Properties

Label 676.1.t.a.575.1
Level $676$
Weight $1$
Character 676.575
Analytic conductor $0.337$
Analytic rank $0$
Dimension $24$
Projective image $D_{39}$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [676,1,Mod(3,676)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(676, base_ring=CyclotomicField(78))
 
chi = DirichletCharacter(H, H._module([39, 62]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("676.3");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 676.t (of order \(78\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.337367948540\)
Analytic rank: \(0\)
Dimension: \(24\)
Coefficient field: \(\Q(\zeta_{39})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} - x^{23} + x^{21} - x^{20} + x^{18} - x^{17} + x^{15} - x^{14} + x^{12} - x^{10} + x^{9} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{39}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{39} - \cdots)\)

Embedding invariants

Embedding label 575.1
Root \(0.692724 - 0.721202i\) of defining polynomial
Character \(\chi\) \(=\) 676.575
Dual form 676.1.t.a.87.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.987050 - 0.160411i) q^{2} +(0.948536 - 0.316668i) q^{4} +(-0.152466 + 1.25567i) q^{5} +(0.885456 - 0.464723i) q^{8} +(-0.632445 - 0.774605i) q^{9} +(0.0509320 + 1.26386i) q^{10} +(-0.0402659 - 0.999189i) q^{13} +(0.799443 - 0.600742i) q^{16} +(-0.0763874 + 1.89553i) q^{17} +(-0.748511 - 0.663123i) q^{18} +(0.253011 + 1.23933i) q^{20} +(-0.582515 - 0.143577i) q^{25} +(-0.200026 - 0.979791i) q^{26} +(-1.96770 + 0.319782i) q^{29} +(0.692724 - 0.721202i) q^{32} +(0.228667 + 1.88324i) q^{34} +(-0.845190 - 0.534466i) q^{36} +(-1.27458 - 1.32698i) q^{37} +(0.448536 + 1.18269i) q^{40} +(0.846282 - 1.78350i) q^{41} +(1.06907 - 0.676041i) q^{45} +(-0.996757 - 0.0804666i) q^{49} +(-0.598003 - 0.0482758i) q^{50} +(-0.354605 - 0.935016i) q^{52} +(-0.0713074 + 0.0374250i) q^{53} +(-1.89092 + 0.631282i) q^{58} +(-0.724653 + 0.458243i) q^{61} +(0.568065 - 0.822984i) q^{64} +(1.26079 + 0.101781i) q^{65} +(0.527799 + 1.82217i) q^{68} +(-0.919979 - 0.391967i) q^{72} +(0.354605 + 0.935016i) q^{73} +(-1.47094 - 1.10534i) q^{74} +(0.632445 + 1.09543i) q^{80} +(-0.200026 + 0.979791i) q^{81} +(0.549229 - 1.89616i) q^{82} +(-2.36852 - 0.384921i) q^{85} +(-0.120537 - 0.208776i) q^{89} +(0.946784 - 0.838778i) q^{90} +(1.78649 + 0.761154i) q^{97} +(-0.996757 + 0.0804666i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{2} + q^{4} + 2 q^{5} - 2 q^{8} + q^{9} - q^{10} + q^{13} + q^{16} - q^{17} - 2 q^{18} - q^{20} + q^{26} - q^{29} + q^{32} + 2 q^{34} + q^{36} - q^{37} - 11 q^{40} - q^{41} - q^{45}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/676\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(509\)
\(\chi(n)\) \(-1\) \(e\left(\frac{37}{39}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.987050 0.160411i 0.987050 0.160411i
\(3\) 0 0 0.428693 0.903450i \(-0.358974\pi\)
−0.428693 + 0.903450i \(0.641026\pi\)
\(4\) 0.948536 0.316668i 0.948536 0.316668i
\(5\) −0.152466 + 1.25567i −0.152466 + 1.25567i 0.692724 + 0.721202i \(0.256410\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(6\) 0 0
\(7\) 0 0 0.0402659 0.999189i \(-0.487179\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(8\) 0.885456 0.464723i 0.885456 0.464723i
\(9\) −0.632445 0.774605i −0.632445 0.774605i
\(10\) 0.0509320 + 1.26386i 0.0509320 + 1.26386i
\(11\) 0 0 0.632445 0.774605i \(-0.282051\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(12\) 0 0
\(13\) −0.0402659 0.999189i −0.0402659 0.999189i
\(14\) 0 0
\(15\) 0 0
\(16\) 0.799443 0.600742i 0.799443 0.600742i
\(17\) −0.0763874 + 1.89553i −0.0763874 + 1.89553i 0.278217 + 0.960518i \(0.410256\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(18\) −0.748511 0.663123i −0.748511 0.663123i
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) 0.253011 + 1.23933i 0.253011 + 1.23933i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) 0 0
\(25\) −0.582515 0.143577i −0.582515 0.143577i
\(26\) −0.200026 0.979791i −0.200026 0.979791i
\(27\) 0 0
\(28\) 0 0
\(29\) −1.96770 + 0.319782i −1.96770 + 0.319782i −0.970942 + 0.239316i \(0.923077\pi\)
−0.996757 + 0.0804666i \(0.974359\pi\)
\(30\) 0 0
\(31\) 0 0 0.970942 0.239316i \(-0.0769231\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(32\) 0.692724 0.721202i 0.692724 0.721202i
\(33\) 0 0
\(34\) 0.228667 + 1.88324i 0.228667 + 1.88324i
\(35\) 0 0
\(36\) −0.845190 0.534466i −0.845190 0.534466i
\(37\) −1.27458 1.32698i −1.27458 1.32698i −0.919979 0.391967i \(-0.871795\pi\)
−0.354605 0.935016i \(-0.615385\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0.448536 + 1.18269i 0.448536 + 1.18269i
\(41\) 0.846282 1.78350i 0.846282 1.78350i 0.278217 0.960518i \(-0.410256\pi\)
0.568065 0.822984i \(-0.307692\pi\)
\(42\) 0 0
\(43\) 0 0 0.692724 0.721202i \(-0.256410\pi\)
−0.692724 + 0.721202i \(0.743590\pi\)
\(44\) 0 0
\(45\) 1.06907 0.676041i 1.06907 0.676041i
\(46\) 0 0
\(47\) 0 0 0.748511 0.663123i \(-0.230769\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(48\) 0 0
\(49\) −0.996757 0.0804666i −0.996757 0.0804666i
\(50\) −0.598003 0.0482758i −0.598003 0.0482758i
\(51\) 0 0
\(52\) −0.354605 0.935016i −0.354605 0.935016i
\(53\) −0.0713074 + 0.0374250i −0.0713074 + 0.0374250i −0.500000 0.866025i \(-0.666667\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −1.89092 + 0.631282i −1.89092 + 0.631282i
\(59\) 0 0 −0.799443 0.600742i \(-0.794872\pi\)
0.799443 + 0.600742i \(0.205128\pi\)
\(60\) 0 0
\(61\) −0.724653 + 0.458243i −0.724653 + 0.458243i −0.845190 0.534466i \(-0.820513\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.568065 0.822984i 0.568065 0.822984i
\(65\) 1.26079 + 0.101781i 1.26079 + 0.101781i
\(66\) 0 0
\(67\) 0 0 −0.948536 0.316668i \(-0.897436\pi\)
0.948536 + 0.316668i \(0.102564\pi\)
\(68\) 0.527799 + 1.82217i 0.527799 + 1.82217i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.996757 0.0804666i \(-0.0256410\pi\)
−0.996757 + 0.0804666i \(0.974359\pi\)
\(72\) −0.919979 0.391967i −0.919979 0.391967i
\(73\) 0.354605 + 0.935016i 0.354605 + 0.935016i 0.987050 + 0.160411i \(0.0512821\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(74\) −1.47094 1.10534i −1.47094 1.10534i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.748511 0.663123i \(-0.230769\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(80\) 0.632445 + 1.09543i 0.632445 + 1.09543i
\(81\) −0.200026 + 0.979791i −0.200026 + 0.979791i
\(82\) 0.549229 1.89616i 0.549229 1.89616i
\(83\) 0 0 0.568065 0.822984i \(-0.307692\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(84\) 0 0
\(85\) −2.36852 0.384921i −2.36852 0.384921i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.120537 0.208776i −0.120537 0.208776i 0.799443 0.600742i \(-0.205128\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(90\) 0.946784 0.838778i 0.946784 0.838778i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.78649 + 0.761154i 1.78649 + 0.761154i 0.987050 + 0.160411i \(0.0512821\pi\)
0.799443 + 0.600742i \(0.205128\pi\)
\(98\) −0.996757 + 0.0804666i −0.996757 + 0.0804666i
\(99\) 0 0
\(100\) −0.598003 + 0.0482758i −0.598003 + 0.0482758i
\(101\) 0.385456 + 1.33075i 0.385456 + 1.33075i 0.885456 + 0.464723i \(0.153846\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) 0 0
\(103\) 0 0 −0.568065 0.822984i \(-0.692308\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(104\) −0.500000 0.866025i −0.500000 0.866025i
\(105\) 0 0
\(106\) −0.0643806 + 0.0483789i −0.0643806 + 0.0483789i
\(107\) 0 0 0.919979 0.391967i \(-0.128205\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(108\) 0 0
\(109\) 1.45352 + 0.358261i 1.45352 + 0.358261i 0.885456 0.464723i \(-0.153846\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.685430 + 1.44451i 0.685430 + 1.44451i 0.885456 + 0.464723i \(0.153846\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.76517 + 0.926432i −1.76517 + 0.926432i
\(117\) −0.748511 + 0.663123i −0.748511 + 0.663123i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.200026 0.979791i −0.200026 0.979791i
\(122\) −0.641762 + 0.568552i −0.641762 + 0.568552i
\(123\) 0 0
\(124\) 0 0
\(125\) −0.179438 + 0.473138i −0.179438 + 0.473138i
\(126\) 0 0
\(127\) 0 0 −0.948536 0.316668i \(-0.897436\pi\)
0.948536 + 0.316668i \(0.102564\pi\)
\(128\) 0.428693 0.903450i 0.428693 0.903450i
\(129\) 0 0
\(130\) 1.26079 0.101781i 1.26079 0.101781i
\(131\) 0 0 0.354605 0.935016i \(-0.384615\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.813261 + 1.71391i 0.813261 + 1.71391i
\(137\) 1.10759 1.15312i 1.10759 1.15312i 0.120537 0.992709i \(-0.461538\pi\)
0.987050 0.160411i \(-0.0512821\pi\)
\(138\) 0 0
\(139\) 0 0 −0.919979 0.391967i \(-0.871795\pi\)
0.919979 + 0.391967i \(0.128205\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −0.970942 0.239316i −0.970942 0.239316i
\(145\) −0.101534 2.51953i −0.101534 2.51953i
\(146\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(147\) 0 0
\(148\) −1.62920 0.855072i −1.62920 0.855072i
\(149\) −0.111301 0.545190i −0.111301 0.545190i −0.996757 0.0804666i \(-0.974359\pi\)
0.885456 0.464723i \(-0.153846\pi\)
\(150\) 0 0
\(151\) 0 0 −0.748511 0.663123i \(-0.769231\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(152\) 0 0
\(153\) 1.51660 1.13965i 1.51660 1.13965i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.0670708 0.552378i 0.0670708 0.552378i −0.919979 0.391967i \(-0.871795\pi\)
0.987050 0.160411i \(-0.0512821\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0.799974 + 0.979791i 0.799974 + 0.979791i
\(161\) 0 0
\(162\) −0.0402659 + 0.999189i −0.0402659 + 0.999189i
\(163\) 0 0 0.278217 0.960518i \(-0.410256\pi\)
−0.278217 + 0.960518i \(0.589744\pi\)
\(164\) 0.237952 1.95971i 0.237952 1.95971i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.987050 0.160411i \(-0.0512821\pi\)
−0.987050 + 0.160411i \(0.948718\pi\)
\(168\) 0 0
\(169\) −0.996757 + 0.0804666i −0.996757 + 0.0804666i
\(170\) −2.39959 −2.39959
\(171\) 0 0
\(172\) 0 0
\(173\) 1.07766 0.359776i 1.07766 0.359776i 0.278217 0.960518i \(-0.410256\pi\)
0.799443 + 0.600742i \(0.205128\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −0.152466 0.186737i −0.152466 0.186737i
\(179\) 0 0 −0.0402659 0.999189i \(-0.512821\pi\)
0.0402659 + 0.999189i \(0.487179\pi\)
\(180\) 0.799974 0.979791i 0.799974 0.979791i
\(181\) −0.203753 + 1.67806i −0.203753 + 1.67806i 0.428693 + 0.903450i \(0.358974\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.86058 1.39814i 1.86058 1.39814i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 0 0
\(193\) −0.0224054 0.555984i −0.0224054 0.555984i −0.970942 0.239316i \(-0.923077\pi\)
0.948536 0.316668i \(-0.102564\pi\)
\(194\) 1.88546 + 0.464723i 1.88546 + 0.464723i
\(195\) 0 0
\(196\) −0.970942 + 0.239316i −0.970942 + 0.239316i
\(197\) 0.316091 + 1.09127i 0.316091 + 1.09127i 0.948536 + 0.316668i \(0.102564\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(198\) 0 0
\(199\) 0 0 −0.919979 0.391967i \(-0.871795\pi\)
0.919979 + 0.391967i \(0.128205\pi\)
\(200\) −0.582515 + 0.143577i −0.582515 + 0.143577i
\(201\) 0 0
\(202\) 0.593932 + 1.25168i 0.593932 + 1.25168i
\(203\) 0 0
\(204\) 0 0
\(205\) 2.11046 + 1.33457i 2.11046 + 1.33457i
\(206\) 0 0
\(207\) 0 0
\(208\) −0.632445 0.774605i −0.632445 0.774605i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.948536 0.316668i \(-0.897436\pi\)
0.948536 + 0.316668i \(0.102564\pi\)
\(212\) −0.0557864 + 0.0580798i −0.0557864 + 0.0580798i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 1.49217 + 0.120460i 1.49217 + 0.120460i
\(219\) 0 0
\(220\) 0 0
\(221\) 1.89707 1.89707
\(222\) 0 0
\(223\) 0 0 0.919979 0.391967i \(-0.128205\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(224\) 0 0
\(225\) 0.257194 + 0.542024i 0.257194 + 0.542024i
\(226\) 0.908271 + 1.31586i 0.908271 + 1.31586i
\(227\) 0 0 0.948536 0.316668i \(-0.102564\pi\)
−0.948536 + 0.316668i \(0.897436\pi\)
\(228\) 0 0
\(229\) −1.71945 0.423807i −1.71945 0.423807i −0.748511 0.663123i \(-0.769231\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1.59370 + 1.19759i −1.59370 + 1.19759i
\(233\) −1.10312 + 1.59814i −1.10312 + 1.59814i −0.354605 + 0.935016i \(0.615385\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(234\) −0.632445 + 0.774605i −0.632445 + 0.774605i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −0.788777 0.336066i −0.788777 0.336066i −0.0402659 0.999189i \(-0.512821\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(242\) −0.354605 0.935016i −0.354605 0.935016i
\(243\) 0 0
\(244\) −0.542249 + 0.664135i −0.542249 + 0.664135i
\(245\) 0.253011 1.23933i 0.253011 1.23933i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −0.101217 + 0.495795i −0.101217 + 0.495795i
\(251\) 0 0 0.278217 0.960518i \(-0.410256\pi\)
−0.278217 + 0.960518i \(0.589744\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.278217 0.960518i 0.278217 0.960518i
\(257\) 0.338119 1.65622i 0.338119 1.65622i −0.354605 0.935016i \(-0.615385\pi\)
0.692724 0.721202i \(-0.256410\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.22814 0.302708i 1.22814 0.302708i
\(261\) 1.49217 + 1.32194i 1.49217 + 1.32194i
\(262\) 0 0
\(263\) 0 0 0.632445 0.774605i \(-0.282051\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(264\) 0 0
\(265\) −0.0361215 0.0952445i −0.0361215 0.0952445i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.240292 + 0.0193983i −0.240292 + 0.0193983i −0.200026 0.979791i \(-0.564103\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(270\) 0 0
\(271\) 0 0 −0.948536 0.316668i \(-0.897436\pi\)
0.948536 + 0.316668i \(0.102564\pi\)
\(272\) 1.07766 + 1.56126i 1.07766 + 1.56126i
\(273\) 0 0
\(274\) 0.908271 1.31586i 0.908271 1.31586i
\(275\) 0 0
\(276\) 0 0
\(277\) 0.845190 0.534466i 0.845190 0.534466i −0.0402659 0.999189i \(-0.512821\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −0.0457473 0.0662764i −0.0457473 0.0662764i 0.799443 0.600742i \(-0.205128\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(282\) 0 0
\(283\) 0 0 −0.692724 0.721202i \(-0.743590\pi\)
0.692724 + 0.721202i \(0.256410\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.996757 0.0804666i −0.996757 0.0804666i
\(289\) −2.59046 0.209123i −2.59046 0.209123i
\(290\) −0.504380 2.47062i −0.504380 2.47062i
\(291\) 0 0
\(292\) 0.632445 + 0.774605i 0.632445 + 0.774605i
\(293\) −1.17097 + 0.740475i −1.17097 + 0.740475i −0.970942 0.239316i \(-0.923077\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1.74527 0.582656i −1.74527 0.582656i
\(297\) 0 0
\(298\) −0.197315 0.520276i −0.197315 0.520276i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.464916 0.979791i −0.464916 0.979791i
\(306\) 1.31415 1.36817i 1.31415 1.36817i
\(307\) 0 0 0.970942 0.239316i \(-0.0769231\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.970942 0.239316i \(-0.0769231\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(312\) 0 0
\(313\) 0.688601 + 0.169725i 0.688601 + 0.169725i 0.568065 0.822984i \(-0.307692\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(314\) −0.0224054 0.555984i −0.0224054 0.555984i
\(315\) 0 0
\(316\) 0 0
\(317\) −0.0713074 0.0374250i −0.0713074 0.0374250i 0.428693 0.903450i \(-0.358974\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.946784 + 0.838778i 0.946784 + 0.838778i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.120537 + 0.992709i 0.120537 + 0.992709i
\(325\) −0.120005 + 0.587824i −0.120005 + 0.587824i
\(326\) 0 0
\(327\) 0 0
\(328\) −0.0794890 1.97250i −0.0794890 1.97250i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.0402659 0.999189i \(-0.487179\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(332\) 0 0
\(333\) −0.221783 + 1.82654i −0.221783 + 1.82654i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.38545 1.38545 0.692724 0.721202i \(-0.256410\pi\)
0.692724 + 0.721202i \(0.256410\pi\)
\(338\) −0.970942 + 0.239316i −0.970942 + 0.239316i
\(339\) 0 0
\(340\) −2.36852 + 0.384921i −2.36852 + 0.384921i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 1.00599 0.527986i 1.00599 0.527986i
\(347\) 0 0 −0.632445 0.774605i \(-0.717949\pi\)
0.632445 + 0.774605i \(0.282051\pi\)
\(348\) 0 0
\(349\) −0.152466 + 0.186737i −0.152466 + 0.186737i −0.845190 0.534466i \(-0.820513\pi\)
0.692724 + 0.721202i \(0.256410\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.42869 + 0.903450i 1.42869 + 0.903450i 1.00000 \(0\)
0.428693 + 0.903450i \(0.358974\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −0.180446 0.159861i −0.180446 0.159861i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.885456 0.464723i \(-0.846154\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(360\) 0.632445 1.09543i 0.632445 1.09543i
\(361\) −0.500000 0.866025i −0.500000 0.866025i
\(362\) 0.0680647 + 1.68901i 0.0680647 + 1.68901i
\(363\) 0 0
\(364\) 0 0
\(365\) −1.22814 + 0.302708i −1.22814 + 0.302708i
\(366\) 0 0
\(367\) 0 0 0.987050 0.160411i \(-0.0512821\pi\)
−0.987050 + 0.160411i \(0.948718\pi\)
\(368\) 0 0
\(369\) −1.91674 + 0.472433i −1.91674 + 0.472433i
\(370\) 1.61221 1.67849i 1.61221 1.67849i
\(371\) 0 0
\(372\) 0 0
\(373\) 1.94854 + 0.316668i 1.94854 + 0.316668i 1.00000 \(0\)
0.948536 + 0.316668i \(0.102564\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.398754 + 1.95323i 0.398754 + 1.95323i
\(378\) 0 0
\(379\) 0 0 0.428693 0.903450i \(-0.358974\pi\)
−0.428693 + 0.903450i \(0.641026\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.845190 0.534466i \(-0.179487\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −0.111301 0.545190i −0.111301 0.545190i
\(387\) 0 0
\(388\) 1.93559 + 0.156257i 1.93559 + 0.156257i
\(389\) −1.62920 0.855072i −1.62920 0.855072i −0.996757 0.0804666i \(-0.974359\pi\)
−0.632445 0.774605i \(-0.717949\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.919979 + 0.391967i −0.919979 + 0.391967i
\(393\) 0 0
\(394\) 0.487050 + 1.02644i 0.487050 + 1.02644i
\(395\) 0 0
\(396\) 0 0
\(397\) −0.566973 0.426052i −0.566973 0.426052i 0.278217 0.960518i \(-0.410256\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.551940 + 0.235160i −0.551940 + 0.235160i
\(401\) 1.10759 0.832298i 1.10759 0.832298i 0.120537 0.992709i \(-0.461538\pi\)
0.987050 + 0.160411i \(0.0512821\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0.787025 + 1.14020i 0.787025 + 1.14020i
\(405\) −1.19979 0.400550i −1.19979 0.400550i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0.996757 0.0804666i 0.996757 0.0804666i 0.428693 0.903450i \(-0.358974\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(410\) 2.29721 + 0.978749i 2.29721 + 0.978749i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −0.748511 0.663123i −0.748511 0.663123i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.200026 0.979791i \(-0.435897\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(420\) 0 0
\(421\) 0.487050 0.705614i 0.487050 0.705614i −0.500000 0.866025i \(-0.666667\pi\)
0.987050 + 0.160411i \(0.0512821\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −0.0457473 + 0.0662764i −0.0457473 + 0.0662764i
\(425\) 0.316652 1.09321i 0.316652 1.09321i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.200026 0.979791i \(-0.435897\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(432\) 0 0
\(433\) −1.47094 1.10534i −1.47094 1.10534i −0.970942 0.239316i \(-0.923077\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1.49217 0.120460i 1.49217 0.120460i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.278217 0.960518i \(-0.589744\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(440\) 0 0
\(441\) 0.568065 + 0.822984i 0.568065 + 0.822984i
\(442\) 1.87251 0.304312i 1.87251 0.304312i
\(443\) 0 0 0.568065 0.822984i \(-0.307692\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(444\) 0 0
\(445\) 0.280531 0.119523i 0.280531 0.119523i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.672711 + 0.224584i −0.672711 + 0.224584i −0.632445 0.774605i \(-0.717949\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(450\) 0.340810 + 0.493748i 0.340810 + 0.493748i
\(451\) 0 0
\(452\) 1.10759 + 1.15312i 1.10759 + 1.15312i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.0802707 + 0.00648012i 0.0802707 + 0.00648012i 0.120537 0.992709i \(-0.461538\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(458\) −1.76517 0.142499i −1.76517 0.142499i
\(459\) 0 0
\(460\) 0 0
\(461\) −1.01121 1.23850i −1.01121 1.23850i −0.970942 0.239316i \(-0.923077\pi\)
−0.0402659 0.999189i \(-0.512821\pi\)
\(462\) 0 0
\(463\) 0 0 0.354605 0.935016i \(-0.384615\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(464\) −1.38096 + 1.43773i −1.38096 + 1.43773i
\(465\) 0 0
\(466\) −0.832471 + 1.75440i −0.832471 + 1.75440i
\(467\) 0 0 −0.354605 0.935016i \(-0.615385\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(468\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.0740877 + 0.0315658i 0.0740877 + 0.0315658i
\(478\) 0 0
\(479\) 0 0 −0.278217 0.960518i \(-0.589744\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(480\) 0 0
\(481\) −1.27458 + 1.32698i −1.27458 + 1.32698i
\(482\) −0.832471 0.205186i −0.832471 0.205186i
\(483\) 0 0
\(484\) −0.500000 0.866025i −0.500000 0.866025i
\(485\) −1.22814 + 2.12719i −1.22814 + 2.12719i
\(486\) 0 0
\(487\) 0 0 −0.200026 0.979791i \(-0.564103\pi\)
0.200026 + 0.979791i \(0.435897\pi\)
\(488\) −0.428693 + 0.742517i −0.428693 + 0.742517i
\(489\) 0 0
\(490\) 0.0509320 1.26386i 0.0509320 1.26386i
\(491\) 0 0 0.799443 0.600742i \(-0.205128\pi\)
−0.799443 + 0.600742i \(0.794872\pi\)
\(492\) 0 0
\(493\) −0.455851 3.75427i −0.455851 3.75427i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 0.885456 0.464723i \(-0.153846\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(500\) −0.0203754 + 0.505611i −0.0203754 + 0.505611i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.948536 0.316668i \(-0.102564\pi\)
−0.948536 + 0.316668i \(0.897436\pi\)
\(504\) 0 0
\(505\) −1.72975 + 0.281111i −1.72975 + 0.281111i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.96770 + 0.319782i −1.96770 + 0.319782i −0.970942 + 0.239316i \(0.923077\pi\)
−0.996757 + 0.0804666i \(0.974359\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.120537 0.992709i 0.120537 0.992709i
\(513\) 0 0
\(514\) 0.0680647 1.68901i 0.0680647 1.68901i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 1.16367 0.495795i 1.16367 0.495795i
\(521\) 0.237952 + 1.95971i 0.237952 + 1.95971i 0.278217 + 0.960518i \(0.410256\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(522\) 1.68490 + 1.06547i 1.68490 + 1.06547i
\(523\) 0 0 0.799443 0.600742i \(-0.205128\pi\)
−0.799443 + 0.600742i \(0.794872\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(530\) −0.0509320 0.0882168i −0.0509320 0.0882168i
\(531\) 0 0
\(532\) 0 0
\(533\) −1.81613 0.773781i −1.81613 0.773781i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −0.234068 + 0.0576926i −0.234068 + 0.0576926i
\(539\) 0 0
\(540\) 0 0
\(541\) −0.203753 1.67806i −0.203753 1.67806i −0.632445 0.774605i \(-0.717949\pi\)
0.428693 0.903450i \(-0.358974\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 1.31415 + 1.36817i 1.31415 + 1.36817i
\(545\) −0.671469 + 1.77052i −0.671469 + 1.77052i
\(546\) 0 0
\(547\) 0 0 −0.354605 0.935016i \(-0.615385\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(548\) 0.685430 1.44451i 0.685430 1.44451i
\(549\) 0.813261 + 0.271506i 0.813261 + 0.271506i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0.748511 0.663123i 0.748511 0.663123i
\(555\) 0 0
\(556\) 0 0
\(557\) 0.996757 + 0.0804666i 0.996757 + 0.0804666i 0.568065 0.822984i \(-0.307692\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −0.0557864 0.0580798i −0.0557864 0.0580798i
\(563\) 0 0 −0.428693 0.903450i \(-0.641026\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(564\) 0 0
\(565\) −1.91833 + 0.640434i −1.91833 + 0.640434i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.37723 0.586782i 1.37723 0.586782i 0.428693 0.903450i \(-0.358974\pi\)
0.948536 + 0.316668i \(0.102564\pi\)
\(570\) 0 0
\(571\) 0 0 0.568065 0.822984i \(-0.307692\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.996757 + 0.0804666i −0.996757 + 0.0804666i
\(577\) −0.400051 −0.400051 −0.200026 0.979791i \(-0.564103\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(578\) −2.59046 + 0.209123i −2.59046 + 0.209123i
\(579\) 0 0
\(580\) −0.894164 2.35772i −0.894164 2.35772i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0.748511 + 0.663123i 0.748511 + 0.663123i
\(585\) −0.718540 1.04098i −0.718540 1.04098i
\(586\) −1.03702 + 0.918722i −1.03702 + 0.918722i
\(587\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −1.81613 0.295150i −1.81613 0.295150i
\(593\) −0.227255 + 0.329236i −0.227255 + 0.329236i −0.919979 0.391967i \(-0.871795\pi\)
0.692724 + 0.721202i \(0.256410\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.278217 0.481887i −0.278217 0.481887i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.748511 0.663123i \(-0.769231\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(600\) 0 0
\(601\) −0.542249 + 0.664135i −0.542249 + 0.664135i −0.970942 0.239316i \(-0.923077\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.26079 0.101781i 1.26079 0.101781i
\(606\) 0 0
\(607\) 0 0 0.996757 0.0804666i \(-0.0256410\pi\)
−0.996757 + 0.0804666i \(0.974359\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −0.616065 0.892525i −0.616065 0.892525i
\(611\) 0 0
\(612\) 1.07766 1.56126i 1.07766 1.56126i
\(613\) 0.685430 0.515067i 0.685430 0.515067i −0.200026 0.979791i \(-0.564103\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.59370 1.19759i −1.59370 1.19759i −0.845190 0.534466i \(-0.820513\pi\)
−0.748511 0.663123i \(-0.769231\pi\)
\(618\) 0 0
\(619\) 0 0 −0.568065 0.822984i \(-0.692308\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −1.09797 0.576262i −1.09797 0.576262i
\(626\) 0.706910 + 0.0570677i 0.706910 + 0.0570677i
\(627\) 0 0
\(628\) −0.111301 0.545190i −0.111301 0.545190i
\(629\) 2.61270 2.31465i 2.61270 2.31465i
\(630\) 0 0
\(631\) 0 0 0.845190 0.534466i \(-0.179487\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −0.0763874 0.0255019i −0.0763874 0.0255019i
\(635\) 0 0
\(636\) 0 0
\(637\) −0.0402659 + 0.999189i −0.0402659 + 0.999189i
\(638\) 0 0
\(639\) 0 0
\(640\) 1.06907 + 0.676041i 1.06907 + 0.676041i
\(641\) −0.987050 0.160411i −0.987050 0.160411i −0.354605 0.935016i \(-0.615385\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(642\) 0 0
\(643\) 0 0 −0.428693 0.903450i \(-0.641026\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.987050 0.160411i \(-0.0512821\pi\)
−0.987050 + 0.160411i \(0.948718\pi\)
\(648\) 0.278217 + 0.960518i 0.278217 + 0.960518i
\(649\) 0 0
\(650\) −0.0241575 + 0.599462i −0.0241575 + 0.599462i
\(651\) 0 0
\(652\) 0 0
\(653\) −0.885456 1.53365i −0.885456 1.53365i −0.845190 0.534466i \(-0.820513\pi\)
−0.0402659 0.999189i \(-0.512821\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −0.394871 1.93421i −0.394871 1.93421i
\(657\) 0.500000 0.866025i 0.500000 0.866025i
\(658\) 0 0
\(659\) 0 0 0.0402659 0.999189i \(-0.487179\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(660\) 0 0
\(661\) 0.338119 + 0.213814i 0.338119 + 0.213814i 0.692724 0.721202i \(-0.256410\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0.0740877 + 1.83847i 0.0740877 + 1.83847i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.724653 + 1.52717i −0.724653 + 1.52717i 0.120537 + 0.992709i \(0.461538\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(674\) 1.36751 0.222242i 1.36751 0.222242i
\(675\) 0 0
\(676\) −0.919979 + 0.391967i −0.919979 + 0.391967i
\(677\) −1.49702 −1.49702 −0.748511 0.663123i \(-0.769231\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −2.27610 + 0.759873i −2.27610 + 0.759873i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.0402659 0.999189i \(-0.487179\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(684\) 0 0
\(685\) 1.27907 + 1.56657i 1.27907 + 1.56657i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0.0402659 + 0.0697427i 0.0402659 + 0.0697427i
\(690\) 0 0
\(691\) 0 0 −0.845190 0.534466i \(-0.820513\pi\)
0.845190 + 0.534466i \(0.179487\pi\)
\(692\) 0.908271 0.682521i 0.908271 0.682521i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 3.31604 + 1.74039i 3.31604 + 1.74039i
\(698\) −0.120537 + 0.208776i −0.120537 + 0.208776i
\(699\) 0 0
\(700\) 0 0
\(701\) −1.71945 0.423807i −1.71945 0.423807i −0.748511 0.663123i \(-0.769231\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 1.55512 + 0.662573i 1.55512 + 0.662573i
\(707\) 0 0
\(708\) 0 0
\(709\) −0.171499 0.361427i −0.171499 0.361427i 0.799443 0.600742i \(-0.205128\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −0.203753 0.128845i −0.203753 0.128845i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.692724 0.721202i \(-0.256410\pi\)
−0.692724 + 0.721202i \(0.743590\pi\)
\(720\) 0.448536 1.18269i 0.448536 1.18269i
\(721\) 0 0
\(722\) −0.632445 0.774605i −0.632445 0.774605i
\(723\) 0 0
\(724\) 0.338119 + 1.65622i 0.338119 + 1.65622i
\(725\) 1.19213 + 0.0962385i 1.19213 + 0.0962385i
\(726\) 0 0
\(727\) 0 0 −0.885456 0.464723i \(-0.846154\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(728\) 0 0
\(729\) 0.885456 0.464723i 0.885456 0.464723i
\(730\) −1.16367 + 0.495795i −1.16367 + 0.495795i
\(731\) 0 0
\(732\) 0 0
\(733\) 0.316091 + 0.457937i 0.316091 + 0.457937i 0.948536 0.316668i \(-0.102564\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −1.81613 + 0.773781i −1.81613 + 0.773781i
\(739\) 0 0 0.799443 0.600742i \(-0.205128\pi\)
−0.799443 + 0.600742i \(0.794872\pi\)
\(740\) 1.32208 1.91537i 1.32208 1.91537i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.948536 0.316668i \(-0.897436\pi\)
0.948536 + 0.316668i \(0.102564\pi\)
\(744\) 0 0
\(745\) 0.701547 0.0566347i 0.701547 0.0566347i
\(746\) 1.97410 1.97410
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.632445 0.774605i \(-0.282051\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0.706910 + 1.86397i 0.706910 + 1.86397i
\(755\) 0 0
\(756\) 0 0
\(757\) −0.227255 + 1.11317i −0.227255 + 1.11317i 0.692724 + 0.721202i \(0.256410\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.74798 + 0.284074i 1.74798 + 0.284074i 0.948536 0.316668i \(-0.102564\pi\)
0.799443 + 0.600742i \(0.205128\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.19979 + 2.07811i 1.19979 + 2.07811i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −0.227255 + 1.11317i −0.227255 + 1.11317i 0.692724 + 0.721202i \(0.256410\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −0.197315 0.520276i −0.197315 0.520276i
\(773\) 1.37723 + 0.586782i 1.37723 + 0.586782i 0.948536 0.316668i \(-0.102564\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1.93559 0.156257i 1.93559 0.156257i
\(777\) 0 0
\(778\) −1.74527 0.582656i −1.74527 0.582656i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.845190 + 0.534466i −0.845190 + 0.534466i
\(785\) 0.683377 + 0.168437i 0.683377 + 0.168437i
\(786\) 0 0
\(787\) 0 0 0.948536 0.316668i \(-0.102564\pi\)
−0.948536 + 0.316668i \(0.897436\pi\)
\(788\) 0.645395 + 0.935016i 0.645395 + 0.935016i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0.487050 + 0.705614i 0.487050 + 0.705614i
\(794\) −0.627974 0.329586i −0.627974 0.329586i
\(795\) 0 0
\(796\) 0 0
\(797\) 0.141860 + 0.694877i 0.141860 + 0.694877i 0.987050 + 0.160411i \(0.0512821\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.507071 + 0.320652i −0.507071 + 0.320652i
\(801\) −0.0854858 + 0.225408i −0.0854858 + 0.225408i
\(802\) 0.959734 0.999189i 0.959734 0.999189i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0.959734 + 0.999189i 0.959734 + 0.999189i
\(809\) −0.470293 0.297395i −0.470293 0.297395i 0.278217 0.960518i \(-0.410256\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(810\) −1.24851 0.202903i −1.24851 0.202903i
\(811\) 0 0 −0.120537 0.992709i \(-0.538462\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0.970942 0.239316i 0.970942 0.239316i
\(819\) 0 0
\(820\) 2.42446 + 0.597576i 2.42446 + 0.597576i
\(821\) 0.0781918 + 1.94031i 0.0781918 + 1.94031i 0.278217 + 0.960518i \(0.410256\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(822\) 0 0
\(823\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.748511 0.663123i \(-0.769231\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(828\) 0 0
\(829\) −0.0643806 + 0.0483789i −0.0643806 + 0.0483789i −0.632445 0.774605i \(-0.717949\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −0.845190 0.534466i −0.845190 0.534466i
\(833\) 0.228667 1.88324i 0.228667 1.88324i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.278217 0.960518i \(-0.410256\pi\)
−0.278217 + 0.960518i \(0.589744\pi\)
\(840\) 0 0
\(841\) 2.82104 0.941802i 2.82104 0.941802i
\(842\) 0.367555 0.774605i 0.367555 0.774605i
\(843\) 0 0
\(844\) 0 0
\(845\) 0.0509320 1.26386i 0.0509320 1.26386i
\(846\) 0 0
\(847\) 0 0
\(848\) −0.0345234 + 0.0727566i −0.0345234 + 0.0727566i
\(849\) 0 0
\(850\) 0.137188 1.12985i 0.137188 1.12985i
\(851\) 0 0
\(852\) 0 0
\(853\) 1.67977 0.881614i 1.67977 0.881614i 0.692724 0.721202i \(-0.256410\pi\)
0.987050 0.160411i \(-0.0512821\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0.103346 0.851134i 0.103346 0.851134i −0.845190 0.534466i \(-0.820513\pi\)
0.948536 0.316668i \(-0.102564\pi\)
\(858\) 0 0
\(859\) 0 0 −0.120537 0.992709i \(-0.538462\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.748511 0.663123i \(-0.769231\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(864\) 0 0
\(865\) 0.287453 + 1.40804i 0.287453 + 1.40804i
\(866\) −1.62920 0.855072i −1.62920 0.855072i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 1.45352 0.358261i 1.45352 0.358261i
\(873\) −0.540266 1.86521i −0.540266 1.86521i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.36751 1.42373i 1.36751 1.42373i 0.568065 0.822984i \(-0.307692\pi\)
0.799443 0.600742i \(-0.205128\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1.66849 1.05509i −1.66849 1.05509i −0.919979 0.391967i \(-0.871795\pi\)
−0.748511 0.663123i \(-0.769231\pi\)
\(882\) 0.692724 + 0.721202i 0.692724 + 0.721202i
\(883\) 0 0 0.354605 0.935016i \(-0.384615\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(884\) 1.79944 0.600742i 1.79944 0.600742i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.948536 0.316668i \(-0.897436\pi\)
0.948536 + 0.316668i \(0.102564\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0.257725 0.162975i 0.257725 0.162975i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −0.627974 + 0.329586i −0.627974 + 0.329586i
\(899\) 0 0
\(900\) 0.415599 + 0.432684i 0.415599 + 0.432684i
\(901\) −0.0654934 0.138025i −0.0654934 0.138025i
\(902\) 0 0
\(903\) 0 0
\(904\) 1.27822 + 0.960518i 1.27822 + 0.960518i
\(905\) −2.07602 0.511692i −2.07602 0.511692i
\(906\) 0 0
\(907\) 0 0 0.919979 0.391967i \(-0.128205\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(908\) 0 0
\(909\) 0.787025 1.14020i 0.787025 1.14020i
\(910\) 0 0
\(911\) 0 0 −0.568065 0.822984i \(-0.692308\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0.0802707 0.00648012i 0.0802707 0.00648012i
\(915\) 0 0
\(916\) −1.76517 + 0.142499i −1.76517 + 0.142499i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.799443 0.600742i \(-0.794872\pi\)
0.799443 + 0.600742i \(0.205128\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −1.19678 1.06026i −1.19678 1.06026i
\(923\) 0 0
\(924\) 0 0
\(925\) 0.551940 + 0.955989i 0.551940 + 0.955989i
\(926\) 0 0
\(927\) 0 0
\(928\) −1.13245 + 1.64063i −1.13245 + 1.64063i
\(929\) 1.87251 + 0.304312i 1.87251 + 0.304312i 0.987050 0.160411i \(-0.0512821\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −0.540266 + 1.86521i −0.540266 + 1.86521i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −0.354605 + 0.935016i −0.354605 + 0.935016i
\(937\) 0.748511 + 0.663123i 0.748511 + 0.663123i 0.948536 0.316668i \(-0.102564\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −0.402877 1.06230i −0.402877 1.06230i −0.970942 0.239316i \(-0.923077\pi\)
0.568065 0.822984i \(-0.307692\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.948536 0.316668i \(-0.897436\pi\)
0.948536 + 0.316668i \(0.102564\pi\)
\(948\) 0 0
\(949\) 0.919979 0.391967i 0.919979 0.391967i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −0.960245 + 0.607222i −0.960245 + 0.607222i −0.919979 0.391967i \(-0.871795\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(954\) 0.0781918 + 0.0192725i 0.0781918 + 0.0192725i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0.885456 0.464723i 0.885456 0.464723i
\(962\) −1.04522 + 1.51426i −1.04522 + 1.51426i
\(963\) 0 0
\(964\) −0.854605 0.0689908i −0.854605 0.0689908i
\(965\) 0.701547 + 0.0566347i 0.701547 + 0.0566347i
\(966\) 0 0
\(967\) 0 0 0.748511 0.663123i \(-0.230769\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(968\) −0.632445 0.774605i −0.632445 0.774605i
\(969\) 0 0
\(970\) −0.871006 + 2.29665i −0.871006 + 2.29665i
\(971\) 0 0 0.692724 0.721202i \(-0.256410\pi\)
−0.692724 + 0.721202i \(0.743590\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −0.304033 + 0.801669i −0.304033 + 0.801669i
\(977\) 0.385456 + 0.401302i 0.385456 + 0.401302i 0.885456 0.464723i \(-0.153846\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −0.152466 1.25567i −0.152466 1.25567i
\(981\) −0.641762 1.35248i −0.641762 1.35248i
\(982\) 0 0
\(983\) 0 0 0.970942 0.239316i \(-0.0769231\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(984\) 0 0
\(985\) −1.41847 + 0.230524i −1.41847 + 0.230524i
\(986\) −1.05217 3.63253i −1.05217 3.63253i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −0.0643806 + 1.59759i −0.0643806 + 1.59759i 0.568065 + 0.822984i \(0.307692\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 676.1.t.a.575.1 yes 24
4.3 odd 2 CM 676.1.t.a.575.1 yes 24
169.87 even 39 inner 676.1.t.a.87.1 24
676.87 odd 78 inner 676.1.t.a.87.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
676.1.t.a.87.1 24 169.87 even 39 inner
676.1.t.a.87.1 24 676.87 odd 78 inner
676.1.t.a.575.1 yes 24 1.1 even 1 trivial
676.1.t.a.575.1 yes 24 4.3 odd 2 CM