0.354605 0.935016i \(-0.615385\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(242\) 0.568065 0.822984i 0.568065 0.822984i
\(243\) 0 0
\(244\) 0.0802707 + 0.00648012i 0.0802707 + 0.00648012i
\(245\) −1.96770 + 0.319782i −1.96770 + 0.319782i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −3.88444 + 0.631282i −3.88444 + 0.631282i
\(251\) 0 0 −0.919979 0.391967i \(-0.871795\pi\)
0.919979 + 0.391967i \(0.128205\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.919979 0.391967i −0.919979 0.391967i
\(257\) 1.36751 0.222242i 1.36751 0.222242i 0.568065 0.822984i \(-0.307692\pi\)
0.799443 + 0.600742i \(0.205128\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −0.240292 1.97898i −0.240292 1.97898i
\(261\) 0.599417 1.58053i 0.599417 1.58053i
\(262\) 0 0
\(263\) 0 0 −0.996757 0.0804666i \(-0.974359\pi\)
0.996757 + 0.0804666i \(0.0256410\pi\)
\(264\) 0 0
\(265\) −0.630132 + 0.912904i −0.630132 + 0.912904i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.26527 0.800107i 1.26527 0.800107i 0.278217 0.960518i \(-0.410256\pi\)
0.987050 + 0.160411i \(0.0512821\pi\)
\(270\) 0 0
\(271\) 0 0 0.632445 0.774605i \(-0.282051\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(272\) −1.12001 0.587824i −1.12001 0.587824i
\(273\) 0 0
\(274\) −0.354228 + 0.185913i −0.354228 + 0.185913i
\(275\) 0 0
\(276\) 0 0
\(277\) −0.692724 + 0.721202i −0.692724 + 0.721202i −0.970942 0.239316i \(-0.923077\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.492699 + 0.258588i 0.492699 + 0.258588i 0.692724 0.721202i \(-0.256410\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(282\) 0 0
\(283\) 0 0 0.799443 0.600742i \(-0.205128\pi\)
−0.799443 + 0.600742i \(0.794872\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.845190 0.534466i −0.845190 0.534466i
\(289\) −0.507071 0.320652i −0.507071 0.320652i
\(290\) 3.32616 + 0.540554i 3.32616 + 0.540554i
\(291\) 0 0
\(292\) 0.996757 0.0804666i 0.996757 0.0804666i
\(293\) 1.10759 1.15312i 1.10759 1.15312i 0.120537 0.992709i \(-0.461538\pi\)
0.987050 0.160411i \(-0.0512821\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1.19979 + 1.46948i −1.19979 + 1.46948i
\(297\) 0 0
\(298\) −1.04522 + 1.51426i −1.04522 + 1.51426i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.00646435 + 0.160411i −0.00646435 + 0.160411i
\(306\) −1.01121 0.759873i −1.01121 0.759873i
\(307\) 0 0 −0.120537 0.992709i \(-0.538462\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.120537 0.992709i \(-0.538462\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(312\) 0 0
\(313\) 0.136945 1.12785i 0.136945 1.12785i −0.748511 0.663123i \(-0.769231\pi\)
0.885456 0.464723i \(-0.153846\pi\)
\(314\) −0.511909 1.76731i −0.511909 1.76731i
\(315\) 0 0
\(316\) 0 0
\(317\) −0.540266 0.133164i −0.540266 0.133164i −0.0402659 0.999189i \(-0.512821\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.706910 1.86397i 0.706910 1.86397i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.748511 0.663123i −0.748511 0.663123i
\(325\) 2.93559 0.477079i 2.93559 0.477079i
\(326\) 0 0
\(327\) 0 0
\(328\) 0.238540 + 0.823534i 0.238540 + 0.823534i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.278217 0.960518i \(-0.410256\pi\)
−0.278217 + 0.960518i \(0.589744\pi\)
\(332\) 0 0
\(333\) −1.41998 + 1.25799i −1.41998 + 1.25799i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.59889 1.59889 0.799443 0.600742i \(-0.205128\pi\)
0.799443 + 0.600742i \(0.205128\pi\)
\(338\) 0.120537 + 0.992709i 0.120537 + 0.992709i
\(339\) 0 0
\(340\) 1.08098 2.27812i 1.08098 2.27812i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −1.71945 + 0.423807i −1.71945 + 0.423807i
\(347\) 0 0 0.996757 0.0804666i \(-0.0256410\pi\)
−0.996757 + 0.0804666i \(0.974359\pi\)
\(348\) 0 0
\(349\) 1.49217 + 0.120460i 1.49217 + 0.120460i 0.799443 0.600742i \(-0.205128\pi\)
0.692724 + 0.721202i \(0.256410\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.959734 + 0.999189i 0.959734 + 0.999189i 1.00000 \(0\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0.530851 1.39974i 0.530851 1.39974i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.970942 0.239316i \(-0.923077\pi\)
0.970942 + 0.239316i \(0.0769231\pi\)
\(360\) 0.996757 1.72643i 0.996757 1.72643i
\(361\) −0.500000 0.866025i −0.500000 0.866025i
\(362\) 0.385456 + 1.33075i 0.385456 + 1.33075i
\(363\) 0 0
\(364\) 0 0
\(365\) 0.240292 + 1.97898i 0.240292 + 1.97898i
\(366\) 0 0
\(367\) 0 0 0.428693 0.903450i \(-0.358974\pi\)
−0.428693 + 0.903450i \(0.641026\pi\)
\(368\) 0 0
\(369\) 0.103346 + 0.851134i 0.103346 + 0.851134i
\(370\) −3.02337 2.27191i −3.02337 2.27191i
\(371\) 0 0
\(372\) 0 0
\(373\) 0.367555 + 0.774605i 0.367555 + 0.774605i 1.00000 \(0\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.66849 0.271156i −1.66849 0.271156i
\(378\) 0 0
\(379\) 0 0 −0.0402659 0.999189i \(-0.512821\pi\)
0.0402659 + 0.999189i \(0.487179\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.692724 0.721202i \(-0.256410\pi\)
−0.692724 + 0.721202i \(0.743590\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1.81613 0.295150i −1.81613 0.295150i
\(387\) 0 0
\(388\) −0.203753 0.128845i −0.203753 0.128845i
\(389\) −1.84195 0.453999i −1.84195 0.453999i −0.845190 0.534466i \(-0.820513\pi\)
−0.996757 + 0.0804666i \(0.974359\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.948536 + 0.316668i 0.948536 + 0.316668i
\(393\) 0 0
\(394\) −0.0713074 + 1.76948i −0.0713074 + 1.76948i
\(395\) 0 0
\(396\) 0 0
\(397\) −0.227255 1.11317i −0.227255 1.11317i −0.919979 0.391967i \(-0.871795\pi\)
0.692724 0.721202i \(-0.256410\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 2.82104 + 0.941802i 2.82104 + 0.941802i
\(401\) −0.319818 + 1.56657i −0.319818 + 1.56657i 0.428693 + 0.903450i \(0.358974\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 1.41574 + 0.743039i 1.41574 + 0.743039i
\(405\) 1.26079 1.54419i 1.26079 1.54419i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0.845190 0.534466i 0.845190 0.534466i −0.0402659 0.999189i \(-0.512821\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(410\) −1.62125 + 0.541252i −1.62125 + 0.541252i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −0.354605 + 0.935016i −0.354605 + 0.935016i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.987050 0.160411i \(-0.0512821\pi\)
−0.987050 + 0.160411i \(0.948718\pi\)
\(420\) 0 0
\(421\) −0.0713074 + 0.0374250i −0.0713074 + 0.0374250i −0.500000 0.866025i \(-0.666667\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0.492699 0.258588i 0.492699 0.258588i
\(425\) 3.46088 + 1.47454i 3.46088 + 1.47454i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.987050 0.160411i \(-0.0512821\pi\)
−0.987050 + 0.160411i \(0.948718\pi\)
\(432\) 0 0
\(433\) −0.379463 1.85873i −0.379463 1.85873i −0.500000 0.866025i \(-0.666667\pi\)
0.120537 0.992709i \(-0.461538\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.599417 0.379048i 0.599417 0.379048i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.919979 0.391967i \(-0.128205\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(440\) 0 0
\(441\) 0.885456 + 0.464723i 0.885456 + 0.464723i
\(442\) −0.542249 + 1.14277i −0.542249 + 1.14277i
\(443\) 0 0 0.885456 0.464723i \(-0.153846\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(444\) 0 0
\(445\) 2.83075 + 0.945043i 2.83075 + 0.945043i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.718540 0.880052i −0.718540 0.880052i 0.278217 0.960518i \(-0.410256\pi\)
−0.996757 + 0.0804666i \(0.974359\pi\)
\(450\) 2.63344 + 1.38213i 2.63344 + 1.38213i
\(451\) 0 0
\(452\) −0.319818 + 0.240328i −0.319818 + 0.240328i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.470293 0.297395i −0.470293 0.297395i 0.278217 0.960518i \(-0.410256\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(458\) 1.64126 + 1.03787i 1.64126 + 1.03787i
\(459\) 0 0
\(460\) 0 0
\(461\) 0.398754 0.0321908i 0.398754 0.0321908i 0.120537 0.992709i \(-0.461538\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(462\) 0 0
\(463\) 0 0 −0.568065 0.822984i \(-0.692308\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(464\) −1.35136 1.01548i −1.35136 1.01548i
\(465\) 0 0
\(466\) −0.00970705 0.240878i −0.00970705 0.240878i
\(467\) 0 0 0.568065 0.822984i \(-0.307692\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(468\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.527799 0.176205i 0.527799 0.176205i
\(478\) 0 0
\(479\) 0 0 0.919979 0.391967i \(-0.128205\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(480\) 0 0
\(481\) 1.51660 + 1.13965i 1.51660 + 1.13965i
\(482\) −0.00970705 + 0.0799447i −0.00970705 + 0.0799447i
\(483\) 0 0
\(484\) −0.500000 0.866025i −0.500000 0.866025i
\(485\) 0.240292 0.416197i 0.240292 0.416197i
\(486\) 0 0
\(487\) 0 0 −0.987050 0.160411i \(-0.948718\pi\)
0.987050 + 0.160411i \(0.0512821\pi\)
\(488\) 0.0402659 0.0697427i 0.0402659 0.0697427i
\(489\) 0 0
\(490\) −0.554631 + 1.91481i −0.554631 + 1.91481i
\(491\) 0 0 0.200026 0.979791i \(-0.435897\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(492\) 0 0
\(493\) −1.60043 1.41785i −1.60043 1.41785i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 0.970942 0.239316i \(-0.0769231\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(500\) −1.09490 + 3.78002i −1.09490 + 3.78002i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.632445 0.774605i \(-0.717949\pi\)
0.632445 + 0.774605i \(0.282051\pi\)
\(504\) 0 0
\(505\) −1.36642 + 2.87966i −1.36642 + 2.87966i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −0.724653 + 1.52717i −0.724653 + 1.52717i 0.120537 + 0.992709i \(0.461538\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.748511 + 0.663123i −0.748511 + 0.663123i
\(513\) 0 0
\(514\) 0.385456 1.33075i 0.385456 1.33075i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −1.89092 0.631282i −1.89092 0.631282i
\(521\) −0.641762 0.568552i −0.641762 0.568552i 0.278217 0.960518i \(-0.410256\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(522\) −1.17097 1.21911i −1.17097 1.21911i
\(523\) 0 0 0.200026 0.979791i \(-0.435897\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(530\) 0.554631 + 0.960648i 0.554631 + 0.960648i
\(531\) 0 0
\(532\) 0 0
\(533\) 0.813261 0.271506i 0.813261 0.271506i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −0.180446 1.48611i −0.180446 1.48611i
\(539\) 0 0
\(540\) 0 0
\(541\) −1.03702 0.918722i −1.03702 0.918722i −0.0402659 0.999189i \(-0.512821\pi\)
−0.996757 + 0.0804666i \(0.974359\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −1.01121 + 0.759873i −1.01121 + 0.759873i
\(545\) 0.803141 + 1.16355i 0.803141 + 1.16355i
\(546\) 0 0
\(547\) 0 0 0.568065 0.822984i \(-0.307692\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(548\) 0.0161084 + 0.399727i 0.0161084 + 0.399727i
\(549\) 0.0509320 0.0623804i 0.0509320 0.0623804i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0.354605 + 0.935016i 0.354605 + 0.935016i
\(555\) 0 0
\(556\) 0 0
\(557\) 0.845190 + 0.534466i 0.845190 + 0.534466i 0.885456 0.464723i \(-0.153846\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0.444838 0.334274i 0.444838 0.334274i
\(563\) 0 0 0.0402659 0.999189i \(-0.487179\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(564\) 0 0
\(565\) −0.504380 0.617754i −0.504380 0.617754i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −0.672711 0.224584i −0.672711 0.224584i −0.0402659 0.999189i \(-0.512821\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(570\) 0 0
\(571\) 0 0 0.885456 0.464723i \(-0.153846\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.845190 + 0.534466i −0.845190 + 0.534466i
\(577\) 1.97410 1.97410 0.987050 0.160411i \(-0.0512821\pi\)
0.987050 + 0.160411i \(0.0512821\pi\)
\(578\) −0.507071 + 0.320652i −0.507071 + 0.320652i
\(579\) 0 0
\(580\) 1.91426 2.77329i 1.91426 2.77329i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0.354605 0.935016i 0.354605 0.935016i
\(585\) −1.76517 0.926432i −1.76517 0.926432i
\(586\) −0.566973 1.49498i −0.566973 1.49498i
\(587\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0.813261 + 1.71391i 0.813261 + 1.71391i
\(593\) 1.74798 0.917410i 1.74798 0.917410i 0.799443 0.600742i \(-0.205128\pi\)
0.948536 0.316668i \(-0.102564\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0.919979 + 1.59345i 0.919979 + 1.59345i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.354605 0.935016i \(-0.384615\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(600\) 0 0
\(601\) 0.0802707 + 0.00648012i 0.0802707 + 0.00648012i 0.120537 0.992709i \(-0.461538\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.68490 1.06547i 1.68490 1.06547i
\(606\) 0 0
\(607\) 0 0 0.845190 0.534466i \(-0.179487\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0.142152 + 0.0746073i 0.142152 + 0.0746073i
\(611\) 0 0
\(612\) −1.12001 + 0.587824i −1.12001 + 0.587824i
\(613\) 0.0161084 0.0789044i 0.0161084 0.0789044i −0.970942 0.239316i \(-0.923077\pi\)
0.987050 + 0.160411i \(0.0512821\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.338119 + 1.65622i 0.338119 + 1.65622i 0.692724 + 0.721202i \(0.256410\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(618\) 0 0
\(619\) 0 0 −0.885456 0.464723i \(-0.846154\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −4.72963 1.16575i −4.72963 1.16575i
\(626\) −0.960245 0.607222i −0.960245 0.607222i
\(627\) 0 0
\(628\) −1.81613 0.295150i −1.81613 0.295150i
\(629\) 0.850906 + 2.24366i 0.850906 + 2.24366i
\(630\) 0 0
\(631\) 0 0 0.692724 0.721202i \(-0.256410\pi\)
−0.692724 + 0.721202i \(0.743590\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −0.351915 + 0.431017i −0.351915 + 0.431017i
\(635\) 0 0
\(636\) 0 0
\(637\) 0.278217 0.960518i 0.278217 0.960518i
\(638\) 0 0
\(639\) 0 0
\(640\) −1.38096 1.43773i −1.38096 1.43773i
\(641\) −0.428693 0.903450i −0.428693 0.903450i −0.996757 0.0804666i \(-0.974359\pi\)
0.568065 0.822984i \(-0.307692\pi\)
\(642\) 0 0
\(643\) 0 0 0.0402659 0.999189i \(-0.487179\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.428693 0.903450i \(-0.358974\pi\)
−0.428693 + 0.903450i \(0.641026\pi\)
\(648\) −0.919979 + 0.391967i −0.919979 + 0.391967i
\(649\) 0 0
\(650\) 0.827447 2.85668i 0.827447 2.85668i
\(651\) 0 0
\(652\) 0 0
\(653\) 0.970942 + 1.68172i 0.970942 + 1.68172i 0.692724 + 0.721202i \(0.256410\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.846282 + 0.137534i 0.846282 + 0.137534i
\(657\) 0.500000 0.866025i 0.500000 0.866025i
\(658\) 0 0
\(659\) 0 0 0.278217 0.960518i \(-0.410256\pi\)
−0.278217 + 0.960518i \(0.589744\pi\)
\(660\) 0 0
\(661\) 1.36751 + 1.42373i 1.36751 + 1.42373i 0.799443 + 0.600742i \(0.205128\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0.527799 + 1.82217i 0.527799 + 1.82217i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.0557864 1.38433i −0.0557864 1.38433i −0.748511 0.663123i \(-0.769231\pi\)
0.692724 0.721202i \(-0.256410\pi\)
\(674\) 0.685430 1.44451i 0.685430 1.44451i
\(675\) 0 0
\(676\) 0.948536 + 0.316668i 0.948536 + 0.316668i
\(677\) −0.709210 −0.709210 −0.354605 0.935016i \(-0.615385\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −1.59476 1.95323i −1.59476 1.95323i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.278217 0.960518i \(-0.410256\pi\)
−0.278217 + 0.960518i \(0.589744\pi\)
\(684\) 0 0
\(685\) −0.794922 + 0.0641728i −0.794922 + 0.0641728i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −0.278217 0.481887i −0.278217 0.481887i
\(690\) 0 0
\(691\) 0 0 −0.692724 0.721202i \(-0.743590\pi\)
0.692724 + 0.721202i \(0.256410\pi\)
\(692\) −0.354228 + 1.73512i −0.354228 + 1.73512i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 1.05298 + 0.259537i 1.05298 + 0.259537i
\(698\) 0.748511 1.29646i 0.748511 1.29646i
\(699\) 0 0
\(700\) 0 0
\(701\) −0.234068 + 1.92773i −0.234068 + 1.92773i 0.120537 + 0.992709i \(0.461538\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 1.31415 0.438727i 1.31415 0.438727i
\(707\) 0 0
\(708\) 0 0
\(709\) −0.0794890 + 1.97250i −0.0794890 + 1.97250i 0.120537 + 0.992709i \(0.461538\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1.03702 1.07966i −1.03702 1.07966i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.799443 0.600742i \(-0.794872\pi\)
0.799443 + 0.600742i \(0.205128\pi\)
\(720\) −1.13245 1.64063i −1.13245 1.64063i
\(721\) 0 0
\(722\) −0.996757 + 0.0804666i −0.996757 + 0.0804666i
\(723\) 0 0
\(724\) 1.36751 + 0.222242i 1.36751 + 0.222242i
\(725\) 4.24908 + 2.68695i 4.24908 + 2.68695i
\(726\) 0 0
\(727\) 0 0 −0.970942 0.239316i \(-0.923077\pi\)
0.970942 + 0.239316i \(0.0769231\pi\)
\(728\) 0 0
\(729\) −0.970942 + 0.239316i −0.970942 + 0.239316i
\(730\) 1.89092 + 0.631282i 1.89092 + 0.631282i
\(731\) 0 0
\(732\) 0 0
\(733\) −1.62920 0.855072i −1.62920 0.855072i −0.996757 0.0804666i \(-0.974359\pi\)
−0.632445 0.774605i \(-0.717949\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0.813261 + 0.271506i 0.813261 + 0.271506i
\(739\) 0 0 0.200026 0.979791i \(-0.435897\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(740\) −3.34866 + 1.75751i −3.34866 + 1.75751i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.632445 0.774605i \(-0.282051\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(744\) 0 0
\(745\) −3.10014 + 1.96041i −3.10014 + 1.96041i
\(746\) 0.857385 0.857385
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.996757 0.0804666i \(-0.974359\pi\)
0.996757 + 0.0804666i \(0.0256410\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −0.960245 + 1.39116i −0.960245 + 1.39116i
\(755\) 0 0
\(756\) 0 0
\(757\) 1.74798 0.284074i 1.74798 0.284074i 0.799443 0.600742i \(-0.205128\pi\)
0.948536 + 0.316668i \(0.102564\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −0.832471 1.75440i −0.832471 1.75440i −0.632445 0.774605i \(-0.717949\pi\)
−0.200026 0.979791i \(-0.564103\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −1.26079 2.18375i −1.26079 2.18375i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 1.74798 0.284074i 1.74798 0.284074i 0.799443 0.600742i \(-0.205128\pi\)
0.948536 + 0.316668i \(0.102564\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.04522 + 1.51426i −1.04522 + 1.51426i
\(773\) −0.672711 + 0.224584i −0.672711 + 0.224584i −0.632445 0.774605i \(-0.717949\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −0.203753 + 0.128845i −0.203753 + 0.128845i
\(777\) 0 0
\(778\) −1.19979 + 1.46948i −1.19979 + 1.46948i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.692724 0.721202i 0.692724 0.721202i
\(785\) 0.442127 3.64124i 0.442127 3.64124i
\(786\) 0 0
\(787\) 0 0 −0.632445 0.774605i \(-0.717949\pi\)
0.632445 + 0.774605i \(0.282051\pi\)
\(788\) 1.56806 + 0.822984i 1.56806 + 0.822984i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −0.0713074 0.0374250i −0.0713074 0.0374250i
\(794\) −1.10312 0.271894i −1.10312 0.271894i
\(795\) 0 0
\(796\) 0 0
\(797\) 1.12142 + 0.182248i 1.12142 + 0.182248i 0.692724 0.721202i \(-0.256410\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 2.06023 2.14493i 2.06023 2.14493i
\(801\) −0.850405 1.23202i −0.850405 1.23202i
\(802\) 1.27822 + 0.960518i 1.27822 + 0.960518i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 1.27822 0.960518i 1.27822 0.960518i
\(809\) −1.27458 1.32698i −1.27458 1.32698i −0.919979 0.391967i \(-0.871795\pi\)
−0.354605 0.935016i \(-0.615385\pi\)
\(810\) −0.854605 1.80104i −0.854605 1.80104i
\(811\) 0 0 −0.748511 0.663123i \(-0.769231\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −0.120537 0.992709i −0.120537 0.992709i
\(819\) 0 0
\(820\) −0.206022 + 1.69675i −0.206022 + 1.69675i
\(821\) 0.0670708 + 0.231555i 0.0670708 + 0.231555i 0.987050 0.160411i \(-0.0512821\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(822\) 0 0
\(823\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.354605 0.935016i \(-0.384615\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(828\) 0 0
\(829\) −0.111301 + 0.545190i −0.111301 + 0.545190i 0.885456 + 0.464723i \(0.153846\pi\)
−0.996757 + 0.0804666i \(0.974359\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0.692724 + 0.721202i 0.692724 + 0.721202i
\(833\) 0.946784 0.838778i 0.946784 0.838778i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.919979 0.391967i \(-0.871795\pi\)
0.919979 + 0.391967i \(0.128205\pi\)
\(840\) 0 0
\(841\) −1.17469 1.43874i −1.17469 1.43874i
\(842\) 0.00324269 + 0.0804666i 0.00324269 + 0.0804666i
\(843\) 0 0
\(844\) 0 0
\(845\) −0.554631 + 1.91481i −0.554631 + 1.91481i
\(846\) 0 0
\(847\) 0 0
\(848\) −0.0224054 0.555984i −0.0224054 0.555984i
\(849\) 0 0
\(850\) 2.81583 2.49461i 2.81583 2.49461i
\(851\) 0 0
\(852\) 0 0
\(853\) 1.22814 0.302708i 1.22814 0.302708i 0.428693 0.903450i \(-0.358974\pi\)
0.799443 + 0.600742i \(0.205128\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0.0602790 0.0534025i 0.0602790 0.0534025i −0.632445 0.774605i \(-0.717949\pi\)
0.692724 + 0.721202i \(0.256410\pi\)
\(858\) 0 0
\(859\) 0 0 −0.748511 0.663123i \(-0.769231\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.354605 0.935016i \(-0.384615\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(864\) 0 0
\(865\) −3.48462 0.566306i −3.48462 0.566306i
\(866\) −1.84195 0.453999i −1.84195 0.453999i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −0.0854858 0.704039i −0.0854858 0.704039i
\(873\) −0.221783 + 0.0944927i −0.221783 + 0.0944927i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0.685430 + 0.515067i 0.685430 + 0.515067i 0.885456 0.464723i \(-0.153846\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0.593932 + 0.618348i 0.593932 + 0.618348i 0.948536 0.316668i \(-0.102564\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(882\) 0.799443 0.600742i 0.799443 0.600742i
\(883\) 0 0 −0.568065 0.822984i \(-0.692308\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(884\) 0.799974 + 0.979791i 0.799974 + 0.979791i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.632445 0.774605i \(-0.282051\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 2.06732 2.15231i 2.06732 2.15231i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −1.10312 + 0.271894i −1.10312 + 0.271894i
\(899\) 0 0
\(900\) 2.37762 1.78667i 2.37762 1.78667i
\(901\) 0.0283404 0.703259i 0.0283404 0.703259i
\(902\) 0 0
\(903\) 0 0
\(904\) 0.0800206 + 0.391967i 0.0800206 + 0.391967i
\(905\) −0.332912 + 2.74177i −0.332912 + 2.74177i
\(906\) 0 0
\(907\) 0 0 −0.948536 0.316668i \(-0.897436\pi\)
0.948536 + 0.316668i \(0.102564\pi\)
\(908\) 0 0
\(909\) 1.41574 0.743039i 1.41574 0.743039i
\(910\) 0 0
\(911\) 0 0 −0.885456 0.464723i \(-0.846154\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −0.470293 + 0.297395i −0.470293 + 0.297395i
\(915\) 0 0
\(916\) 1.64126 1.03787i 1.64126 1.03787i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.200026 0.979791i \(-0.564103\pi\)
0.200026 + 0.979791i \(0.435897\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0.141860 0.374055i 0.141860 0.374055i
\(923\) 0 0
\(924\) 0 0
\(925\) −2.82104 4.88619i −2.82104 4.88619i
\(926\) 0 0
\(927\) 0 0
\(928\) −1.49676 + 0.785559i −1.49676 + 0.785559i
\(929\) −0.542249 1.14277i −0.542249 1.14277i −0.970942 0.239316i \(-0.923077\pi\)
0.428693 0.903450i \(-0.358974\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −0.221783 0.0944927i −0.221783 0.0944927i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0.568065 + 0.822984i 0.568065 + 0.822984i
\(937\) 0.354605 0.935016i 0.354605 0.935016i −0.632445 0.774605i \(-0.717949\pi\)
0.987050 0.160411i \(-0.0512821\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.00599 1.45743i 1.00599 1.45743i 0.120537 0.992709i \(-0.461538\pi\)
0.885456 0.464723i \(-0.153846\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.632445 0.774605i \(-0.282051\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(948\) 0 0
\(949\) −0.948536 0.316668i −0.948536 0.316668i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.22675 1.27719i 1.22675 1.27719i 0.278217 0.960518i \(-0.410256\pi\)
0.948536 0.316668i \(-0.102564\pi\)
\(954\) 0.0670708 0.552378i 0.0670708 0.552378i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.970942 + 0.239316i −0.970942 + 0.239316i
\(962\) 1.67977 0.881614i 1.67977 0.881614i
\(963\) 0 0
\(964\) 0.0680647 + 0.0430415i 0.0680647 + 0.0430415i
\(965\) −3.10014 1.96041i −3.10014 1.96041i
\(966\) 0 0
\(967\) 0 0 −0.354605 0.935016i \(-0.615385\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(968\) −0.996757 + 0.0804666i −0.996757 + 0.0804666i
\(969\) 0 0
\(970\) −0.273002 0.395512i −0.273002 0.395512i
\(971\) 0 0 −0.799443 0.600742i \(-0.794872\pi\)
0.799443 + 0.600742i \(0.205128\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −0.0457473 0.0662764i −0.0457473 0.0662764i
\(977\) −1.47094 + 1.10534i −1.47094 + 1.10534i −0.500000 + 0.866025i \(0.666667\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 1.49217 + 1.32194i 1.49217 + 1.32194i
\(981\) 0.0285570 0.708635i 0.0285570 0.708635i
\(982\) 0 0
\(983\) 0 0 −0.120537 0.992709i \(-0.538462\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(984\) 0 0
\(985\) −1.51343 + 3.18949i −1.51343 + 3.18949i
\(986\) −1.96705 + 0.838082i −1.96705 + 0.838082i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −0.111301 + 0.384257i −0.111301 + 0.384257i −0.996757 0.0804666i \(-0.974359\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 676.1.t.a.107.1 24
4.3 odd 2 CM 676.1.t.a.107.1 24
169.139 even 39 inner 676.1.t.a.139.1 yes 24
676.139 odd 78 inner 676.1.t.a.139.1 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
676.1.t.a.107.1 24 1.1 even 1 trivial
676.1.t.a.107.1 24 4.3 odd 2 CM
676.1.t.a.139.1 yes 24 169.139 even 39 inner
676.1.t.a.139.1 yes 24 676.139 odd 78 inner