Properties

Label 676.1.t.a.367.1
Level $676$
Weight $1$
Character 676.367
Analytic conductor $0.337$
Analytic rank $0$
Dimension $24$
Projective image $D_{39}$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [676,1,Mod(3,676)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(676, base_ring=CyclotomicField(78))
 
chi = DirichletCharacter(H, H._module([39, 62]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("676.3");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 676.t (of order \(78\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.337367948540\)
Analytic rank: \(0\)
Dimension: \(24\)
Coefficient field: \(\Q(\zeta_{39})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} - x^{23} + x^{21} - x^{20} + x^{18} - x^{17} + x^{15} - x^{14} + x^{12} - x^{10} + x^{9} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{39}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{39} - \cdots)\)

Embedding invariants

Embedding label 367.1
Root \(-0.632445 - 0.774605i\) of defining polynomial
Character \(\chi\) \(=\) 676.367
Dual form 676.1.t.a.35.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.692724 + 0.721202i) q^{2} +(-0.0402659 + 0.999189i) q^{4} +(0.316091 + 0.457937i) q^{5} +(-0.748511 + 0.663123i) q^{8} +(0.278217 - 0.960518i) q^{9} +(-0.111301 + 0.545190i) q^{10} +(-0.200026 + 0.979791i) q^{13} +(-0.996757 - 0.0804666i) q^{16} +(0.0161084 + 0.0789044i) q^{17} +(0.885456 - 0.464723i) q^{18} +(-0.470293 + 0.297395i) q^{20} +(0.244812 - 0.645517i) q^{25} +(-0.845190 + 0.534466i) q^{26} +(-1.27458 - 1.32698i) q^{29} +(-0.632445 - 0.774605i) q^{32} +(-0.0457473 + 0.0662764i) q^{34} +(0.948536 + 0.316668i) q^{36} +(-0.542249 + 0.664135i) q^{37} +(-0.540266 - 0.133164i) q^{40} +(1.10759 - 0.832298i) q^{41} +(0.527799 - 0.176205i) q^{45} +(-0.919979 + 0.391967i) q^{49} +(0.635136 - 0.270606i) q^{50} +(-0.970942 - 0.239316i) q^{52} +(0.299443 - 0.265283i) q^{53} +(0.0740877 - 1.83847i) q^{58} +(1.51660 - 0.506316i) q^{61} +(0.120537 - 0.992709i) q^{64} +(-0.511909 + 0.218104i) q^{65} +(-0.0794890 + 0.0129182i) q^{68} +(0.428693 + 0.903450i) q^{72} +(0.970942 + 0.239316i) q^{73} +(-0.854605 + 0.0689908i) q^{74} +(-0.278217 - 0.481887i) q^{80} +(-0.845190 - 0.534466i) q^{81} +(1.36751 + 0.222242i) q^{82} +(-0.0310415 + 0.0323176i) q^{85} +(-0.568065 - 0.983917i) q^{89} +(0.492699 + 0.258588i) q^{90} +(-0.304033 - 0.640736i) q^{97} +(-0.919979 - 0.391967i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{2} + q^{4} + 2 q^{5} - 2 q^{8} + q^{9} - q^{10} + q^{13} + q^{16} - q^{17} - 2 q^{18} - q^{20} + q^{26} - q^{29} + q^{32} + 2 q^{34} + q^{36} - q^{37} - 11 q^{40} - q^{41} - q^{45}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/676\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(509\)
\(\chi(n)\) \(-1\) \(e\left(\frac{10}{39}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.692724 + 0.721202i 0.692724 + 0.721202i
\(3\) 0 0 0.799443 0.600742i \(-0.205128\pi\)
−0.799443 + 0.600742i \(0.794872\pi\)
\(4\) −0.0402659 + 0.999189i −0.0402659 + 0.999189i
\(5\) 0.316091 + 0.457937i 0.316091 + 0.457937i 0.948536 0.316668i \(-0.102564\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(6\) 0 0
\(7\) 0 0 −0.200026 0.979791i \(-0.564103\pi\)
0.200026 + 0.979791i \(0.435897\pi\)
\(8\) −0.748511 + 0.663123i −0.748511 + 0.663123i
\(9\) 0.278217 0.960518i 0.278217 0.960518i
\(10\) −0.111301 + 0.545190i −0.111301 + 0.545190i
\(11\) 0 0 −0.278217 0.960518i \(-0.589744\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(12\) 0 0
\(13\) −0.200026 + 0.979791i −0.200026 + 0.979791i
\(14\) 0 0
\(15\) 0 0
\(16\) −0.996757 0.0804666i −0.996757 0.0804666i
\(17\) 0.0161084 + 0.0789044i 0.0161084 + 0.0789044i 0.987050 0.160411i \(-0.0512821\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(18\) 0.885456 0.464723i 0.885456 0.464723i
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) −0.470293 + 0.297395i −0.470293 + 0.297395i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) 0 0
\(25\) 0.244812 0.645517i 0.244812 0.645517i
\(26\) −0.845190 + 0.534466i −0.845190 + 0.534466i
\(27\) 0 0
\(28\) 0 0
\(29\) −1.27458 1.32698i −1.27458 1.32698i −0.919979 0.391967i \(-0.871795\pi\)
−0.354605 0.935016i \(-0.615385\pi\)
\(30\) 0 0
\(31\) 0 0 −0.354605 0.935016i \(-0.615385\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(32\) −0.632445 0.774605i −0.632445 0.774605i
\(33\) 0 0
\(34\) −0.0457473 + 0.0662764i −0.0457473 + 0.0662764i
\(35\) 0 0
\(36\) 0.948536 + 0.316668i 0.948536 + 0.316668i
\(37\) −0.542249 + 0.664135i −0.542249 + 0.664135i −0.970942 0.239316i \(-0.923077\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −0.540266 0.133164i −0.540266 0.133164i
\(41\) 1.10759 0.832298i 1.10759 0.832298i 0.120537 0.992709i \(-0.461538\pi\)
0.987050 + 0.160411i \(0.0512821\pi\)
\(42\) 0 0
\(43\) 0 0 −0.632445 0.774605i \(-0.717949\pi\)
0.632445 + 0.774605i \(0.282051\pi\)
\(44\) 0 0
\(45\) 0.527799 0.176205i 0.527799 0.176205i
\(46\) 0 0
\(47\) 0 0 −0.885456 0.464723i \(-0.846154\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(48\) 0 0
\(49\) −0.919979 + 0.391967i −0.919979 + 0.391967i
\(50\) 0.635136 0.270606i 0.635136 0.270606i
\(51\) 0 0
\(52\) −0.970942 0.239316i −0.970942 0.239316i
\(53\) 0.299443 0.265283i 0.299443 0.265283i −0.500000 0.866025i \(-0.666667\pi\)
0.799443 + 0.600742i \(0.205128\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0.0740877 1.83847i 0.0740877 1.83847i
\(59\) 0 0 0.996757 0.0804666i \(-0.0256410\pi\)
−0.996757 + 0.0804666i \(0.974359\pi\)
\(60\) 0 0
\(61\) 1.51660 0.506316i 1.51660 0.506316i 0.568065 0.822984i \(-0.307692\pi\)
0.948536 + 0.316668i \(0.102564\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.120537 0.992709i 0.120537 0.992709i
\(65\) −0.511909 + 0.218104i −0.511909 + 0.218104i
\(66\) 0 0
\(67\) 0 0 −0.0402659 0.999189i \(-0.512821\pi\)
0.0402659 + 0.999189i \(0.487179\pi\)
\(68\) −0.0794890 + 0.0129182i −0.0794890 + 0.0129182i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.919979 0.391967i \(-0.871795\pi\)
0.919979 + 0.391967i \(0.128205\pi\)
\(72\) 0.428693 + 0.903450i 0.428693 + 0.903450i
\(73\) 0.970942 + 0.239316i 0.970942 + 0.239316i 0.692724 0.721202i \(-0.256410\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(74\) −0.854605 + 0.0689908i −0.854605 + 0.0689908i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.885456 0.464723i \(-0.846154\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(80\) −0.278217 0.481887i −0.278217 0.481887i
\(81\) −0.845190 0.534466i −0.845190 0.534466i
\(82\) 1.36751 + 0.222242i 1.36751 + 0.222242i
\(83\) 0 0 0.120537 0.992709i \(-0.461538\pi\)
−0.120537 + 0.992709i \(0.538462\pi\)
\(84\) 0 0
\(85\) −0.0310415 + 0.0323176i −0.0310415 + 0.0323176i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.568065 0.983917i −0.568065 0.983917i −0.996757 0.0804666i \(-0.974359\pi\)
0.428693 0.903450i \(-0.358974\pi\)
\(90\) 0.492699 + 0.258588i 0.492699 + 0.258588i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −0.304033 0.640736i −0.304033 0.640736i 0.692724 0.721202i \(-0.256410\pi\)
−0.996757 + 0.0804666i \(0.974359\pi\)
\(98\) −0.919979 0.391967i −0.919979 0.391967i
\(99\) 0 0
\(100\) 0.635136 + 0.270606i 0.635136 + 0.270606i
\(101\) −1.24851 + 0.202903i −1.24851 + 0.202903i −0.748511 0.663123i \(-0.769231\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) 0 0
\(103\) 0 0 −0.120537 0.992709i \(-0.538462\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(104\) −0.500000 0.866025i −0.500000 0.866025i
\(105\) 0 0
\(106\) 0.398754 + 0.0321908i 0.398754 + 0.0321908i
\(107\) 0 0 0.428693 0.903450i \(-0.358974\pi\)
−0.428693 + 0.903450i \(0.641026\pi\)
\(108\) 0 0
\(109\) −0.627974 + 1.65583i −0.627974 + 1.65583i 0.120537 + 0.992709i \(0.461538\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.59370 1.19759i −1.59370 1.19759i −0.845190 0.534466i \(-0.820513\pi\)
−0.748511 0.663123i \(-0.769231\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.37723 1.22012i 1.37723 1.22012i
\(117\) 0.885456 + 0.464723i 0.885456 + 0.464723i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.845190 + 0.534466i −0.845190 + 0.534466i
\(122\) 1.41574 + 0.743039i 1.41574 + 0.743039i
\(123\) 0 0
\(124\) 0 0
\(125\) 0.913255 0.225097i 0.913255 0.225097i
\(126\) 0 0
\(127\) 0 0 −0.0402659 0.999189i \(-0.512821\pi\)
0.0402659 + 0.999189i \(0.487179\pi\)
\(128\) 0.799443 0.600742i 0.799443 0.600742i
\(129\) 0 0
\(130\) −0.511909 0.218104i −0.511909 0.218104i
\(131\) 0 0 0.970942 0.239316i \(-0.0769231\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −0.0643806 0.0483789i −0.0643806 0.0483789i
\(137\) 1.26079 + 1.54419i 1.26079 + 1.54419i 0.692724 + 0.721202i \(0.256410\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(138\) 0 0
\(139\) 0 0 −0.428693 0.903450i \(-0.641026\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −0.354605 + 0.935016i −0.354605 + 0.935016i
\(145\) 0.204790 1.00313i 0.204790 1.00313i
\(146\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(147\) 0 0
\(148\) −0.641762 0.568552i −0.641762 0.568552i
\(149\) −1.66849 + 1.05509i −1.66849 + 1.05509i −0.748511 + 0.663123i \(0.769231\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(150\) 0 0
\(151\) 0 0 0.885456 0.464723i \(-0.153846\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(152\) 0 0
\(153\) 0.0802707 + 0.00648012i 0.0802707 + 0.00648012i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1.12142 + 1.62465i 1.12142 + 1.62465i 0.692724 + 0.721202i \(0.256410\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0.154810 0.534466i 0.154810 0.534466i
\(161\) 0 0
\(162\) −0.200026 0.979791i −0.200026 0.979791i
\(163\) 0 0 −0.987050 0.160411i \(-0.948718\pi\)
0.987050 + 0.160411i \(0.0512821\pi\)
\(164\) 0.787025 + 1.14020i 0.787025 + 1.14020i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.692724 0.721202i \(-0.743590\pi\)
0.692724 + 0.721202i \(0.256410\pi\)
\(168\) 0 0
\(169\) −0.919979 0.391967i −0.919979 0.391967i
\(170\) −0.0448108 −0.0448108
\(171\) 0 0
\(172\) 0 0
\(173\) −0.00970705 + 0.240878i −0.00970705 + 0.240878i 0.987050 + 0.160411i \(0.0512821\pi\)
−0.996757 + 0.0804666i \(0.974359\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0.316091 1.09127i 0.316091 1.09127i
\(179\) 0 0 0.200026 0.979791i \(-0.435897\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(180\) 0.154810 + 0.534466i 0.154810 + 0.534466i
\(181\) 1.07766 + 1.56126i 1.07766 + 1.56126i 0.799443 + 0.600742i \(0.205128\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.475532 0.0383889i −0.475532 0.0383889i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 0 0
\(193\) −0.394871 + 1.93421i −0.394871 + 1.93421i −0.0402659 + 0.999189i \(0.512821\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(194\) 0.251489 0.663123i 0.251489 0.663123i
\(195\) 0 0
\(196\) −0.354605 0.935016i −0.354605 0.935016i
\(197\) 0.237952 0.0386709i 0.237952 0.0386709i −0.0402659 0.999189i \(-0.512821\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(198\) 0 0
\(199\) 0 0 −0.428693 0.903450i \(-0.641026\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(200\) 0.244812 + 0.645517i 0.244812 + 0.645517i
\(201\) 0 0
\(202\) −1.01121 0.759873i −1.01121 0.759873i
\(203\) 0 0
\(204\) 0 0
\(205\) 0.731238 + 0.244123i 0.731238 + 0.244123i
\(206\) 0 0
\(207\) 0 0
\(208\) 0.278217 0.960518i 0.278217 0.960518i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.0402659 0.999189i \(-0.512821\pi\)
0.0402659 + 0.999189i \(0.487179\pi\)
\(212\) 0.253011 + 0.309882i 0.253011 + 0.309882i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −1.62920 + 0.694138i −1.62920 + 0.694138i
\(219\) 0 0
\(220\) 0 0
\(221\) −0.0805319 −0.0805319
\(222\) 0 0
\(223\) 0 0 0.428693 0.903450i \(-0.358974\pi\)
−0.428693 + 0.903450i \(0.641026\pi\)
\(224\) 0 0
\(225\) −0.551919 0.414741i −0.551919 0.414741i
\(226\) −0.240292 1.97898i −0.240292 1.97898i
\(227\) 0 0 0.0402659 0.999189i \(-0.487179\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(228\) 0 0
\(229\) 0.530851 1.39974i 0.530851 1.39974i −0.354605 0.935016i \(-0.615385\pi\)
0.885456 0.464723i \(-0.153846\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1.83399 + 0.148055i 1.83399 + 0.148055i
\(233\) −0.0854858 + 0.704039i −0.0854858 + 0.704039i 0.885456 + 0.464723i \(0.153846\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(234\) 0.278217 + 0.960518i 0.278217 + 0.960518i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 0.685430 + 1.44451i 0.685430 + 1.44451i 0.885456 + 0.464723i \(0.153846\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(242\) −0.970942 0.239316i −0.970942 0.239316i
\(243\) 0 0
\(244\) 0.444838 + 1.53576i 0.444838 + 1.53576i
\(245\) −0.470293 0.297395i −0.470293 0.297395i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0.794974 + 0.502711i 0.794974 + 0.502711i
\(251\) 0 0 −0.987050 0.160411i \(-0.948718\pi\)
0.987050 + 0.160411i \(0.0512821\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.987050 + 0.160411i 0.987050 + 0.160411i
\(257\) −1.60339 1.01392i −1.60339 1.01392i −0.970942 0.239316i \(-0.923077\pi\)
−0.632445 0.774605i \(-0.717949\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −0.197315 0.520276i −0.197315 0.520276i
\(261\) −1.62920 + 0.855072i −1.62920 + 0.855072i
\(262\) 0 0
\(263\) 0 0 −0.278217 0.960518i \(-0.589744\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(264\) 0 0
\(265\) 0.216134 + 0.0532723i 0.216134 + 0.0532723i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.04522 0.445325i −1.04522 0.445325i −0.200026 0.979791i \(-0.564103\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(270\) 0 0
\(271\) 0 0 −0.0402659 0.999189i \(-0.512821\pi\)
0.0402659 + 0.999189i \(0.487179\pi\)
\(272\) −0.00970705 0.0799447i −0.00970705 0.0799447i
\(273\) 0 0
\(274\) −0.240292 + 1.97898i −0.240292 + 1.97898i
\(275\) 0 0
\(276\) 0 0
\(277\) −0.948536 + 0.316668i −0.948536 + 0.316668i −0.748511 0.663123i \(-0.769231\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −0.0482209 0.397135i −0.0482209 0.397135i −0.996757 0.0804666i \(-0.974359\pi\)
0.948536 0.316668i \(-0.102564\pi\)
\(282\) 0 0
\(283\) 0 0 0.632445 0.774605i \(-0.282051\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.919979 + 0.391967i −0.919979 + 0.391967i
\(289\) 0.914013 0.389425i 0.914013 0.389425i
\(290\) 0.865320 0.547195i 0.865320 0.547195i
\(291\) 0 0
\(292\) −0.278217 + 0.960518i −0.278217 + 0.960518i
\(293\) −1.19979 + 0.400550i −1.19979 + 0.400550i −0.845190 0.534466i \(-0.820513\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −0.0345234 0.856690i −0.0345234 0.856690i
\(297\) 0 0
\(298\) −1.91674 0.472433i −1.91674 0.472433i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.711245 + 0.534466i 0.711245 + 0.534466i
\(306\) 0.0509320 + 0.0623804i 0.0509320 + 0.0623804i
\(307\) 0 0 −0.354605 0.935016i \(-0.615385\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.354605 0.935016i \(-0.615385\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(312\) 0 0
\(313\) 0.688601 1.81569i 0.688601 1.81569i 0.120537 0.992709i \(-0.461538\pi\)
0.568065 0.822984i \(-0.307692\pi\)
\(314\) −0.394871 + 1.93421i −0.394871 + 1.93421i
\(315\) 0 0
\(316\) 0 0
\(317\) 0.299443 + 0.265283i 0.299443 + 0.265283i 0.799443 0.600742i \(-0.205128\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.492699 0.258588i 0.492699 0.258588i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.568065 0.822984i 0.568065 0.822984i
\(325\) 0.583502 + 0.368985i 0.583502 + 0.368985i
\(326\) 0 0
\(327\) 0 0
\(328\) −0.277125 + 1.35745i −0.277125 + 1.35745i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.200026 0.979791i \(-0.564103\pi\)
0.200026 + 0.979791i \(0.435897\pi\)
\(332\) 0 0
\(333\) 0.487050 + 0.705614i 0.487050 + 0.705614i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.26489 −1.26489 −0.632445 0.774605i \(-0.717949\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(338\) −0.354605 0.935016i −0.354605 0.935016i
\(339\) 0 0
\(340\) −0.0310415 0.0323176i −0.0310415 0.0323176i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −0.180446 + 0.159861i −0.180446 + 0.159861i
\(347\) 0 0 0.278217 0.960518i \(-0.410256\pi\)
−0.278217 + 0.960518i \(0.589744\pi\)
\(348\) 0 0
\(349\) 0.316091 + 1.09127i 0.316091 + 1.09127i 0.948536 + 0.316668i \(0.102564\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.79944 + 0.600742i 1.79944 + 0.600742i 1.00000 \(0\)
0.799443 + 0.600742i \(0.205128\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 1.00599 0.527986i 1.00599 0.527986i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.748511 0.663123i \(-0.769231\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(360\) −0.278217 + 0.481887i −0.278217 + 0.481887i
\(361\) −0.500000 0.866025i −0.500000 0.866025i
\(362\) −0.379463 + 1.85873i −0.379463 + 1.85873i
\(363\) 0 0
\(364\) 0 0
\(365\) 0.197315 + 0.520276i 0.197315 + 0.520276i
\(366\) 0 0
\(367\) 0 0 −0.692724 0.721202i \(-0.743590\pi\)
0.692724 + 0.721202i \(0.256410\pi\)
\(368\) 0 0
\(369\) −0.491287 1.29542i −0.491287 1.29542i
\(370\) −0.301726 0.369548i −0.301726 0.369548i
\(371\) 0 0
\(372\) 0 0
\(373\) 0.959734 0.999189i 0.959734 0.999189i −0.0402659 0.999189i \(-0.512821\pi\)
1.00000 \(0\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.55512 0.983395i 1.55512 0.983395i
\(378\) 0 0
\(379\) 0 0 0.799443 0.600742i \(-0.205128\pi\)
−0.799443 + 0.600742i \(0.794872\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.948536 0.316668i \(-0.102564\pi\)
−0.948536 + 0.316668i \(0.897436\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1.66849 + 1.05509i −1.66849 + 1.05509i
\(387\) 0 0
\(388\) 0.652458 0.277987i 0.652458 0.277987i
\(389\) −0.641762 0.568552i −0.641762 0.568552i 0.278217 0.960518i \(-0.410256\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.428693 0.903450i 0.428693 0.903450i
\(393\) 0 0
\(394\) 0.192724 + 0.144823i 0.192724 + 0.144823i
\(395\) 0 0
\(396\) 0 0
\(397\) 1.93559 0.156257i 1.93559 0.156257i 0.948536 0.316668i \(-0.102564\pi\)
0.987050 + 0.160411i \(0.0512821\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.295961 + 0.623724i −0.295961 + 0.623724i
\(401\) 1.26079 + 0.101781i 1.26079 + 0.101781i 0.692724 0.721202i \(-0.256410\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −0.152466 1.25567i −0.152466 1.25567i
\(405\) −0.0224054 0.555984i −0.0224054 0.555984i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0.919979 + 0.391967i 0.919979 + 0.391967i 0.799443 0.600742i \(-0.205128\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(410\) 0.330484 + 0.696481i 0.330484 + 0.696481i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0.885456 0.464723i 0.885456 0.464723i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.845190 0.534466i \(-0.820513\pi\)
0.845190 + 0.534466i \(0.179487\pi\)
\(420\) 0 0
\(421\) 0.192724 1.58723i 0.192724 1.58723i −0.500000 0.866025i \(-0.666667\pi\)
0.692724 0.721202i \(-0.256410\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −0.0482209 + 0.397135i −0.0482209 + 0.397135i
\(425\) 0.0548776 + 0.00891848i 0.0548776 + 0.00891848i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.845190 0.534466i \(-0.820513\pi\)
0.845190 + 0.534466i \(0.179487\pi\)
\(432\) 0 0
\(433\) −0.854605 + 0.0689908i −0.854605 + 0.0689908i −0.500000 0.866025i \(-0.666667\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.62920 0.694138i −1.62920 0.694138i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.987050 0.160411i \(-0.0512821\pi\)
−0.987050 + 0.160411i \(0.948718\pi\)
\(440\) 0 0
\(441\) 0.120537 + 0.992709i 0.120537 + 0.992709i
\(442\) −0.0557864 0.0580798i −0.0557864 0.0580798i
\(443\) 0 0 0.120537 0.992709i \(-0.461538\pi\)
−0.120537 + 0.992709i \(0.538462\pi\)
\(444\) 0 0
\(445\) 0.271012 0.571145i 0.271012 0.571145i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.0781918 1.94031i 0.0781918 1.94031i −0.200026 0.979791i \(-0.564103\pi\)
0.278217 0.960518i \(-0.410256\pi\)
\(450\) −0.0832161 0.685347i −0.0832161 0.685347i
\(451\) 0 0
\(452\) 1.26079 1.54419i 1.26079 1.54419i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.368039 0.156807i 0.368039 0.156807i −0.200026 0.979791i \(-0.564103\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(458\) 1.37723 0.586782i 1.37723 0.586782i
\(459\) 0 0
\(460\) 0 0
\(461\) −0.554631 + 1.91481i −0.554631 + 1.91481i −0.200026 + 0.979791i \(0.564103\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(462\) 0 0
\(463\) 0 0 0.970942 0.239316i \(-0.0769231\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(464\) 1.16367 + 1.42524i 1.16367 + 1.42524i
\(465\) 0 0
\(466\) −0.566973 + 0.426052i −0.566973 + 0.426052i
\(467\) 0 0 −0.970942 0.239316i \(-0.923077\pi\)
0.970942 + 0.239316i \(0.0769231\pi\)
\(468\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −0.171499 0.361427i −0.171499 0.361427i
\(478\) 0 0
\(479\) 0 0 0.987050 0.160411i \(-0.0512821\pi\)
−0.987050 + 0.160411i \(0.948718\pi\)
\(480\) 0 0
\(481\) −0.542249 0.664135i −0.542249 0.664135i
\(482\) −0.566973 + 1.49498i −0.566973 + 1.49498i
\(483\) 0 0
\(484\) −0.500000 0.866025i −0.500000 0.866025i
\(485\) 0.197315 0.341759i 0.197315 0.341759i
\(486\) 0 0
\(487\) 0 0 0.845190 0.534466i \(-0.179487\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(488\) −0.799443 + 1.38468i −0.799443 + 1.38468i
\(489\) 0 0
\(490\) −0.111301 0.545190i −0.111301 0.545190i
\(491\) 0 0 −0.996757 0.0804666i \(-0.974359\pi\)
0.996757 + 0.0804666i \(0.0256410\pi\)
\(492\) 0 0
\(493\) 0.0841732 0.121946i 0.0841732 0.121946i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 0.748511 0.663123i \(-0.230769\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(500\) 0.188141 + 0.921578i 0.188141 + 0.921578i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.0402659 0.999189i \(-0.487179\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(504\) 0 0
\(505\) −0.487560 0.507603i −0.487560 0.507603i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.27458 1.32698i −1.27458 1.32698i −0.919979 0.391967i \(-0.871795\pi\)
−0.354605 0.935016i \(-0.615385\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.568065 + 0.822984i 0.568065 + 0.822984i
\(513\) 0 0
\(514\) −0.379463 1.85873i −0.379463 1.85873i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0.238540 0.502711i 0.238540 0.502711i
\(521\) 0.787025 1.14020i 0.787025 1.14020i −0.200026 0.979791i \(-0.564103\pi\)
0.987050 0.160411i \(-0.0512821\pi\)
\(522\) −1.74527 0.582656i −1.74527 0.582656i
\(523\) 0 0 −0.996757 0.0804666i \(-0.974359\pi\)
0.996757 + 0.0804666i \(0.0256410\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(530\) 0.111301 + 0.192779i 0.111301 + 0.192779i
\(531\) 0 0
\(532\) 0 0
\(533\) 0.593932 + 1.25168i 0.593932 + 1.25168i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −0.402877 1.06230i −0.402877 1.06230i
\(539\) 0 0
\(540\) 0 0
\(541\) 1.07766 1.56126i 1.07766 1.56126i 0.278217 0.960518i \(-0.410256\pi\)
0.799443 0.600742i \(-0.205128\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0.0509320 0.0623804i 0.0509320 0.0623804i
\(545\) −0.956763 + 0.235821i −0.956763 + 0.235821i
\(546\) 0 0
\(547\) 0 0 −0.970942 0.239316i \(-0.923077\pi\)
0.970942 + 0.239316i \(0.0769231\pi\)
\(548\) −1.59370 + 1.19759i −1.59370 + 1.19759i
\(549\) −0.0643806 1.59759i −0.0643806 1.59759i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −0.885456 0.464723i −0.885456 0.464723i
\(555\) 0 0
\(556\) 0 0
\(557\) 0.919979 0.391967i 0.919979 0.391967i 0.120537 0.992709i \(-0.461538\pi\)
0.799443 + 0.600742i \(0.205128\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0.253011 0.309882i 0.253011 0.309882i
\(563\) 0 0 −0.799443 0.600742i \(-0.794872\pi\)
0.799443 + 0.600742i \(0.205128\pi\)
\(564\) 0 0
\(565\) 0.0446654 1.10836i 0.0446654 1.10836i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0.759177 1.59993i 0.759177 1.59993i −0.0402659 0.999189i \(-0.512821\pi\)
0.799443 0.600742i \(-0.205128\pi\)
\(570\) 0 0
\(571\) 0 0 0.120537 0.992709i \(-0.461538\pi\)
−0.120537 + 0.992709i \(0.538462\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.919979 0.391967i −0.919979 0.391967i
\(577\) −1.69038 −1.69038 −0.845190 0.534466i \(-0.820513\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(578\) 0.914013 + 0.389425i 0.914013 + 0.389425i
\(579\) 0 0
\(580\) 0.994067 + 0.245016i 0.994067 + 0.245016i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −0.885456 + 0.464723i −0.885456 + 0.464723i
\(585\) 0.0670708 + 0.552378i 0.0670708 + 0.552378i
\(586\) −1.12001 0.587824i −1.12001 0.587824i
\(587\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0.593932 0.618348i 0.593932 0.618348i
\(593\) −0.203753 + 1.67806i −0.203753 + 1.67806i 0.428693 + 0.903450i \(0.358974\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.987050 1.70962i −0.987050 1.70962i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.885456 0.464723i \(-0.153846\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(600\) 0 0
\(601\) 0.444838 + 1.53576i 0.444838 + 1.53576i 0.799443 + 0.600742i \(0.205128\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.511909 0.218104i −0.511909 0.218104i
\(606\) 0 0
\(607\) 0 0 −0.919979 0.391967i \(-0.871795\pi\)
0.919979 + 0.391967i \(0.128205\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0.107239 + 0.883189i 0.107239 + 0.883189i
\(611\) 0 0
\(612\) −0.00970705 + 0.0799447i −0.00970705 + 0.0799447i
\(613\) −1.59370 0.128657i −1.59370 0.128657i −0.748511 0.663123i \(-0.769231\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.83399 0.148055i 1.83399 0.148055i 0.885456 0.464723i \(-0.153846\pi\)
0.948536 + 0.316668i \(0.102564\pi\)
\(618\) 0 0
\(619\) 0 0 −0.120537 0.992709i \(-0.538462\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.125005 0.110745i −0.125005 0.110745i
\(626\) 1.78649 0.761154i 1.78649 0.761154i
\(627\) 0 0
\(628\) −1.66849 + 1.05509i −1.66849 + 1.05509i
\(629\) −0.0611379 0.0320877i −0.0611379 0.0320877i
\(630\) 0 0
\(631\) 0 0 0.948536 0.316668i \(-0.102564\pi\)
−0.948536 + 0.316668i \(0.897436\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0.0161084 + 0.399727i 0.0161084 + 0.399727i
\(635\) 0 0
\(636\) 0 0
\(637\) −0.200026 0.979791i −0.200026 0.979791i
\(638\) 0 0
\(639\) 0 0
\(640\) 0.527799 + 0.176205i 0.527799 + 0.176205i
\(641\) −0.692724 + 0.721202i −0.692724 + 0.721202i −0.970942 0.239316i \(-0.923077\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(642\) 0 0
\(643\) 0 0 −0.799443 0.600742i \(-0.794872\pi\)
0.799443 + 0.600742i \(0.205128\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.692724 0.721202i \(-0.743590\pi\)
0.692724 + 0.721202i \(0.256410\pi\)
\(648\) 0.987050 0.160411i 0.987050 0.160411i
\(649\) 0 0
\(650\) 0.138094 + 0.676428i 0.138094 + 0.676428i
\(651\) 0 0
\(652\) 0 0
\(653\) 0.748511 + 1.29646i 0.748511 + 1.29646i 0.948536 + 0.316668i \(0.102564\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −1.17097 + 0.740475i −1.17097 + 0.740475i
\(657\) 0.500000 0.866025i 0.500000 0.866025i
\(658\) 0 0
\(659\) 0 0 −0.200026 0.979791i \(-0.564103\pi\)
0.200026 + 0.979791i \(0.435897\pi\)
\(660\) 0 0
\(661\) −1.60339 0.535289i −1.60339 0.535289i −0.632445 0.774605i \(-0.717949\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −0.171499 + 0.840058i −0.171499 + 0.840058i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.51660 1.13965i 1.51660 1.13965i 0.568065 0.822984i \(-0.307692\pi\)
0.948536 0.316668i \(-0.102564\pi\)
\(674\) −0.876221 0.912242i −0.876221 0.912242i
\(675\) 0 0
\(676\) 0.428693 0.903450i 0.428693 0.903450i
\(677\) 1.77091 1.77091 0.885456 0.464723i \(-0.153846\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0.00180435 0.0447744i 0.00180435 0.0447744i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.200026 0.979791i \(-0.564103\pi\)
0.200026 + 0.979791i \(0.435897\pi\)
\(684\) 0 0
\(685\) −0.308616 + 1.06547i −0.308616 + 1.06547i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0.200026 + 0.346455i 0.200026 + 0.346455i
\(690\) 0 0
\(691\) 0 0 −0.948536 0.316668i \(-0.897436\pi\)
0.948536 + 0.316668i \(0.102564\pi\)
\(692\) −0.240292 0.0193983i −0.240292 0.0193983i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0.0835134 + 0.0739864i 0.0835134 + 0.0739864i
\(698\) −0.568065 + 0.983917i −0.568065 + 0.983917i
\(699\) 0 0
\(700\) 0 0
\(701\) 0.530851 1.39974i 0.530851 1.39974i −0.354605 0.935016i \(-0.615385\pi\)
0.885456 0.464723i \(-0.153846\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0.813261 + 1.71391i 0.813261 + 1.71391i
\(707\) 0 0
\(708\) 0 0
\(709\) −1.35136 1.01548i −1.35136 1.01548i −0.996757 0.0804666i \(-0.974359\pi\)
−0.354605 0.935016i \(-0.615385\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1.07766 + 0.359776i 1.07766 + 0.359776i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.632445 0.774605i \(-0.717949\pi\)
0.632445 + 0.774605i \(0.282051\pi\)
\(720\) −0.540266 + 0.133164i −0.540266 + 0.133164i
\(721\) 0 0
\(722\) 0.278217 0.960518i 0.278217 0.960518i
\(723\) 0 0
\(724\) −1.60339 + 1.01392i −1.60339 + 1.01392i
\(725\) −1.16862 + 0.497904i −1.16862 + 0.497904i
\(726\) 0 0
\(727\) 0 0 −0.748511 0.663123i \(-0.769231\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(728\) 0 0
\(729\) −0.748511 + 0.663123i −0.748511 + 0.663123i
\(730\) −0.238540 + 0.502711i −0.238540 + 0.502711i
\(731\) 0 0
\(732\) 0 0
\(733\) 0.237952 + 1.95971i 0.237952 + 1.95971i 0.278217 + 0.960518i \(0.410256\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0.593932 1.25168i 0.593932 1.25168i
\(739\) 0 0 −0.996757 0.0804666i \(-0.974359\pi\)
0.996757 + 0.0804666i \(0.0256410\pi\)
\(740\) 0.0575055 0.473601i 0.0575055 0.473601i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.0402659 0.999189i \(-0.512821\pi\)
0.0402659 + 0.999189i \(0.487179\pi\)
\(744\) 0 0
\(745\) −1.01056 0.430559i −1.01056 0.430559i
\(746\) 1.38545 1.38545
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.278217 0.960518i \(-0.589744\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 1.78649 + 0.440331i 1.78649 + 0.440331i
\(755\) 0 0
\(756\) 0 0
\(757\) −0.203753 0.128845i −0.203753 0.128845i 0.428693 0.903450i \(-0.358974\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.03702 + 1.07966i −1.03702 + 1.07966i −0.0402659 + 0.999189i \(0.512821\pi\)
−0.996757 + 0.0804666i \(0.974359\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0.0224054 + 0.0388072i 0.0224054 + 0.0388072i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −0.203753 0.128845i −0.203753 0.128845i 0.428693 0.903450i \(-0.358974\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.91674 0.472433i −1.91674 0.472433i
\(773\) 0.759177 + 1.59993i 0.759177 + 1.59993i 0.799443 + 0.600742i \(0.205128\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0.652458 + 0.277987i 0.652458 + 0.277987i
\(777\) 0 0
\(778\) −0.0345234 0.856690i −0.0345234 0.856690i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.948536 0.316668i 0.948536 0.316668i
\(785\) −0.389519 + 1.02708i −0.389519 + 1.02708i
\(786\) 0 0
\(787\) 0 0 0.0402659 0.999189i \(-0.487179\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(788\) 0.0290582 + 0.239316i 0.0290582 + 0.239316i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0.192724 + 1.58723i 0.192724 + 1.58723i
\(794\) 1.45352 + 1.28771i 1.45352 + 1.28771i
\(795\) 0 0
\(796\) 0 0
\(797\) 1.64126 1.03787i 1.64126 1.03787i 0.692724 0.721202i \(-0.256410\pi\)
0.948536 0.316668i \(-0.102564\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.654851 + 0.218621i −0.654851 + 0.218621i
\(801\) −1.10312 + 0.271894i −1.10312 + 0.271894i
\(802\) 0.799974 + 0.979791i 0.799974 + 0.979791i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0.799974 0.979791i 0.799974 0.979791i
\(809\) 1.87251 + 0.625134i 1.87251 + 0.625134i 0.987050 + 0.160411i \(0.0512821\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(810\) 0.385456 0.401302i 0.385456 0.401302i
\(811\) 0 0 0.568065 0.822984i \(-0.307692\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0.354605 + 0.935016i 0.354605 + 0.935016i
\(819\) 0 0
\(820\) −0.273369 + 0.720815i −0.273369 + 0.720815i
\(821\) 0.141860 0.694877i 0.141860 0.694877i −0.845190 0.534466i \(-0.820513\pi\)
0.987050 0.160411i \(-0.0512821\pi\)
\(822\) 0 0
\(823\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.885456 0.464723i \(-0.153846\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(828\) 0 0
\(829\) 0.398754 + 0.0321908i 0.398754 + 0.0321908i 0.278217 0.960518i \(-0.410256\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0.948536 + 0.316668i 0.948536 + 0.316668i
\(833\) −0.0457473 0.0662764i −0.0457473 0.0662764i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.987050 0.160411i \(-0.948718\pi\)
0.987050 + 0.160411i \(0.0512821\pi\)
\(840\) 0 0
\(841\) −0.0960523 + 2.38351i −0.0960523 + 2.38351i
\(842\) 1.27822 0.960518i 1.27822 0.960518i
\(843\) 0 0
\(844\) 0 0
\(845\) −0.111301 0.545190i −0.111301 0.545190i
\(846\) 0 0
\(847\) 0 0
\(848\) −0.319818 + 0.240328i −0.319818 + 0.240328i
\(849\) 0 0
\(850\) 0.0315830 + 0.0457559i 0.0315830 + 0.0457559i
\(851\) 0 0
\(852\) 0 0
\(853\) 0.0602790 0.0534025i 0.0602790 0.0534025i −0.632445 0.774605i \(-0.717949\pi\)
0.692724 + 0.721202i \(0.256410\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0.908271 + 1.31586i 0.908271 + 1.31586i 0.948536 + 0.316668i \(0.102564\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(858\) 0 0
\(859\) 0 0 0.568065 0.822984i \(-0.307692\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.885456 0.464723i \(-0.153846\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(864\) 0 0
\(865\) −0.113375 + 0.0716941i −0.113375 + 0.0716941i
\(866\) −0.641762 0.568552i −0.641762 0.568552i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −0.627974 1.65583i −0.627974 1.65583i
\(873\) −0.700026 + 0.113765i −0.700026 + 0.113765i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −0.876221 1.07318i −0.876221 1.07318i −0.996757 0.0804666i \(-0.974359\pi\)
0.120537 0.992709i \(-0.461538\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.31415 + 0.438727i 1.31415 + 0.438727i 0.885456 0.464723i \(-0.153846\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(882\) −0.632445 + 0.774605i −0.632445 + 0.774605i
\(883\) 0 0 0.970942 0.239316i \(-0.0769231\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(884\) 0.00324269 0.0804666i 0.00324269 0.0804666i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.0402659 0.999189i \(-0.512821\pi\)
0.0402659 + 0.999189i \(0.487179\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0.599648 0.200192i 0.599648 0.200192i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 1.45352 1.28771i 1.45352 1.28771i
\(899\) 0 0
\(900\) 0.436628 0.534772i 0.436628 0.534772i
\(901\) 0.0257556 + 0.0193540i 0.0257556 + 0.0193540i
\(902\) 0 0
\(903\) 0 0
\(904\) 1.98705 0.160411i 1.98705 0.160411i
\(905\) −0.374320 + 0.987001i −0.374320 + 0.987001i
\(906\) 0 0
\(907\) 0 0 0.428693 0.903450i \(-0.358974\pi\)
−0.428693 + 0.903450i \(0.641026\pi\)
\(908\) 0 0
\(909\) −0.152466 + 1.25567i −0.152466 + 1.25567i
\(910\) 0 0
\(911\) 0 0 −0.120537 0.992709i \(-0.538462\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0.368039 + 0.156807i 0.368039 + 0.156807i
\(915\) 0 0
\(916\) 1.37723 + 0.586782i 1.37723 + 0.586782i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.996757 0.0804666i \(-0.0256410\pi\)
−0.996757 + 0.0804666i \(0.974359\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −1.76517 + 0.926432i −1.76517 + 0.926432i
\(923\) 0 0
\(924\) 0 0
\(925\) 0.295961 + 0.512619i 0.295961 + 0.512619i
\(926\) 0 0
\(927\) 0 0
\(928\) −0.221783 + 1.82654i −0.221783 + 1.82654i
\(929\) −0.0557864 + 0.0580798i −0.0557864 + 0.0580798i −0.748511 0.663123i \(-0.769231\pi\)
0.692724 + 0.721202i \(0.256410\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −0.700026 0.113765i −0.700026 0.113765i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −0.970942 + 0.239316i −0.970942 + 0.239316i
\(937\) −0.885456 + 0.464723i −0.885456 + 0.464723i −0.845190 0.534466i \(-0.820513\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −0.234068 0.0576926i −0.234068 0.0576926i 0.120537 0.992709i \(-0.461538\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.0402659 0.999189i \(-0.512821\pi\)
0.0402659 + 0.999189i \(0.487179\pi\)
\(948\) 0 0
\(949\) −0.428693 + 0.903450i −0.428693 + 0.903450i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0.228667 0.0763402i 0.228667 0.0763402i −0.200026 0.979791i \(-0.564103\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(954\) 0.141860 0.374055i 0.141860 0.374055i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.748511 + 0.663123i −0.748511 + 0.663123i
\(962\) 0.103346 0.851134i 0.103346 0.851134i
\(963\) 0 0
\(964\) −1.47094 + 0.626710i −1.47094 + 0.626710i
\(965\) −1.01056 + 0.430559i −1.01056 + 0.430559i
\(966\) 0 0
\(967\) 0 0 −0.885456 0.464723i \(-0.846154\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(968\) 0.278217 0.960518i 0.278217 0.960518i
\(969\) 0 0
\(970\) 0.383162 0.0944409i 0.383162 0.0944409i
\(971\) 0 0 −0.632445 0.774605i \(-0.717949\pi\)
0.632445 + 0.774605i \(0.282051\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −1.55242 + 0.382638i −1.55242 + 0.382638i
\(977\) −1.24851 + 1.52915i −1.24851 + 1.52915i −0.500000 + 0.866025i \(0.666667\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0.316091 0.457937i 0.316091 0.457937i
\(981\) 1.41574 + 1.06386i 1.41574 + 1.06386i
\(982\) 0 0
\(983\) 0 0 −0.354605 0.935016i \(-0.615385\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(984\) 0 0
\(985\) 0.0929232 + 0.0967433i 0.0929232 + 0.0967433i
\(986\) 0.146257 0.0237690i 0.146257 0.0237690i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0.398754 + 1.95323i 0.398754 + 1.95323i 0.278217 + 0.960518i \(0.410256\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 676.1.t.a.367.1 yes 24
4.3 odd 2 CM 676.1.t.a.367.1 yes 24
169.35 even 39 inner 676.1.t.a.35.1 24
676.35 odd 78 inner 676.1.t.a.35.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
676.1.t.a.35.1 24 169.35 even 39 inner
676.1.t.a.35.1 24 676.35 odd 78 inner
676.1.t.a.367.1 yes 24 1.1 even 1 trivial
676.1.t.a.367.1 yes 24 4.3 odd 2 CM