Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [676,2,Mod(337,676)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(676, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("676.337");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 676 = 2^{2} \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 676.d (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.39788717664\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 52) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 337.1 | ||
Root | \(-1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 676.337 |
Dual form | 676.2.d.c.337.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/676\mathbb{Z}\right)^\times\).
\(n\) | \(339\) | \(509\) |
\(\chi(n)\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | − 2.00000i | − 0.894427i | −0.894427 | − | 0.447214i | \(-0.852416\pi\) | ||||
0.894427 | − | 0.447214i | \(-0.147584\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | − 2.00000i | − 0.755929i | −0.925820 | − | 0.377964i | \(-0.876624\pi\) | ||||
0.925820 | − | 0.377964i | \(-0.123376\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | −3.00000 | −1.00000 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | − 2.00000i | − 0.603023i | −0.953463 | − | 0.301511i | \(-0.902509\pi\) | ||||
0.953463 | − | 0.301511i | \(-0.0974911\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | ||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −6.00000 | −1.45521 | −0.727607 | − | 0.685994i | \(-0.759367\pi\) | ||||
−0.727607 | + | 0.685994i | \(0.759367\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 6.00000i | 1.37649i | 0.725476 | + | 0.688247i | \(0.241620\pi\) | ||||
−0.725476 | + | 0.688247i | \(0.758380\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −8.00000 | −1.66812 | −0.834058 | − | 0.551677i | \(-0.813988\pi\) | ||||
−0.834058 | + | 0.551677i | \(0.813988\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 1.00000 | 0.200000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 2.00000 | 0.371391 | 0.185695 | − | 0.982607i | \(-0.440546\pi\) | ||||
0.185695 | + | 0.982607i | \(0.440546\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | − 10.0000i | − 1.79605i | −0.439941 | − | 0.898027i | \(-0.645001\pi\) | ||||
0.439941 | − | 0.898027i | \(-0.354999\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | −4.00000 | −0.676123 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 6.00000i | − 0.986394i | −0.869918 | − | 0.493197i | \(-0.835828\pi\) | ||||
0.869918 | − | 0.493197i | \(-0.164172\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 6.00000i | 0.937043i | 0.883452 | + | 0.468521i | \(0.155213\pi\) | ||||
−0.883452 | + | 0.468521i | \(0.844787\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −4.00000 | −0.609994 | −0.304997 | − | 0.952353i | \(-0.598656\pi\) | ||||
−0.304997 | + | 0.952353i | \(0.598656\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 6.00000i | 0.894427i | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | − 2.00000i | − 0.291730i | −0.989305 | − | 0.145865i | \(-0.953403\pi\) | ||||
0.989305 | − | 0.145865i | \(-0.0465965\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 3.00000 | 0.428571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 6.00000 | 0.824163 | 0.412082 | − | 0.911147i | \(-0.364802\pi\) | ||||
0.412082 | + | 0.911147i | \(0.364802\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | −4.00000 | −0.539360 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | − 10.0000i | − 1.30189i | −0.759125 | − | 0.650945i | \(-0.774373\pi\) | ||||
0.759125 | − | 0.650945i | \(-0.225627\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −2.00000 | −0.256074 | −0.128037 | − | 0.991769i | \(-0.540868\pi\) | ||||
−0.128037 | + | 0.991769i | \(0.540868\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 6.00000i | 0.755929i | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 10.0000i | − 1.22169i | −0.791748 | − | 0.610847i | \(-0.790829\pi\) | ||||
0.791748 | − | 0.610847i | \(-0.209171\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | − 10.0000i | − 1.18678i | −0.804914 | − | 0.593391i | \(-0.797789\pi\) | ||||
0.804914 | − | 0.593391i | \(-0.202211\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 2.00000i | 0.234082i | 0.993127 | + | 0.117041i | \(0.0373409\pi\) | ||||
−0.993127 | + | 0.117041i | \(0.962659\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | −4.00000 | −0.455842 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −4.00000 | −0.450035 | −0.225018 | − | 0.974355i | \(-0.572244\pi\) | ||||
−0.225018 | + | 0.974355i | \(0.572244\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 9.00000 | 1.00000 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 6.00000i | 0.658586i | 0.944228 | + | 0.329293i | \(0.106810\pi\) | ||||
−0.944228 | + | 0.329293i | \(0.893190\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 12.0000i | 1.30158i | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | − 6.00000i | − 0.635999i | −0.948091 | − | 0.317999i | \(-0.896989\pi\) | ||||
0.948091 | − | 0.317999i | \(-0.103011\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 12.0000 | 1.23117 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − 2.00000i | − 0.203069i | −0.994832 | − | 0.101535i | \(-0.967625\pi\) | ||||
0.994832 | − | 0.101535i | \(-0.0323753\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 6.00000i | 0.603023i | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 2.00000 | 0.199007 | 0.0995037 | − | 0.995037i | \(-0.468274\pi\) | ||||
0.0995037 | + | 0.995037i | \(0.468274\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 8.00000 | 0.788263 | 0.394132 | − | 0.919054i | \(-0.371045\pi\) | ||||
0.394132 | + | 0.919054i | \(0.371045\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | −16.0000 | −1.54678 | −0.773389 | − | 0.633932i | \(-0.781440\pi\) | ||||
−0.773389 | + | 0.633932i | \(0.781440\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 14.0000i | 1.34096i | 0.741929 | + | 0.670478i | \(0.233911\pi\) | ||||
−0.741929 | + | 0.670478i | \(0.766089\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 14.0000 | 1.31701 | 0.658505 | − | 0.752577i | \(-0.271189\pi\) | ||||
0.658505 | + | 0.752577i | \(0.271189\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 16.0000i | 1.49201i | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 12.0000i | 1.10004i | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 7.00000 | 0.636364 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | − 12.0000i | − 1.07331i | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 8.00000 | 0.709885 | 0.354943 | − | 0.934888i | \(-0.384500\pi\) | ||||
0.354943 | + | 0.934888i | \(0.384500\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −16.0000 | −1.39793 | −0.698963 | − | 0.715158i | \(-0.746355\pi\) | ||||
−0.698963 | + | 0.715158i | \(0.746355\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 12.0000 | 1.04053 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 18.0000i | 1.53784i | 0.639343 | + | 0.768922i | \(0.279207\pi\) | ||||
−0.639343 | + | 0.768922i | \(0.720793\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 16.0000 | 1.35710 | 0.678551 | − | 0.734553i | \(-0.262608\pi\) | ||||
0.678551 | + | 0.734553i | \(0.262608\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | − 4.00000i | − 0.332182i | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | − 18.0000i | − 1.47462i | −0.675556 | − | 0.737309i | \(-0.736096\pi\) | ||||
0.675556 | − | 0.737309i | \(-0.263904\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 6.00000i | 0.488273i | 0.969741 | + | 0.244137i | \(0.0785045\pi\) | ||||
−0.969741 | + | 0.244137i | \(0.921495\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 18.0000 | 1.45521 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | −20.0000 | −1.60644 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 2.00000 | 0.159617 | 0.0798087 | − | 0.996810i | \(-0.474569\pi\) | ||||
0.0798087 | + | 0.996810i | \(0.474569\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 16.0000i | 1.26098i | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 10.0000i | − 0.783260i | −0.920123 | − | 0.391630i | \(-0.871911\pi\) | ||||
0.920123 | − | 0.391630i | \(-0.128089\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 6.00000i | 0.464294i | 0.972681 | + | 0.232147i | \(0.0745750\pi\) | ||||
−0.972681 | + | 0.232147i | \(0.925425\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 0 | 0 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | − 18.0000i | − 1.37649i | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 10.0000 | 0.760286 | 0.380143 | − | 0.924928i | \(-0.375875\pi\) | ||||
0.380143 | + | 0.924928i | \(0.375875\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | − 2.00000i | − 0.151186i | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −12.0000 | −0.896922 | −0.448461 | − | 0.893802i | \(-0.648028\pi\) | ||||
−0.448461 | + | 0.893802i | \(0.648028\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 6.00000 | 0.445976 | 0.222988 | − | 0.974821i | \(-0.428419\pi\) | ||||
0.222988 | + | 0.974821i | \(0.428419\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | −12.0000 | −0.882258 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 12.0000i | 0.877527i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 4.00000 | 0.289430 | 0.144715 | − | 0.989473i | \(-0.453773\pi\) | ||||
0.144715 | + | 0.989473i | \(0.453773\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 2.00000i | 0.143963i | 0.997406 | + | 0.0719816i | \(0.0229323\pi\) | ||||
−0.997406 | + | 0.0719816i | \(0.977068\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 6.00000i | 0.427482i | 0.976890 | + | 0.213741i | \(0.0685649\pi\) | ||||
−0.976890 | + | 0.213741i | \(0.931435\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 16.0000 | 1.13421 | 0.567105 | − | 0.823646i | \(-0.308063\pi\) | ||||
0.567105 | + | 0.823646i | \(0.308063\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | − 4.00000i | − 0.280745i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 12.0000 | 0.838116 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 24.0000 | 1.66812 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 12.0000 | 0.830057 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 8.00000 | 0.550743 | 0.275371 | − | 0.961338i | \(-0.411199\pi\) | ||||
0.275371 | + | 0.961338i | \(0.411199\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 8.00000i | 0.545595i | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | −20.0000 | −1.35769 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 6.00000i | 0.401790i | 0.979613 | + | 0.200895i | \(0.0643850\pi\) | ||||
−0.979613 | + | 0.200895i | \(0.935615\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | −3.00000 | −0.200000 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | − 18.0000i | − 1.19470i | −0.801980 | − | 0.597351i | \(-0.796220\pi\) | ||||
0.801980 | − | 0.597351i | \(-0.203780\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 18.0000i | 1.18947i | 0.803921 | + | 0.594737i | \(0.202744\pi\) | ||||
−0.803921 | + | 0.594737i | \(0.797256\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −10.0000 | −0.655122 | −0.327561 | − | 0.944830i | \(-0.606227\pi\) | ||||
−0.327561 | + | 0.944830i | \(0.606227\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | −4.00000 | −0.260931 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | − 18.0000i | − 1.16432i | −0.813073 | − | 0.582162i | \(-0.802207\pi\) | ||||
0.813073 | − | 0.582162i | \(-0.197793\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | − 6.00000i | − 0.386494i | −0.981150 | − | 0.193247i | \(-0.938098\pi\) | ||||
0.981150 | − | 0.193247i | \(-0.0619019\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | − 6.00000i | − 0.383326i | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −12.0000 | −0.757433 | −0.378717 | − | 0.925513i | \(-0.623635\pi\) | ||||
−0.378717 | + | 0.925513i | \(0.623635\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 16.0000i | 1.00591i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −18.0000 | −1.12281 | −0.561405 | − | 0.827541i | \(-0.689739\pi\) | ||||
−0.561405 | + | 0.827541i | \(0.689739\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −12.0000 | −0.745644 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | −6.00000 | −0.371391 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −12.0000 | −0.739952 | −0.369976 | − | 0.929041i | \(-0.620634\pi\) | ||||
−0.369976 | + | 0.929041i | \(0.620634\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | − 12.0000i | − 0.737154i | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 18.0000 | 1.09748 | 0.548740 | − | 0.835993i | \(-0.315108\pi\) | ||||
0.548740 | + | 0.835993i | \(0.315108\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | − 2.00000i | − 0.121491i | −0.998153 | − | 0.0607457i | \(-0.980652\pi\) | ||||
0.998153 | − | 0.0607457i | \(-0.0193479\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | − 2.00000i | − 0.120605i | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −30.0000 | −1.80253 | −0.901263 | − | 0.433273i | \(-0.857359\pi\) | ||||
−0.901263 | + | 0.433273i | \(0.857359\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 30.0000i | 1.79605i | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | − 14.0000i | − 0.835170i | −0.908638 | − | 0.417585i | \(-0.862877\pi\) | ||||
0.908638 | − | 0.417585i | \(-0.137123\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −4.00000 | −0.237775 | −0.118888 | − | 0.992908i | \(-0.537933\pi\) | ||||
−0.118888 | + | 0.992908i | \(0.537933\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 12.0000 | 0.708338 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 19.0000 | 1.11765 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | − 14.0000i | − 0.817889i | −0.912559 | − | 0.408944i | \(-0.865897\pi\) | ||||
0.912559 | − | 0.408944i | \(-0.134103\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | −20.0000 | −1.16445 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 8.00000i | 0.461112i | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 4.00000i | 0.229039i | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 34.0000i | − 1.94048i | −0.242140 | − | 0.970241i | \(-0.577849\pi\) | ||||
0.242140 | − | 0.970241i | \(-0.422151\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −10.0000 | −0.565233 | −0.282617 | − | 0.959233i | \(-0.591202\pi\) | ||||
−0.282617 | + | 0.959233i | \(0.591202\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 12.0000 | 0.676123 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | − 18.0000i | − 1.01098i | −0.862832 | − | 0.505490i | \(-0.831312\pi\) | ||||
0.862832 | − | 0.505490i | \(-0.168688\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | − 4.00000i | − 0.223957i | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | − 36.0000i | − 2.00309i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −4.00000 | −0.220527 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 22.0000i | 1.20923i | 0.796518 | + | 0.604615i | \(0.206673\pi\) | ||||
−0.796518 | + | 0.604615i | \(0.793327\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 18.0000i | 0.986394i | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | −20.0000 | −1.09272 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 10.0000 | 0.544735 | 0.272367 | − | 0.962193i | \(-0.412193\pi\) | ||||
0.272367 | + | 0.962193i | \(0.412193\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −20.0000 | −1.08306 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | − 20.0000i | − 1.07990i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −24.0000 | −1.28839 | −0.644194 | − | 0.764862i | \(-0.722807\pi\) | ||||
−0.644194 | + | 0.764862i | \(0.722807\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 10.0000i | 0.535288i | 0.963518 | + | 0.267644i | \(0.0862451\pi\) | ||||
−0.963518 | + | 0.267644i | \(0.913755\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 14.0000i | 0.745145i | 0.928003 | + | 0.372572i | \(0.121524\pi\) | ||||
−0.928003 | + | 0.372572i | \(0.878476\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | −20.0000 | −1.06149 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 30.0000i | 1.58334i | 0.610949 | + | 0.791670i | \(0.290788\pi\) | ||||
−0.610949 | + | 0.791670i | \(0.709212\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −17.0000 | −0.894737 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 4.00000 | 0.209370 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −4.00000 | −0.208798 | −0.104399 | − | 0.994535i | \(-0.533292\pi\) | ||||
−0.104399 | + | 0.994535i | \(0.533292\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | − 18.0000i | − 0.937043i | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | − 12.0000i | − 0.623009i | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −22.0000 | −1.13912 | −0.569558 | − | 0.821951i | \(-0.692886\pi\) | ||||
−0.569558 | + | 0.821951i | \(0.692886\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | − 10.0000i | − 0.513665i | −0.966456 | − | 0.256833i | \(-0.917321\pi\) | ||||
0.966456 | − | 0.256833i | \(-0.0826790\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | − 18.0000i | − 0.919757i | −0.887982 | − | 0.459879i | \(-0.847893\pi\) | ||||
0.887982 | − | 0.459879i | \(-0.152107\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 8.00000i | 0.407718i | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 12.0000 | 0.609994 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 6.00000 | 0.304212 | 0.152106 | − | 0.988364i | \(-0.451394\pi\) | ||||
0.152106 | + | 0.988364i | \(0.451394\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 48.0000 | 2.42746 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 8.00000i | 0.402524i | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 2.00000i | 0.100377i | 0.998740 | + | 0.0501886i | \(0.0159822\pi\) | ||||
−0.998740 | + | 0.0501886i | \(0.984018\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | − 6.00000i | − 0.299626i | −0.988714 | − | 0.149813i | \(-0.952133\pi\) | ||||
0.988714 | − | 0.149813i | \(-0.0478671\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | − 18.0000i | − 0.894427i | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −12.0000 | −0.594818 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 14.0000i | 0.692255i | 0.938187 | + | 0.346128i | \(0.112504\pi\) | ||||
−0.938187 | + | 0.346128i | \(0.887496\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | −20.0000 | −0.984136 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 12.0000 | 0.589057 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 24.0000 | 1.17248 | 0.586238 | − | 0.810139i | \(-0.300608\pi\) | ||||
0.586238 | + | 0.810139i | \(0.300608\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | − 10.0000i | − 0.487370i | −0.969854 | − | 0.243685i | \(-0.921644\pi\) | ||||
0.969854 | − | 0.243685i | \(-0.0783563\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 6.00000i | 0.291730i | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | −6.00000 | −0.291043 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 4.00000i | 0.193574i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 30.0000i | 1.44505i | 0.691345 | + | 0.722525i | \(0.257018\pi\) | ||||
−0.691345 | + | 0.722525i | \(0.742982\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 14.0000 | 0.672797 | 0.336399 | − | 0.941720i | \(-0.390791\pi\) | ||||
0.336399 | + | 0.941720i | \(0.390791\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | − 48.0000i | − 2.29615i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 16.0000 | 0.763638 | 0.381819 | − | 0.924237i | \(-0.375298\pi\) | ||||
0.381819 | + | 0.924237i | \(0.375298\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | −9.00000 | −0.428571 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | −24.0000 | −1.14027 | −0.570137 | − | 0.821549i | \(-0.693110\pi\) | ||||
−0.570137 | + | 0.821549i | \(0.693110\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −12.0000 | −0.568855 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | − 38.0000i | − 1.79333i | −0.442709 | − | 0.896665i | \(-0.645982\pi\) | ||||
0.442709 | − | 0.896665i | \(-0.354018\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 12.0000 | 0.565058 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | − 34.0000i | − 1.59045i | −0.606313 | − | 0.795226i | \(-0.707352\pi\) | ||||
0.606313 | − | 0.795226i | \(-0.292648\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 6.00000i | 0.279448i | 0.990190 | + | 0.139724i | \(0.0446215\pi\) | ||||
−0.990190 | + | 0.139724i | \(0.955378\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 22.0000i | 1.02243i | 0.859454 | + | 0.511213i | \(0.170804\pi\) | ||||
−0.859454 | + | 0.511213i | \(0.829196\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −20.0000 | −0.925490 | −0.462745 | − | 0.886492i | \(-0.653135\pi\) | ||||
−0.462745 | + | 0.886492i | \(0.653135\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −20.0000 | −0.923514 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 8.00000i | 0.367840i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 6.00000i | 0.275299i | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | −18.0000 | −0.824163 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | − 18.0000i | − 0.822441i | −0.911536 | − | 0.411220i | \(-0.865103\pi\) | ||||
0.911536 | − | 0.411220i | \(-0.134897\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | −4.00000 | −0.181631 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | − 2.00000i | − 0.0906287i | −0.998973 | − | 0.0453143i | \(-0.985571\pi\) | ||||
0.998973 | − | 0.0453143i | \(-0.0144289\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 20.0000 | 0.902587 | 0.451294 | − | 0.892375i | \(-0.350963\pi\) | ||||
0.451294 | + | 0.892375i | \(0.350963\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −12.0000 | −0.540453 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 12.0000 | 0.539360 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | −20.0000 | −0.897123 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 14.0000i | 0.626726i | 0.949633 | + | 0.313363i | \(0.101456\pi\) | ||||
−0.949633 | + | 0.313363i | \(0.898544\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 28.0000 | 1.24846 | 0.624229 | − | 0.781241i | \(-0.285413\pi\) | ||||
0.624229 | + | 0.781241i | \(0.285413\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | − 4.00000i | − 0.177998i | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 14.0000i | 0.620539i | 0.950649 | + | 0.310270i | \(0.100419\pi\) | ||||
−0.950649 | + | 0.310270i | \(0.899581\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 4.00000 | 0.176950 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | − 16.0000i | − 0.705044i | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | −4.00000 | −0.175920 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 6.00000 | 0.262865 | 0.131432 | − | 0.991325i | \(-0.458042\pi\) | ||||
0.131432 | + | 0.991325i | \(0.458042\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 24.0000 | 1.04945 | 0.524723 | − | 0.851273i | \(-0.324169\pi\) | ||||
0.524723 | + | 0.851273i | \(0.324169\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 60.0000i | 2.61364i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 41.0000 | 1.78261 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 30.0000i | 1.30189i | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 32.0000i | 1.38348i | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | − 6.00000i | − 0.258438i | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 26.0000i | 1.11783i | 0.829226 | + | 0.558914i | \(0.188782\pi\) | ||||
−0.829226 | + | 0.558914i | \(0.811218\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 28.0000 | 1.19939 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −32.0000 | −1.36822 | −0.684111 | − | 0.729378i | \(-0.739809\pi\) | ||||
−0.684111 | + | 0.729378i | \(0.739809\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 6.00000 | 0.256074 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 12.0000i | 0.511217i | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 8.00000i | 0.340195i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 42.0000i | 1.77960i | 0.456354 | + | 0.889799i | \(0.349155\pi\) | ||||
−0.456354 | + | 0.889799i | \(0.650845\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 4.00000 | 0.168580 | 0.0842900 | − | 0.996441i | \(-0.473138\pi\) | ||||
0.0842900 | + | 0.996441i | \(0.473138\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | − 28.0000i | − 1.17797i | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | − 18.0000i | − 0.755929i | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −10.0000 | −0.419222 | −0.209611 | − | 0.977785i | \(-0.567220\pi\) | ||||
−0.209611 | + | 0.977785i | \(0.567220\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 12.0000 | 0.502184 | 0.251092 | − | 0.967963i | \(-0.419210\pi\) | ||||
0.251092 | + | 0.967963i | \(0.419210\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | −8.00000 | −0.333623 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 6.00000i | 0.249783i | 0.992170 | + | 0.124892i | \(0.0398583\pi\) | ||||
−0.992170 | + | 0.124892i | \(0.960142\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 12.0000 | 0.497844 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | − 12.0000i | − 0.496989i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | − 26.0000i | − 1.07313i | −0.843857 | − | 0.536567i | \(-0.819721\pi\) | ||||
0.843857 | − | 0.536567i | \(-0.180279\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 60.0000 | 2.47226 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 26.0000i | 1.06769i | 0.845582 | + | 0.533846i | \(0.179254\pi\) | ||||
−0.845582 | + | 0.533846i | \(0.820746\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 24.0000 | 0.983904 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 4.00000 | 0.163436 | 0.0817178 | − | 0.996656i | \(-0.473959\pi\) | ||||
0.0817178 | + | 0.996656i | \(0.473959\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −26.0000 | −1.06056 | −0.530281 | − | 0.847822i | \(-0.677914\pi\) | ||||
−0.530281 | + | 0.847822i | \(0.677914\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 30.0000i | 1.22169i | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | − 14.0000i | − 0.569181i | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −12.0000 | −0.487065 | −0.243532 | − | 0.969893i | \(-0.578306\pi\) | ||||
−0.243532 | + | 0.969893i | \(0.578306\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | − 26.0000i | − 1.05013i | −0.851062 | − | 0.525065i | \(-0.824041\pi\) | ||||
0.851062 | − | 0.525065i | \(-0.175959\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | − 34.0000i | − 1.36879i | −0.729112 | − | 0.684394i | \(-0.760067\pi\) | ||||
0.729112 | − | 0.684394i | \(-0.239933\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | − 2.00000i | − 0.0803868i | −0.999192 | − | 0.0401934i | \(-0.987203\pi\) | ||||
0.999192 | − | 0.0401934i | \(-0.0127974\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | −12.0000 | −0.480770 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −19.0000 | −0.760000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 36.0000i | 1.43541i | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 22.0000i | 0.875806i | 0.899022 | + | 0.437903i | \(0.144279\pi\) | ||||
−0.899022 | + | 0.437903i | \(0.855721\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | − 16.0000i | − 0.634941i | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 30.0000i | 1.18678i | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 26.0000 | 1.02694 | 0.513469 | − | 0.858108i | \(-0.328360\pi\) | ||||
0.513469 | + | 0.858108i | \(0.328360\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 2.00000i | − 0.0788723i | −0.999222 | − | 0.0394362i | \(-0.987444\pi\) | ||||
0.999222 | − | 0.0394362i | \(-0.0125562\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 32.0000 | 1.25805 | 0.629025 | − | 0.777385i | \(-0.283454\pi\) | ||||
0.629025 | + | 0.777385i | \(0.283454\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −20.0000 | −0.785069 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 18.0000 | 0.704394 | 0.352197 | − | 0.935926i | \(-0.385435\pi\) | ||||
0.352197 | + | 0.935926i | \(0.385435\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 32.0000i | 1.25034i | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | − 6.00000i | − 0.234082i | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 2.00000i | 0.0777910i | 0.999243 | + | 0.0388955i | \(0.0123839\pi\) | ||||
−0.999243 | + | 0.0388955i | \(0.987616\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | − 24.0000i | − 0.930680i | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | −16.0000 | −0.619522 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 4.00000i | 0.154418i | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 26.0000 | 1.00223 | 0.501113 | − | 0.865382i | \(-0.332924\pi\) | ||||
0.501113 | + | 0.865382i | \(0.332924\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 6.00000 | 0.230599 | 0.115299 | − | 0.993331i | \(-0.463217\pi\) | ||||
0.115299 | + | 0.993331i | \(0.463217\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −4.00000 | −0.153506 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | − 2.00000i | − 0.0765279i | −0.999268 | − | 0.0382639i | \(-0.987817\pi\) | ||||
0.999268 | − | 0.0382639i | \(-0.0121828\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 36.0000 | 1.37549 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | − 34.0000i | − 1.29342i | −0.762736 | − | 0.646710i | \(-0.776144\pi\) | ||||
0.762736 | − | 0.646710i | \(-0.223856\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 12.0000 | 0.455842 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | − 32.0000i | − 1.21383i | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | − 36.0000i | − 1.36360i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −18.0000 | −0.679851 | −0.339925 | − | 0.940452i | \(-0.610402\pi\) | ||||
−0.339925 | + | 0.940452i | \(0.610402\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 36.0000 | 1.35777 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | − 4.00000i | − 0.150435i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | − 22.0000i | − 0.826227i | −0.910679 | − | 0.413114i | \(-0.864441\pi\) | ||||
0.910679 | − | 0.413114i | \(-0.135559\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 12.0000 | 0.450035 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 80.0000i | 2.99602i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 40.0000 | 1.49175 | 0.745874 | − | 0.666087i | \(-0.232032\pi\) | ||||
0.745874 | + | 0.666087i | \(0.232032\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | − 16.0000i | − 0.595871i | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 2.00000 | 0.0742781 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 32.0000 | 1.18681 | 0.593407 | − | 0.804902i | \(-0.297782\pi\) | ||||
0.593407 | + | 0.804902i | \(0.297782\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | −27.0000 | −1.00000 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 24.0000 | 0.887672 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | − 26.0000i | − 0.960332i | −0.877178 | − | 0.480166i | \(-0.840576\pi\) | ||||
0.877178 | − | 0.480166i | \(-0.159424\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −20.0000 | −0.736709 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 6.00000i | 0.220714i | 0.993892 | + | 0.110357i | \(0.0351994\pi\) | ||||
−0.993892 | + | 0.110357i | \(0.964801\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 14.0000i | 0.513610i | 0.966463 | + | 0.256805i | \(0.0826698\pi\) | ||||
−0.966463 | + | 0.256805i | \(0.917330\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | −36.0000 | −1.31894 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | − 18.0000i | − 0.658586i | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 32.0000i | 1.16925i | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 12.0000 | 0.436725 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −42.0000 | −1.52652 | −0.763258 | − | 0.646094i | \(-0.776401\pi\) | ||||
−0.763258 | + | 0.646094i | \(0.776401\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 18.0000i | 0.652499i | 0.945284 | + | 0.326250i | \(0.105785\pi\) | ||||
−0.945284 | + | 0.326250i | \(0.894215\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 28.0000 | 1.01367 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | − 36.0000i | − 1.30158i | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 54.0000i | 1.94729i | 0.228069 | + | 0.973645i | \(0.426759\pi\) | ||||
−0.228069 | + | 0.973645i | \(0.573241\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 46.0000i | 1.65451i | 0.561830 | + | 0.827253i | \(0.310097\pi\) | ||||
−0.561830 | + | 0.827253i | \(0.689903\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | − 10.0000i | − 0.359211i | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −36.0000 | −1.28983 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −20.0000 | −0.715656 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | − 4.00000i | − 0.142766i | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 38.0000i | 1.35455i | 0.735728 | + | 0.677277i | \(0.236840\pi\) | ||||
−0.735728 | + | 0.677277i | \(0.763160\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | − 28.0000i | − 0.995565i | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −18.0000 | −0.637593 | −0.318796 | − | 0.947823i | \(-0.603279\pi\) | ||||
−0.318796 | + | 0.947823i | \(0.603279\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 12.0000i | 0.424529i | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 18.0000i | 0.635999i | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 4.00000 | 0.141157 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 32.0000 | 1.12785 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 6.00000 | 0.210949 | 0.105474 | − | 0.994422i | \(-0.466364\pi\) | ||||
0.105474 | + | 0.994422i | \(0.466364\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 22.0000i | 0.772524i | 0.922389 | + | 0.386262i | \(0.126234\pi\) | ||||
−0.922389 | + | 0.386262i | \(0.873766\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | −20.0000 | −0.700569 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | − 24.0000i | − 0.839654i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | − 2.00000i | − 0.0698005i | −0.999391 | − | 0.0349002i | \(-0.988889\pi\) | ||||
0.999391 | − | 0.0349002i | \(-0.0111113\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 24.0000 | 0.836587 | 0.418294 | − | 0.908312i | \(-0.362628\pi\) | ||||
0.418294 | + | 0.908312i | \(0.362628\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 6.00000i | 0.208640i | 0.994544 | + | 0.104320i | \(0.0332667\pi\) | ||||
−0.994544 | + | 0.104320i | \(0.966733\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −22.0000 | −0.764092 | −0.382046 | − | 0.924143i | \(-0.624780\pi\) | ||||
−0.382046 | + | 0.924143i | \(0.624780\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −18.0000 | −0.623663 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 12.0000 | 0.415277 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | − 10.0000i | − 0.345238i | −0.984989 | − | 0.172619i | \(-0.944777\pi\) | ||||
0.984989 | − | 0.172619i | \(-0.0552230\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −25.0000 | −0.862069 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | − 14.0000i | − 0.481046i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 48.0000i | 1.64542i | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 38.0000i | − 1.30110i | −0.759465 | − | 0.650548i | \(-0.774539\pi\) | ||||
0.759465 | − | 0.650548i | \(-0.225461\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | −36.0000 | −1.23117 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 38.0000 | 1.29806 | 0.649028 | − | 0.760765i | \(-0.275176\pi\) | ||||
0.649028 | + | 0.760765i | \(0.275176\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 8.00000 | 0.272956 | 0.136478 | − | 0.990643i | \(-0.456422\pi\) | ||||
0.136478 | + | 0.990643i | \(0.456422\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | − 34.0000i | − 1.15737i | −0.815550 | − | 0.578687i | \(-0.803565\pi\) | ||||
0.815550 | − | 0.578687i | \(-0.196435\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | − 20.0000i | − 0.680020i | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 8.00000i | 0.271381i | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 6.00000i | 0.203069i | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | −24.0000 | −0.811348 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | − 18.0000i | − 0.607817i | −0.952701 | − | 0.303908i | \(-0.901708\pi\) | ||||
0.952701 | − | 0.303908i | \(-0.0982917\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −18.0000 | −0.606435 | −0.303218 | − | 0.952921i | \(-0.598061\pi\) | ||||
−0.303218 | + | 0.952921i | \(0.598061\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −28.0000 | −0.942275 | −0.471138 | − | 0.882060i | \(-0.656156\pi\) | ||||
−0.471138 | + | 0.882060i | \(0.656156\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 4.00000 | 0.134307 | 0.0671534 | − | 0.997743i | \(-0.478608\pi\) | ||||
0.0671534 | + | 0.997743i | \(0.478608\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | − 16.0000i | − 0.536623i | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | − 18.0000i | − 0.603023i | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 12.0000 | 0.401565 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 24.0000i | 0.802232i | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | − 20.0000i | − 0.667037i | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −36.0000 | −1.19933 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | − 12.0000i | − 0.398893i | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −36.0000 | −1.19536 | −0.597680 | − | 0.801735i | \(-0.703911\pi\) | ||||
−0.597680 | + | 0.801735i | \(0.703911\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | −6.00000 | −0.199007 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −36.0000 | −1.19273 | −0.596367 | − | 0.802712i | \(-0.703390\pi\) | ||||
−0.596367 | + | 0.802712i | \(0.703390\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 12.0000 | 0.397142 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 32.0000i | 1.05673i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −12.0000 | −0.395843 | −0.197922 | − | 0.980218i | \(-0.563419\pi\) | ||||
−0.197922 | + | 0.980218i | \(0.563419\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | − 6.00000i | − 0.197279i | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | −24.0000 | −0.788263 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 54.0000i | 1.77168i | 0.463988 | + | 0.885841i | \(0.346418\pi\) | ||||
−0.463988 | + | 0.885841i | \(0.653582\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 18.0000i | 0.589926i | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 24.0000 | 0.784884 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 42.0000 | 1.37208 | 0.686040 | − | 0.727564i | \(-0.259347\pi\) | ||||
0.686040 | + | 0.727564i | \(0.259347\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | − 10.0000i | − 0.325991i | −0.986627 | − | 0.162995i | \(-0.947884\pi\) | ||||
0.986627 | − | 0.162995i | \(-0.0521156\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | − 48.0000i | − 1.56310i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | − 42.0000i | − 1.36482i | −0.730971 | − | 0.682408i | \(-0.760933\pi\) | ||||
0.730971 | − | 0.682408i | \(-0.239067\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −26.0000 | −0.842223 | −0.421111 | − | 0.907009i | \(-0.638360\pi\) | ||||
−0.421111 | + | 0.907009i | \(0.638360\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | − 8.00000i | − 0.258874i | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 36.0000 | 1.16250 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −69.0000 | −2.22581 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 48.0000 | 1.54678 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 4.00000 | 0.128765 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | − 50.0000i | − 1.60789i | −0.594703 | − | 0.803946i | \(-0.702730\pi\) | ||||
0.594703 | − | 0.803946i | \(-0.297270\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −48.0000 | −1.54039 | −0.770197 | − | 0.637806i | \(-0.779842\pi\) | ||||
−0.770197 | + | 0.637806i | \(0.779842\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | − 32.0000i | − 1.02587i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | − 18.0000i | − 0.575871i | −0.957650 | − | 0.287936i | \(-0.907031\pi\) | ||||
0.957650 | − | 0.287936i | \(-0.0929689\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −12.0000 | −0.383522 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | − 42.0000i | − 1.34096i | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 14.0000i | 0.446531i | 0.974758 | + | 0.223265i | \(0.0716716\pi\) | ||||
−0.974758 | + | 0.223265i | \(0.928328\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 12.0000 | 0.382352 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 32.0000 | 1.01754 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 12.0000 | 0.381193 | 0.190596 | − | 0.981669i | \(-0.438958\pi\) | ||||
0.190596 | + | 0.981669i | \(0.438958\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | − 32.0000i | − 1.01447i | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | −58.0000 | −1.83688 | −0.918439 | − | 0.395562i | \(-0.870550\pi\) | ||||
−0.918439 | + | 0.395562i | \(0.870550\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))