Properties

Label 676.2.e.f.529.1
Level $676$
Weight $2$
Character 676.529
Analytic conductor $5.398$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [676,2,Mod(529,676)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(676, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("676.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 676.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.39788717664\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.64827.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 529.1
Root \(0.222521 + 0.385418i\) of defining polynomial
Character \(\chi\) \(=\) 676.529
Dual form 676.2.e.f.653.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.846011 + 1.46533i) q^{3} -1.19806 q^{5} +(2.14795 + 3.72036i) q^{7} +(0.0685317 + 0.118700i) q^{9} +(1.84601 - 3.19738i) q^{11} +(1.01357 - 1.75556i) q^{15} +(3.92543 + 6.79904i) q^{17} +(-2.32640 - 4.02944i) q^{19} -7.26875 q^{21} +(-1.85690 + 3.21624i) q^{23} -3.56465 q^{25} -5.30798 q^{27} +(-2.14795 + 3.72036i) q^{29} -2.91185 q^{31} +(3.12349 + 5.41004i) q^{33} +(-2.57338 - 4.45722i) q^{35} +(-4.01842 + 6.96010i) q^{37} +(4.05496 - 7.02339i) q^{41} +(-0.442353 - 0.766179i) q^{43} +(-0.0821052 - 0.142210i) q^{45} +4.58211 q^{47} +(-5.72737 + 9.92009i) q^{49} -13.2838 q^{51} +5.43296 q^{53} +(-2.21164 + 3.83067i) q^{55} +7.87263 q^{57} +(1.16487 + 2.01762i) q^{59} +(3.12833 + 5.41843i) q^{61} +(-0.294405 + 0.509924i) q^{63} +(-1.66756 + 2.88830i) q^{67} +(-3.14191 - 5.44194i) q^{69} +(-2.17845 - 3.77318i) q^{71} -3.82908 q^{73} +(3.01573 - 5.22340i) q^{75} +15.8605 q^{77} -10.5526 q^{79} +(4.28501 - 7.42186i) q^{81} -5.24698 q^{83} +(-4.70291 - 8.14567i) q^{85} +(-3.63437 - 6.29492i) q^{87} +(4.73341 - 8.19850i) q^{89} +(2.46346 - 4.26684i) q^{93} +(2.78717 + 4.82752i) q^{95} +(1.83997 + 3.18692i) q^{97} +0.506041 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 16 q^{5} - q^{7} - 5 q^{9} + 6 q^{11} + 10 q^{17} + 4 q^{19} - 28 q^{21} - 3 q^{23} + 22 q^{25} - 42 q^{27} + q^{29} - 10 q^{31} + 14 q^{33} + 12 q^{35} + 4 q^{37} + 25 q^{41} - 5 q^{43} + 11 q^{45}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/676\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(509\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.846011 + 1.46533i −0.488445 + 0.846011i −0.999912 0.0132921i \(-0.995769\pi\)
0.511467 + 0.859303i \(0.329102\pi\)
\(4\) 0 0
\(5\) −1.19806 −0.535790 −0.267895 0.963448i \(-0.586328\pi\)
−0.267895 + 0.963448i \(0.586328\pi\)
\(6\) 0 0
\(7\) 2.14795 + 3.72036i 0.811848 + 1.40616i 0.911569 + 0.411147i \(0.134872\pi\)
−0.0997209 + 0.995015i \(0.531795\pi\)
\(8\) 0 0
\(9\) 0.0685317 + 0.118700i 0.0228439 + 0.0395668i
\(10\) 0 0
\(11\) 1.84601 3.19738i 0.556593 0.964048i −0.441184 0.897416i \(-0.645442\pi\)
0.997778 0.0666312i \(-0.0212251\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 1.01357 1.75556i 0.261704 0.453284i
\(16\) 0 0
\(17\) 3.92543 + 6.79904i 0.952056 + 1.64901i 0.740966 + 0.671543i \(0.234368\pi\)
0.211090 + 0.977467i \(0.432299\pi\)
\(18\) 0 0
\(19\) −2.32640 4.02944i −0.533712 0.924416i −0.999225 0.0393749i \(-0.987463\pi\)
0.465513 0.885041i \(-0.345870\pi\)
\(20\) 0 0
\(21\) −7.26875 −1.58617
\(22\) 0 0
\(23\) −1.85690 + 3.21624i −0.387190 + 0.670632i −0.992070 0.125684i \(-0.959887\pi\)
0.604881 + 0.796316i \(0.293221\pi\)
\(24\) 0 0
\(25\) −3.56465 −0.712929
\(26\) 0 0
\(27\) −5.30798 −1.02152
\(28\) 0 0
\(29\) −2.14795 + 3.72036i −0.398864 + 0.690853i −0.993586 0.113079i \(-0.963929\pi\)
0.594722 + 0.803931i \(0.297262\pi\)
\(30\) 0 0
\(31\) −2.91185 −0.522984 −0.261492 0.965206i \(-0.584215\pi\)
−0.261492 + 0.965206i \(0.584215\pi\)
\(32\) 0 0
\(33\) 3.12349 + 5.41004i 0.543730 + 0.941768i
\(34\) 0 0
\(35\) −2.57338 4.45722i −0.434980 0.753407i
\(36\) 0 0
\(37\) −4.01842 + 6.96010i −0.660624 + 1.14423i 0.319828 + 0.947476i \(0.396375\pi\)
−0.980452 + 0.196758i \(0.936959\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.05496 7.02339i 0.633278 1.09687i −0.353599 0.935397i \(-0.615042\pi\)
0.986877 0.161473i \(-0.0516244\pi\)
\(42\) 0 0
\(43\) −0.442353 0.766179i −0.0674583 0.116841i 0.830324 0.557282i \(-0.188156\pi\)
−0.897782 + 0.440440i \(0.854822\pi\)
\(44\) 0 0
\(45\) −0.0821052 0.142210i −0.0122395 0.0211995i
\(46\) 0 0
\(47\) 4.58211 0.668369 0.334184 0.942508i \(-0.391539\pi\)
0.334184 + 0.942508i \(0.391539\pi\)
\(48\) 0 0
\(49\) −5.72737 + 9.92009i −0.818195 + 1.41716i
\(50\) 0 0
\(51\) −13.2838 −1.86011
\(52\) 0 0
\(53\) 5.43296 0.746274 0.373137 0.927776i \(-0.378282\pi\)
0.373137 + 0.927776i \(0.378282\pi\)
\(54\) 0 0
\(55\) −2.21164 + 3.83067i −0.298217 + 0.516527i
\(56\) 0 0
\(57\) 7.87263 1.04275
\(58\) 0 0
\(59\) 1.16487 + 2.01762i 0.151654 + 0.262672i 0.931836 0.362881i \(-0.118207\pi\)
−0.780182 + 0.625553i \(0.784873\pi\)
\(60\) 0 0
\(61\) 3.12833 + 5.41843i 0.400542 + 0.693759i 0.993791 0.111259i \(-0.0354885\pi\)
−0.593249 + 0.805019i \(0.702155\pi\)
\(62\) 0 0
\(63\) −0.294405 + 0.509924i −0.0370915 + 0.0642444i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −1.66756 + 2.88830i −0.203725 + 0.352862i −0.949726 0.313083i \(-0.898638\pi\)
0.746001 + 0.665945i \(0.231972\pi\)
\(68\) 0 0
\(69\) −3.14191 5.44194i −0.378241 0.655133i
\(70\) 0 0
\(71\) −2.17845 3.77318i −0.258534 0.447794i 0.707315 0.706898i \(-0.249906\pi\)
−0.965849 + 0.259104i \(0.916573\pi\)
\(72\) 0 0
\(73\) −3.82908 −0.448160 −0.224080 0.974571i \(-0.571938\pi\)
−0.224080 + 0.974571i \(0.571938\pi\)
\(74\) 0 0
\(75\) 3.01573 5.22340i 0.348226 0.603146i
\(76\) 0 0
\(77\) 15.8605 1.80748
\(78\) 0 0
\(79\) −10.5526 −1.18726 −0.593628 0.804739i \(-0.702305\pi\)
−0.593628 + 0.804739i \(0.702305\pi\)
\(80\) 0 0
\(81\) 4.28501 7.42186i 0.476112 0.824651i
\(82\) 0 0
\(83\) −5.24698 −0.575931 −0.287965 0.957641i \(-0.592979\pi\)
−0.287965 + 0.957641i \(0.592979\pi\)
\(84\) 0 0
\(85\) −4.70291 8.14567i −0.510102 0.883522i
\(86\) 0 0
\(87\) −3.63437 6.29492i −0.389646 0.674886i
\(88\) 0 0
\(89\) 4.73341 8.19850i 0.501740 0.869039i −0.498258 0.867029i \(-0.666027\pi\)
0.999998 0.00201039i \(-0.000639928\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 2.46346 4.26684i 0.255449 0.442450i
\(94\) 0 0
\(95\) 2.78717 + 4.82752i 0.285957 + 0.495293i
\(96\) 0 0
\(97\) 1.83997 + 3.18692i 0.186821 + 0.323583i 0.944189 0.329406i \(-0.106848\pi\)
−0.757368 + 0.652988i \(0.773515\pi\)
\(98\) 0 0
\(99\) 0.506041 0.0508590
\(100\) 0 0
\(101\) 8.56249 14.8307i 0.852000 1.47571i −0.0274011 0.999625i \(-0.508723\pi\)
0.879401 0.476082i \(-0.157944\pi\)
\(102\) 0 0
\(103\) 8.14675 0.802723 0.401362 0.915920i \(-0.368537\pi\)
0.401362 + 0.915920i \(0.368537\pi\)
\(104\) 0 0
\(105\) 8.70841 0.849854
\(106\) 0 0
\(107\) −0.282323 + 0.488998i −0.0272932 + 0.0472733i −0.879349 0.476177i \(-0.842022\pi\)
0.852056 + 0.523450i \(0.175355\pi\)
\(108\) 0 0
\(109\) −2.04354 −0.195736 −0.0978678 0.995199i \(-0.531202\pi\)
−0.0978678 + 0.995199i \(0.531202\pi\)
\(110\) 0 0
\(111\) −6.79925 11.7766i −0.645356 1.11779i
\(112\) 0 0
\(113\) 6.89224 + 11.9377i 0.648367 + 1.12301i 0.983513 + 0.180839i \(0.0578812\pi\)
−0.335145 + 0.942166i \(0.608785\pi\)
\(114\) 0 0
\(115\) 2.22468 3.85325i 0.207452 0.359318i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −16.8632 + 29.2080i −1.54585 + 2.67749i
\(120\) 0 0
\(121\) −1.31551 2.27853i −0.119592 0.207139i
\(122\) 0 0
\(123\) 6.86108 + 11.8837i 0.618642 + 1.07152i
\(124\) 0 0
\(125\) 10.2610 0.917770
\(126\) 0 0
\(127\) 3.15399 5.46287i 0.279871 0.484751i −0.691481 0.722394i \(-0.743042\pi\)
0.971353 + 0.237643i \(0.0763749\pi\)
\(128\) 0 0
\(129\) 1.49694 0.131798
\(130\) 0 0
\(131\) 14.2959 1.24904 0.624519 0.781009i \(-0.285295\pi\)
0.624519 + 0.781009i \(0.285295\pi\)
\(132\) 0 0
\(133\) 9.99396 17.3100i 0.866586 1.50097i
\(134\) 0 0
\(135\) 6.35929 0.547320
\(136\) 0 0
\(137\) 5.60388 + 9.70620i 0.478771 + 0.829256i 0.999704 0.0243416i \(-0.00774894\pi\)
−0.520932 + 0.853598i \(0.674416\pi\)
\(138\) 0 0
\(139\) −2.28232 3.95310i −0.193584 0.335298i 0.752851 0.658191i \(-0.228678\pi\)
−0.946435 + 0.322893i \(0.895345\pi\)
\(140\) 0 0
\(141\) −3.87651 + 6.71431i −0.326461 + 0.565447i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 2.57338 4.45722i 0.213707 0.370152i
\(146\) 0 0
\(147\) −9.69083 16.7850i −0.799286 1.38440i
\(148\) 0 0
\(149\) 10.8373 + 18.7707i 0.887825 + 1.53776i 0.842441 + 0.538788i \(0.181118\pi\)
0.0453832 + 0.998970i \(0.485549\pi\)
\(150\) 0 0
\(151\) 20.9758 1.70699 0.853495 0.521102i \(-0.174479\pi\)
0.853495 + 0.521102i \(0.174479\pi\)
\(152\) 0 0
\(153\) −0.538032 + 0.931899i −0.0434973 + 0.0753396i
\(154\) 0 0
\(155\) 3.48858 0.280210
\(156\) 0 0
\(157\) 3.62565 0.289358 0.144679 0.989479i \(-0.453785\pi\)
0.144679 + 0.989479i \(0.453785\pi\)
\(158\) 0 0
\(159\) −4.59634 + 7.96110i −0.364514 + 0.631356i
\(160\) 0 0
\(161\) −15.9541 −1.25736
\(162\) 0 0
\(163\) −10.8862 18.8554i −0.852673 1.47687i −0.878787 0.477214i \(-0.841647\pi\)
0.0261143 0.999659i \(-0.491687\pi\)
\(164\) 0 0
\(165\) −3.74214 6.48157i −0.291325 0.504589i
\(166\) 0 0
\(167\) 1.40581 2.43494i 0.108785 0.188421i −0.806493 0.591243i \(-0.798637\pi\)
0.915278 + 0.402822i \(0.131971\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0.318864 0.552288i 0.0243841 0.0422345i
\(172\) 0 0
\(173\) −3.50604 6.07264i −0.266559 0.461694i 0.701412 0.712756i \(-0.252553\pi\)
−0.967971 + 0.251062i \(0.919220\pi\)
\(174\) 0 0
\(175\) −7.65668 13.2618i −0.578790 1.00249i
\(176\) 0 0
\(177\) −3.94198 −0.296298
\(178\) 0 0
\(179\) 7.74309 13.4114i 0.578746 1.00242i −0.416877 0.908963i \(-0.636876\pi\)
0.995624 0.0934549i \(-0.0297911\pi\)
\(180\) 0 0
\(181\) 5.67456 0.421787 0.210893 0.977509i \(-0.432363\pi\)
0.210893 + 0.977509i \(0.432363\pi\)
\(182\) 0 0
\(183\) −10.5864 −0.782570
\(184\) 0 0
\(185\) 4.81431 8.33864i 0.353955 0.613069i
\(186\) 0 0
\(187\) 28.9855 2.11963
\(188\) 0 0
\(189\) −11.4013 19.7476i −0.829320 1.43642i
\(190\) 0 0
\(191\) 10.2932 + 17.8284i 0.744790 + 1.29001i 0.950293 + 0.311358i \(0.100784\pi\)
−0.205502 + 0.978657i \(0.565883\pi\)
\(192\) 0 0
\(193\) −9.47650 + 16.4138i −0.682133 + 1.18149i 0.292195 + 0.956359i \(0.405614\pi\)
−0.974328 + 0.225131i \(0.927719\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.17025 + 2.02693i −0.0833769 + 0.144413i −0.904698 0.426052i \(-0.859904\pi\)
0.821321 + 0.570466i \(0.193237\pi\)
\(198\) 0 0
\(199\) −2.82036 4.88500i −0.199930 0.346288i 0.748576 0.663049i \(-0.230738\pi\)
−0.948505 + 0.316761i \(0.897405\pi\)
\(200\) 0 0
\(201\) −2.82155 4.88707i −0.199017 0.344707i
\(202\) 0 0
\(203\) −18.4547 −1.29527
\(204\) 0 0
\(205\) −4.85809 + 8.41446i −0.339304 + 0.587692i
\(206\) 0 0
\(207\) −0.509025 −0.0353797
\(208\) 0 0
\(209\) −17.1782 −1.18824
\(210\) 0 0
\(211\) −0.291053 + 0.504118i −0.0200369 + 0.0347049i −0.875870 0.482547i \(-0.839712\pi\)
0.855833 + 0.517252i \(0.173045\pi\)
\(212\) 0 0
\(213\) 7.37196 0.505118
\(214\) 0 0
\(215\) 0.529967 + 0.917930i 0.0361434 + 0.0626023i
\(216\) 0 0
\(217\) −6.25451 10.8331i −0.424584 0.735401i
\(218\) 0 0
\(219\) 3.23945 5.61089i 0.218902 0.379149i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 7.61476 13.1892i 0.509922 0.883211i −0.490012 0.871716i \(-0.663008\pi\)
0.999934 0.0114952i \(-0.00365911\pi\)
\(224\) 0 0
\(225\) −0.244291 0.423125i −0.0162861 0.0282083i
\(226\) 0 0
\(227\) −6.72617 11.6501i −0.446432 0.773242i 0.551719 0.834030i \(-0.313972\pi\)
−0.998151 + 0.0607879i \(0.980639\pi\)
\(228\) 0 0
\(229\) 7.11529 0.470192 0.235096 0.971972i \(-0.424460\pi\)
0.235096 + 0.971972i \(0.424460\pi\)
\(230\) 0 0
\(231\) −13.4182 + 23.2410i −0.882852 + 1.52914i
\(232\) 0 0
\(233\) 7.36898 0.482758 0.241379 0.970431i \(-0.422400\pi\)
0.241379 + 0.970431i \(0.422400\pi\)
\(234\) 0 0
\(235\) −5.48965 −0.358105
\(236\) 0 0
\(237\) 8.92758 15.4630i 0.579909 1.00443i
\(238\) 0 0
\(239\) −8.34481 −0.539781 −0.269891 0.962891i \(-0.586988\pi\)
−0.269891 + 0.962891i \(0.586988\pi\)
\(240\) 0 0
\(241\) 3.24214 + 5.61554i 0.208844 + 0.361729i 0.951351 0.308110i \(-0.0996965\pi\)
−0.742506 + 0.669839i \(0.766363\pi\)
\(242\) 0 0
\(243\) −0.711636 1.23259i −0.0456515 0.0790706i
\(244\) 0 0
\(245\) 6.86174 11.8849i 0.438381 0.759297i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 4.43900 7.68858i 0.281310 0.487244i
\(250\) 0 0
\(251\) 3.63102 + 6.28912i 0.229188 + 0.396965i 0.957568 0.288208i \(-0.0930596\pi\)
−0.728380 + 0.685174i \(0.759726\pi\)
\(252\) 0 0
\(253\) 6.85570 + 11.8744i 0.431014 + 0.746538i
\(254\) 0 0
\(255\) 15.9148 0.996626
\(256\) 0 0
\(257\) 6.81820 11.8095i 0.425308 0.736654i −0.571141 0.820852i \(-0.693499\pi\)
0.996449 + 0.0841972i \(0.0268326\pi\)
\(258\) 0 0
\(259\) −34.5254 −2.14531
\(260\) 0 0
\(261\) −0.588810 −0.0364464
\(262\) 0 0
\(263\) −5.65615 + 9.79673i −0.348773 + 0.604092i −0.986032 0.166557i \(-0.946735\pi\)
0.637259 + 0.770650i \(0.280068\pi\)
\(264\) 0 0
\(265\) −6.50902 −0.399846
\(266\) 0 0
\(267\) 8.00902 + 13.8720i 0.490144 + 0.848955i
\(268\) 0 0
\(269\) −0.334593 0.579532i −0.0204005 0.0353347i 0.855645 0.517563i \(-0.173161\pi\)
−0.876045 + 0.482229i \(0.839827\pi\)
\(270\) 0 0
\(271\) −10.2051 + 17.6757i −0.619913 + 1.07372i 0.369588 + 0.929196i \(0.379499\pi\)
−0.989501 + 0.144526i \(0.953834\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.58038 + 11.3975i −0.396812 + 0.687298i
\(276\) 0 0
\(277\) 1.24429 + 2.15518i 0.0747622 + 0.129492i 0.900983 0.433855i \(-0.142847\pi\)
−0.826221 + 0.563347i \(0.809514\pi\)
\(278\) 0 0
\(279\) −0.199554 0.345638i −0.0119470 0.0206928i
\(280\) 0 0
\(281\) −16.6310 −0.992124 −0.496062 0.868287i \(-0.665221\pi\)
−0.496062 + 0.868287i \(0.665221\pi\)
\(282\) 0 0
\(283\) −1.43296 + 2.48196i −0.0851806 + 0.147537i −0.905468 0.424414i \(-0.860480\pi\)
0.820288 + 0.571951i \(0.193813\pi\)
\(284\) 0 0
\(285\) −9.43190 −0.558697
\(286\) 0 0
\(287\) 34.8394 2.05650
\(288\) 0 0
\(289\) −22.3180 + 38.6558i −1.31282 + 2.27387i
\(290\) 0 0
\(291\) −6.22654 −0.365006
\(292\) 0 0
\(293\) 15.3855 + 26.6485i 0.898833 + 1.55682i 0.828988 + 0.559266i \(0.188917\pi\)
0.0698441 + 0.997558i \(0.477750\pi\)
\(294\) 0 0
\(295\) −1.39559 2.41724i −0.0812545 0.140737i
\(296\) 0 0
\(297\) −9.79859 + 16.9716i −0.568572 + 0.984795i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 1.90030 3.29142i 0.109532 0.189715i
\(302\) 0 0
\(303\) 14.4879 + 25.0938i 0.832309 + 1.44160i
\(304\) 0 0
\(305\) −3.74794 6.49162i −0.214606 0.371709i
\(306\) 0 0
\(307\) −20.2392 −1.15511 −0.577556 0.816351i \(-0.695994\pi\)
−0.577556 + 0.816351i \(0.695994\pi\)
\(308\) 0 0
\(309\) −6.89224 + 11.9377i −0.392086 + 0.679113i
\(310\) 0 0
\(311\) 18.8442 1.06855 0.534277 0.845310i \(-0.320584\pi\)
0.534277 + 0.845310i \(0.320584\pi\)
\(312\) 0 0
\(313\) 4.87263 0.275417 0.137709 0.990473i \(-0.456026\pi\)
0.137709 + 0.990473i \(0.456026\pi\)
\(314\) 0 0
\(315\) 0.352716 0.610921i 0.0198733 0.0344215i
\(316\) 0 0
\(317\) −13.2185 −0.742425 −0.371213 0.928548i \(-0.621058\pi\)
−0.371213 + 0.928548i \(0.621058\pi\)
\(318\) 0 0
\(319\) 7.93027 + 13.7356i 0.444010 + 0.769048i
\(320\) 0 0
\(321\) −0.477697 0.827396i −0.0266625 0.0461807i
\(322\) 0 0
\(323\) 18.2642 31.6345i 1.01625 1.76019i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1.72886 2.99447i 0.0956060 0.165594i
\(328\) 0 0
\(329\) 9.84213 + 17.0471i 0.542614 + 0.939835i
\(330\) 0 0
\(331\) 10.9025 + 18.8836i 0.599253 + 1.03794i 0.992931 + 0.118689i \(0.0378692\pi\)
−0.393678 + 0.919248i \(0.628798\pi\)
\(332\) 0 0
\(333\) −1.10156 −0.0603649
\(334\) 0 0
\(335\) 1.99784 3.46037i 0.109154 0.189060i
\(336\) 0 0
\(337\) −10.1564 −0.553257 −0.276628 0.960977i \(-0.589217\pi\)
−0.276628 + 0.960977i \(0.589217\pi\)
\(338\) 0 0
\(339\) −23.3236 −1.26677
\(340\) 0 0
\(341\) −5.37531 + 9.31032i −0.291090 + 0.504182i
\(342\) 0 0
\(343\) −19.1371 −1.03330
\(344\) 0 0
\(345\) 3.76420 + 6.51979i 0.202658 + 0.351014i
\(346\) 0 0
\(347\) −13.9417 24.1477i −0.748429 1.29632i −0.948575 0.316551i \(-0.897475\pi\)
0.200146 0.979766i \(-0.435858\pi\)
\(348\) 0 0
\(349\) 17.7104 30.6754i 0.948018 1.64202i 0.198426 0.980116i \(-0.436417\pi\)
0.749593 0.661900i \(-0.230249\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4.49516 7.78584i 0.239253 0.414398i −0.721247 0.692678i \(-0.756431\pi\)
0.960500 + 0.278279i \(0.0897641\pi\)
\(354\) 0 0
\(355\) 2.60992 + 4.52051i 0.138520 + 0.239924i
\(356\) 0 0
\(357\) −28.5330 49.4205i −1.51012 2.61561i
\(358\) 0 0
\(359\) −4.83446 −0.255153 −0.127577 0.991829i \(-0.540720\pi\)
−0.127577 + 0.991829i \(0.540720\pi\)
\(360\) 0 0
\(361\) −1.32424 + 2.29365i −0.0696969 + 0.120719i
\(362\) 0 0
\(363\) 4.45175 0.233656
\(364\) 0 0
\(365\) 4.58748 0.240120
\(366\) 0 0
\(367\) 14.2039 24.6018i 0.741436 1.28420i −0.210406 0.977614i \(-0.567479\pi\)
0.951842 0.306590i \(-0.0991881\pi\)
\(368\) 0 0
\(369\) 1.11157 0.0578661
\(370\) 0 0
\(371\) 11.6697 + 20.2125i 0.605862 + 1.04938i
\(372\) 0 0
\(373\) 13.1984 + 22.8602i 0.683385 + 1.18366i 0.973941 + 0.226800i \(0.0728263\pi\)
−0.290556 + 0.956858i \(0.593840\pi\)
\(374\) 0 0
\(375\) −8.68090 + 15.0358i −0.448280 + 0.776443i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 9.93080 17.2007i 0.510111 0.883538i −0.489820 0.871823i \(-0.662938\pi\)
0.999931 0.0117150i \(-0.00372908\pi\)
\(380\) 0 0
\(381\) 5.33662 + 9.24329i 0.273403 + 0.473548i
\(382\) 0 0
\(383\) 0.109916 + 0.190381i 0.00561646 + 0.00972799i 0.868820 0.495128i \(-0.164879\pi\)
−0.863204 + 0.504856i \(0.831546\pi\)
\(384\) 0 0
\(385\) −19.0019 −0.968427
\(386\) 0 0
\(387\) 0.0606304 0.105015i 0.00308202 0.00533821i
\(388\) 0 0
\(389\) −10.0543 −0.509773 −0.254886 0.966971i \(-0.582038\pi\)
−0.254886 + 0.966971i \(0.582038\pi\)
\(390\) 0 0
\(391\) −29.1564 −1.47450
\(392\) 0 0
\(393\) −12.0945 + 20.9483i −0.610086 + 1.05670i
\(394\) 0 0
\(395\) 12.6426 0.636120
\(396\) 0 0
\(397\) 2.88016 + 4.98858i 0.144551 + 0.250370i 0.929205 0.369564i \(-0.120493\pi\)
−0.784654 + 0.619934i \(0.787160\pi\)
\(398\) 0 0
\(399\) 16.9100 + 29.2890i 0.846559 + 1.46628i
\(400\) 0 0
\(401\) 17.4650 30.2502i 0.872158 1.51062i 0.0123985 0.999923i \(-0.496053\pi\)
0.859760 0.510699i \(-0.170613\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −5.13371 + 8.89185i −0.255096 + 0.441839i
\(406\) 0 0
\(407\) 14.8361 + 25.6969i 0.735397 + 1.27375i
\(408\) 0 0
\(409\) −5.92208 10.2573i −0.292828 0.507193i 0.681649 0.731679i \(-0.261263\pi\)
−0.974477 + 0.224486i \(0.927930\pi\)
\(410\) 0 0
\(411\) −18.9638 −0.935413
\(412\) 0 0
\(413\) −5.00418 + 8.66749i −0.246240 + 0.426500i
\(414\) 0 0
\(415\) 6.28621 0.308578
\(416\) 0 0
\(417\) 7.72348 0.378220
\(418\) 0 0
\(419\) −5.37651 + 9.31239i −0.262660 + 0.454940i −0.966948 0.254974i \(-0.917933\pi\)
0.704288 + 0.709914i \(0.251266\pi\)
\(420\) 0 0
\(421\) 37.6722 1.83603 0.918015 0.396547i \(-0.129791\pi\)
0.918015 + 0.396547i \(0.129791\pi\)
\(422\) 0 0
\(423\) 0.314019 + 0.543897i 0.0152681 + 0.0264452i
\(424\) 0 0
\(425\) −13.9928 24.2362i −0.678749 1.17563i
\(426\) 0 0
\(427\) −13.4390 + 23.2770i −0.650359 + 1.12645i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 11.6564 20.1895i 0.561471 0.972496i −0.435897 0.899996i \(-0.643569\pi\)
0.997368 0.0724999i \(-0.0230977\pi\)
\(432\) 0 0
\(433\) −11.6184 20.1237i −0.558345 0.967082i −0.997635 0.0687366i \(-0.978103\pi\)
0.439290 0.898345i \(-0.355230\pi\)
\(434\) 0 0
\(435\) 4.35421 + 7.54171i 0.208768 + 0.361597i
\(436\) 0 0
\(437\) 17.2795 0.826591
\(438\) 0 0
\(439\) −9.30947 + 16.1245i −0.444317 + 0.769579i −0.998004 0.0631452i \(-0.979887\pi\)
0.553688 + 0.832724i \(0.313220\pi\)
\(440\) 0 0
\(441\) −1.57002 −0.0747630
\(442\) 0 0
\(443\) 27.0180 1.28367 0.641833 0.766844i \(-0.278174\pi\)
0.641833 + 0.766844i \(0.278174\pi\)
\(444\) 0 0
\(445\) −5.67092 + 9.82231i −0.268827 + 0.465622i
\(446\) 0 0
\(447\) −36.6738 −1.73461
\(448\) 0 0
\(449\) −15.3354 26.5617i −0.723723 1.25353i −0.959497 0.281718i \(-0.909096\pi\)
0.235774 0.971808i \(-0.424237\pi\)
\(450\) 0 0
\(451\) −14.9710 25.9305i −0.704957 1.22102i
\(452\) 0 0
\(453\) −17.7458 + 30.7366i −0.833770 + 1.44413i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −8.72132 + 15.1058i −0.407966 + 0.706618i −0.994662 0.103189i \(-0.967095\pi\)
0.586695 + 0.809808i \(0.300429\pi\)
\(458\) 0 0
\(459\) −20.8361 36.0892i −0.972545 1.68450i
\(460\) 0 0
\(461\) 13.5184 + 23.4146i 0.629615 + 1.09053i 0.987629 + 0.156810i \(0.0501209\pi\)
−0.358013 + 0.933716i \(0.616546\pi\)
\(462\) 0 0
\(463\) 7.90408 0.367334 0.183667 0.982989i \(-0.441203\pi\)
0.183667 + 0.982989i \(0.441203\pi\)
\(464\) 0 0
\(465\) −2.95138 + 5.11194i −0.136867 + 0.237060i
\(466\) 0 0
\(467\) −14.7845 −0.684144 −0.342072 0.939674i \(-0.611129\pi\)
−0.342072 + 0.939674i \(0.611129\pi\)
\(468\) 0 0
\(469\) −14.3274 −0.661576
\(470\) 0 0
\(471\) −3.06734 + 5.31278i −0.141335 + 0.244800i
\(472\) 0 0
\(473\) −3.26636 −0.150187
\(474\) 0 0
\(475\) 8.29278 + 14.3635i 0.380499 + 0.659043i
\(476\) 0 0
\(477\) 0.372330 + 0.644894i 0.0170478 + 0.0295277i
\(478\) 0 0
\(479\) −5.76122 + 9.97872i −0.263237 + 0.455939i −0.967100 0.254396i \(-0.918123\pi\)
0.703863 + 0.710335i \(0.251457\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 13.4973 23.3780i 0.614149 1.06374i
\(484\) 0 0
\(485\) −2.20440 3.81813i −0.100097 0.173372i
\(486\) 0 0
\(487\) −16.3708 28.3550i −0.741830 1.28489i −0.951661 0.307150i \(-0.900625\pi\)
0.209831 0.977738i \(-0.432709\pi\)
\(488\) 0 0
\(489\) 36.8394 1.66593
\(490\) 0 0
\(491\) −0.0534662 + 0.0926061i −0.00241289 + 0.00417926i −0.867229 0.497909i \(-0.834101\pi\)
0.864816 + 0.502088i \(0.167435\pi\)
\(492\) 0 0
\(493\) −33.7265 −1.51896
\(494\) 0 0
\(495\) −0.606268 −0.0272497
\(496\) 0 0
\(497\) 9.35839 16.2092i 0.419781 0.727082i
\(498\) 0 0
\(499\) −5.58402 −0.249975 −0.124988 0.992158i \(-0.539889\pi\)
−0.124988 + 0.992158i \(0.539889\pi\)
\(500\) 0 0
\(501\) 2.37867 + 4.11997i 0.106271 + 0.184067i
\(502\) 0 0
\(503\) 6.65668 + 11.5297i 0.296807 + 0.514084i 0.975404 0.220427i \(-0.0707450\pi\)
−0.678597 + 0.734511i \(0.737412\pi\)
\(504\) 0 0
\(505\) −10.2584 + 17.7681i −0.456493 + 0.790669i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −11.7630 + 20.3741i −0.521386 + 0.903067i 0.478305 + 0.878194i \(0.341251\pi\)
−0.999691 + 0.0248731i \(0.992082\pi\)
\(510\) 0 0
\(511\) −8.22468 14.2456i −0.363838 0.630186i
\(512\) 0 0
\(513\) 12.3485 + 21.3882i 0.545198 + 0.944311i
\(514\) 0 0
\(515\) −9.76032 −0.430091
\(516\) 0 0
\(517\) 8.45862 14.6508i 0.372009 0.644339i
\(518\) 0 0
\(519\) 11.8646 0.520798
\(520\) 0 0
\(521\) −9.20046 −0.403079 −0.201540 0.979480i \(-0.564594\pi\)
−0.201540 + 0.979480i \(0.564594\pi\)
\(522\) 0 0
\(523\) 17.7805 30.7967i 0.777485 1.34664i −0.155902 0.987773i \(-0.549828\pi\)
0.933387 0.358872i \(-0.116838\pi\)
\(524\) 0 0
\(525\) 25.9105 1.13083
\(526\) 0 0
\(527\) −11.4303 19.7978i −0.497910 0.862406i
\(528\) 0 0
\(529\) 4.60388 + 7.97415i 0.200168 + 0.346702i
\(530\) 0 0
\(531\) −0.159662 + 0.276542i −0.00692872 + 0.0120009i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0.338241 0.585851i 0.0146234 0.0253285i
\(536\) 0 0
\(537\) 13.1015 + 22.6924i 0.565371 + 0.979251i
\(538\) 0 0
\(539\) 21.1456 + 36.6252i 0.910804 + 1.57756i
\(540\) 0 0
\(541\) −20.1943 −0.868223 −0.434111 0.900859i \(-0.642938\pi\)
−0.434111 + 0.900859i \(0.642938\pi\)
\(542\) 0 0
\(543\) −4.80074 + 8.31513i −0.206020 + 0.356836i
\(544\) 0 0
\(545\) 2.44829 0.104873
\(546\) 0 0
\(547\) 20.2218 0.864620 0.432310 0.901725i \(-0.357699\pi\)
0.432310 + 0.901725i \(0.357699\pi\)
\(548\) 0 0
\(549\) −0.428780 + 0.742669i −0.0182999 + 0.0316963i
\(550\) 0 0
\(551\) 19.9879 0.851514
\(552\) 0 0
\(553\) −22.6664 39.2593i −0.963872 1.66948i
\(554\) 0 0
\(555\) 8.14592 + 14.1092i 0.345775 + 0.598900i
\(556\) 0 0
\(557\) 2.78836 4.82959i 0.118147 0.204636i −0.800886 0.598816i \(-0.795638\pi\)
0.919033 + 0.394180i \(0.128971\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −24.5221 + 42.4735i −1.03532 + 1.79323i
\(562\) 0 0
\(563\) −7.35205 12.7341i −0.309852 0.536679i 0.668478 0.743732i \(-0.266946\pi\)
−0.978330 + 0.207053i \(0.933613\pi\)
\(564\) 0 0
\(565\) −8.25733 14.3021i −0.347389 0.601695i
\(566\) 0 0
\(567\) 36.8159 1.54612
\(568\) 0 0
\(569\) 0.897084 1.55380i 0.0376077 0.0651385i −0.846609 0.532216i \(-0.821360\pi\)
0.884217 + 0.467077i \(0.154693\pi\)
\(570\) 0 0
\(571\) 38.8025 1.62384 0.811918 0.583772i \(-0.198424\pi\)
0.811918 + 0.583772i \(0.198424\pi\)
\(572\) 0 0
\(573\) −34.8327 −1.45516
\(574\) 0 0
\(575\) 6.61918 11.4648i 0.276039 0.478113i
\(576\) 0 0
\(577\) 19.3230 0.804429 0.402214 0.915545i \(-0.368241\pi\)
0.402214 + 0.915545i \(0.368241\pi\)
\(578\) 0 0
\(579\) −16.0344 27.7725i −0.666369 1.15418i
\(580\) 0 0
\(581\) −11.2702 19.5206i −0.467568 0.809852i
\(582\) 0 0
\(583\) 10.0293 17.3713i 0.415371 0.719444i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.1027 22.6945i 0.540805 0.936702i −0.458053 0.888925i \(-0.651453\pi\)
0.998858 0.0477774i \(-0.0152138\pi\)
\(588\) 0 0
\(589\) 6.77413 + 11.7331i 0.279123 + 0.483455i
\(590\) 0 0
\(591\) −1.98009 3.42962i −0.0814500 0.141076i
\(592\) 0 0
\(593\) 10.5676 0.433961 0.216980 0.976176i \(-0.430379\pi\)
0.216980 + 0.976176i \(0.430379\pi\)
\(594\) 0 0
\(595\) 20.2032 34.9930i 0.828251 1.43457i
\(596\) 0 0
\(597\) 9.54420 0.390618
\(598\) 0 0
\(599\) −2.50663 −0.102418 −0.0512091 0.998688i \(-0.516307\pi\)
−0.0512091 + 0.998688i \(0.516307\pi\)
\(600\) 0 0
\(601\) 12.6685 21.9425i 0.516760 0.895054i −0.483051 0.875592i \(-0.660471\pi\)
0.999811 0.0194619i \(-0.00619531\pi\)
\(602\) 0 0
\(603\) −0.457123 −0.0186155
\(604\) 0 0
\(605\) 1.57606 + 2.72982i 0.0640761 + 0.110983i
\(606\) 0 0
\(607\) 2.31312 + 4.00644i 0.0938866 + 0.162616i 0.909143 0.416483i \(-0.136738\pi\)
−0.815257 + 0.579100i \(0.803404\pi\)
\(608\) 0 0
\(609\) 15.6129 27.0423i 0.632667 1.09581i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −10.2714 + 17.7907i −0.414859 + 0.718558i −0.995414 0.0956639i \(-0.969503\pi\)
0.580554 + 0.814222i \(0.302836\pi\)
\(614\) 0 0
\(615\) −8.22000 14.2375i −0.331462 0.574109i
\(616\) 0 0
\(617\) −11.9940 20.7741i −0.482859 0.836336i 0.516948 0.856017i \(-0.327068\pi\)
−0.999806 + 0.0196813i \(0.993735\pi\)
\(618\) 0 0
\(619\) −33.1153 −1.33102 −0.665508 0.746391i \(-0.731785\pi\)
−0.665508 + 0.746391i \(0.731785\pi\)
\(620\) 0 0
\(621\) 9.85636 17.0717i 0.395522 0.685065i
\(622\) 0 0
\(623\) 40.6684 1.62935
\(624\) 0 0
\(625\) 5.52994 0.221198
\(626\) 0 0
\(627\) 14.5330 25.1718i 0.580390 1.00527i
\(628\) 0 0
\(629\) −63.0960 −2.51580
\(630\) 0 0
\(631\) −7.15668 12.3957i −0.284903 0.493466i 0.687683 0.726011i \(-0.258628\pi\)
−0.972586 + 0.232545i \(0.925295\pi\)
\(632\) 0 0
\(633\) −0.492467 0.852978i −0.0195738 0.0339028i
\(634\) 0 0
\(635\) −3.77868 + 6.54486i −0.149952 + 0.259725i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0.298585 0.517165i 0.0118119 0.0204587i
\(640\) 0 0
\(641\) −21.3686 37.0115i −0.844009 1.46187i −0.886479 0.462769i \(-0.846856\pi\)
0.0424695 0.999098i \(-0.486477\pi\)
\(642\) 0 0
\(643\) 14.4831 + 25.0854i 0.571157 + 0.989272i 0.996448 + 0.0842157i \(0.0268385\pi\)
−0.425291 + 0.905057i \(0.639828\pi\)
\(644\) 0 0
\(645\) −1.79343 −0.0706163
\(646\) 0 0
\(647\) 23.3056 40.3665i 0.916237 1.58697i 0.111157 0.993803i \(-0.464544\pi\)
0.805080 0.593166i \(-0.202122\pi\)
\(648\) 0 0
\(649\) 8.60148 0.337638
\(650\) 0 0
\(651\) 21.1655 0.829543
\(652\) 0 0
\(653\) −17.0504 + 29.5322i −0.667234 + 1.15568i 0.311440 + 0.950266i \(0.399189\pi\)
−0.978674 + 0.205418i \(0.934145\pi\)
\(654\) 0 0
\(655\) −17.1274 −0.669222
\(656\) 0 0
\(657\) −0.262414 0.454514i −0.0102377 0.0177323i
\(658\) 0 0
\(659\) 20.7983 + 36.0238i 0.810189 + 1.40329i 0.912732 + 0.408559i \(0.133969\pi\)
−0.102543 + 0.994729i \(0.532698\pi\)
\(660\) 0 0
\(661\) 5.37681 9.31290i 0.209134 0.362230i −0.742308 0.670058i \(-0.766269\pi\)
0.951442 + 0.307829i \(0.0996023\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −11.9734 + 20.7385i −0.464308 + 0.804205i
\(666\) 0 0
\(667\) −7.97703 13.8166i −0.308872 0.534982i
\(668\) 0 0
\(669\) 12.8843 + 22.3163i 0.498137 + 0.862799i
\(670\) 0 0
\(671\) 23.0998 0.891756
\(672\) 0 0
\(673\) 1.58306 2.74195i 0.0610227 0.105694i −0.833900 0.551915i \(-0.813897\pi\)
0.894923 + 0.446221i \(0.147230\pi\)
\(674\) 0 0
\(675\) 18.9211 0.728272
\(676\) 0 0
\(677\) 25.8323 0.992817 0.496409 0.868089i \(-0.334652\pi\)
0.496409 + 0.868089i \(0.334652\pi\)
\(678\) 0 0
\(679\) −7.90432 + 13.6907i −0.303340 + 0.525400i
\(680\) 0 0
\(681\) 22.7616 0.872228
\(682\) 0 0
\(683\) 0.832437 + 1.44182i 0.0318523 + 0.0551698i 0.881512 0.472161i \(-0.156526\pi\)
−0.849660 + 0.527331i \(0.823193\pi\)
\(684\) 0 0
\(685\) −6.71379 11.6286i −0.256521 0.444307i
\(686\) 0 0
\(687\) −6.01961 + 10.4263i −0.229663 + 0.397787i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −12.5003 + 21.6511i −0.475534 + 0.823648i −0.999607 0.0280245i \(-0.991078\pi\)
0.524074 + 0.851673i \(0.324412\pi\)
\(692\) 0 0
\(693\) 1.08695 + 1.88265i 0.0412898 + 0.0715160i
\(694\) 0 0
\(695\) 2.73437 + 4.73606i 0.103720 + 0.179649i
\(696\) 0 0
\(697\) 63.6698 2.41166
\(698\) 0 0
\(699\) −6.23423 + 10.7980i −0.235800 + 0.408418i
\(700\) 0 0
\(701\) −6.01208 −0.227073 −0.113537 0.993534i \(-0.536218\pi\)
−0.113537 + 0.993534i \(0.536218\pi\)
\(702\) 0 0
\(703\) 37.3937 1.41033
\(704\) 0 0
\(705\) 4.64430 8.04416i 0.174914 0.302961i
\(706\) 0 0
\(707\) 73.5672 2.76678
\(708\) 0 0
\(709\) −8.06584 13.9705i −0.302919 0.524671i 0.673877 0.738844i \(-0.264628\pi\)
−0.976796 + 0.214172i \(0.931295\pi\)
\(710\) 0 0
\(711\) −0.723185 1.25259i −0.0271216 0.0469759i
\(712\) 0 0
\(713\) 5.40701 9.36522i 0.202494 0.350730i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 7.05980 12.2279i 0.263653 0.456661i
\(718\) 0 0
\(719\) 8.79039 + 15.2254i 0.327826 + 0.567812i 0.982080 0.188463i \(-0.0603506\pi\)
−0.654254 + 0.756275i \(0.727017\pi\)
\(720\) 0 0
\(721\) 17.4988 + 30.3088i 0.651689 + 1.12876i
\(722\) 0 0
\(723\) −10.9715 −0.408035
\(724\) 0 0
\(725\) 7.65668 13.2618i 0.284362 0.492529i
\(726\) 0 0
\(727\) 4.18731 0.155299 0.0776493 0.996981i \(-0.475259\pi\)
0.0776493 + 0.996981i \(0.475259\pi\)
\(728\) 0 0
\(729\) 28.1183 1.04142
\(730\) 0 0
\(731\) 3.47285 6.01516i 0.128448 0.222479i
\(732\) 0 0
\(733\) −24.7821 −0.915347 −0.457674 0.889120i \(-0.651317\pi\)
−0.457674 + 0.889120i \(0.651317\pi\)
\(734\) 0 0
\(735\) 11.6102 + 20.1095i 0.428249 + 0.741749i
\(736\) 0 0
\(737\) 6.15668 + 10.6637i 0.226784 + 0.392802i
\(738\) 0 0
\(739\) 11.4179 19.7764i 0.420014 0.727486i −0.575926 0.817502i \(-0.695358\pi\)
0.995940 + 0.0900160i \(0.0286918\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −17.6462 + 30.5641i −0.647377 + 1.12129i 0.336370 + 0.941730i \(0.390801\pi\)
−0.983747 + 0.179560i \(0.942533\pi\)
\(744\) 0 0
\(745\) −12.9837 22.4885i −0.475687 0.823915i
\(746\) 0 0
\(747\) −0.359584 0.622818i −0.0131565 0.0227877i
\(748\) 0 0
\(749\) −2.42566 −0.0886319
\(750\) 0 0
\(751\) −25.7482 + 44.5973i −0.939566 + 1.62738i −0.173285 + 0.984872i \(0.555438\pi\)
−0.766281 + 0.642505i \(0.777895\pi\)
\(752\) 0 0
\(753\) −12.2875 −0.447783
\(754\) 0 0
\(755\) −25.1304 −0.914587
\(756\) 0 0
\(757\) −8.42692 + 14.5959i −0.306282 + 0.530495i −0.977546 0.210723i \(-0.932418\pi\)
0.671264 + 0.741218i \(0.265752\pi\)
\(758\) 0 0
\(759\) −23.2000 −0.842106
\(760\) 0 0
\(761\) 3.95981 + 6.85860i 0.143543 + 0.248624i 0.928828 0.370510i \(-0.120817\pi\)
−0.785285 + 0.619134i \(0.787484\pi\)
\(762\) 0 0
\(763\) −4.38942 7.60270i −0.158908 0.275236i
\(764\) 0 0
\(765\) 0.644596 1.11647i 0.0233054 0.0403662i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 8.00216 13.8601i 0.288565 0.499809i −0.684902 0.728635i \(-0.740155\pi\)
0.973467 + 0.228825i \(0.0734885\pi\)
\(770\) 0 0
\(771\) 11.5365 + 19.9819i 0.415478 + 0.719630i
\(772\) 0 0
\(773\) −19.2540 33.3489i −0.692518 1.19948i −0.971010 0.239037i \(-0.923168\pi\)
0.278493 0.960438i \(-0.410165\pi\)
\(774\) 0 0
\(775\) 10.3797 0.372851
\(776\) 0 0
\(777\) 29.2089 50.5913i 1.04786 1.81495i
\(778\) 0 0
\(779\) −37.7338 −1.35195
\(780\) 0 0
\(781\) −16.0858 −0.575594
\(782\) 0 0
\(783\) 11.4013 19.7476i 0.407448 0.705721i
\(784\) 0 0
\(785\) −4.34375 −0.155035
\(786\) 0 0
\(787\) 8.29201 + 14.3622i 0.295578 + 0.511957i 0.975119 0.221681i \(-0.0711543\pi\)
−0.679541 + 0.733638i \(0.737821\pi\)
\(788\) 0 0
\(789\) −9.57032 16.5763i −0.340712 0.590131i
\(790\) 0 0
\(791\) −29.6084 + 51.2832i −1.05275 + 1.82342i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 5.50670 9.53789i 0.195303 0.338274i
\(796\) 0 0
\(797\) −18.9432 32.8106i −0.671002 1.16221i −0.977620 0.210377i \(-0.932531\pi\)
0.306618 0.951833i \(-0.400802\pi\)
\(798\) 0 0
\(799\) 17.9867 + 31.1539i 0.636324 + 1.10215i
\(800\) 0 0
\(801\) 1.29755 0.0458468
\(802\) 0 0
\(803\) −7.06853 + 12.2431i −0.249443 + 0.432048i
\(804\) 0 0
\(805\) 19.1140 0.673679
\(806\) 0 0
\(807\) 1.13228 0.0398581
\(808\) 0 0
\(809\) 24.0683 41.6875i 0.846196 1.46565i −0.0383822 0.999263i \(-0.512220\pi\)
0.884578 0.466392i \(-0.154446\pi\)
\(810\) 0 0
\(811\) −38.7743 −1.36155 −0.680775 0.732492i \(-0.738357\pi\)
−0.680775 + 0.732492i \(0.738357\pi\)
\(812\) 0 0
\(813\) −17.2672 29.9076i −0.605587 1.04891i
\(814\) 0 0
\(815\) 13.0423 + 22.5900i 0.456853 + 0.791293i
\(816\) 0 0
\(817\) −2.05818 + 3.56487i −0.0720066 + 0.124719i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 12.7865 22.1469i 0.446252 0.772931i −0.551886 0.833919i \(-0.686092\pi\)
0.998138 + 0.0609880i \(0.0194252\pi\)
\(822\) 0 0
\(823\) 17.9983 + 31.1739i 0.627380 + 1.08665i 0.988075 + 0.153971i \(0.0492062\pi\)
−0.360695 + 0.932684i \(0.617461\pi\)
\(824\) 0 0
\(825\) −11.1341 19.2849i −0.387641 0.671414i
\(826\) 0 0
\(827\) −46.2495 −1.60825 −0.804126 0.594459i \(-0.797366\pi\)
−0.804126 + 0.594459i \(0.797366\pi\)
\(828\) 0 0
\(829\) −19.5981 + 33.9450i −0.680671 + 1.17896i 0.294105 + 0.955773i \(0.404978\pi\)
−0.974776 + 0.223184i \(0.928355\pi\)
\(830\) 0 0
\(831\) −4.21073 −0.146069
\(832\) 0 0
\(833\) −89.9294 −3.11587
\(834\) 0 0
\(835\) −1.68425 + 2.91721i −0.0582859 + 0.100954i
\(836\) 0 0
\(837\) 15.4561 0.534240
\(838\) 0 0
\(839\) −14.6136 25.3114i −0.504516 0.873848i −0.999986 0.00522281i \(-0.998338\pi\)
0.495470 0.868625i \(-0.334996\pi\)
\(840\) 0 0
\(841\) 5.27263 + 9.13247i 0.181815 + 0.314913i
\(842\) 0 0
\(843\) 14.0700 24.3700i 0.484597 0.839347i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 5.65130 9.78834i 0.194181 0.336331i
\(848\) 0 0
\(849\) −2.42460 4.19953i −0.0832120 0.144127i
\(850\) 0 0
\(851\) −14.9236 25.8484i −0.511573 0.886071i
\(852\) 0 0
\(853\) −14.9638 −0.512349 −0.256175 0.966631i \(-0.582462\pi\)
−0.256175 + 0.966631i \(0.582462\pi\)
\(854\) 0 0
\(855\) −0.382019 + 0.661675i −0.0130648 + 0.0226288i
\(856\) 0 0
\(857\) 10.0537 0.343428 0.171714 0.985147i \(-0.445070\pi\)
0.171714 + 0.985147i \(0.445070\pi\)
\(858\) 0 0
\(859\) 4.52409 0.154360 0.0771800 0.997017i \(-0.475408\pi\)
0.0771800 + 0.997017i \(0.475408\pi\)
\(860\) 0 0
\(861\) −29.4745 + 51.0513i −1.00449 + 1.73982i
\(862\) 0 0
\(863\) 38.6582 1.31594 0.657970 0.753044i \(-0.271415\pi\)
0.657970 + 0.753044i \(0.271415\pi\)
\(864\) 0 0
\(865\) 4.20046 + 7.27540i 0.142820 + 0.247371i
\(866\) 0 0
\(867\) −37.7625 65.4065i −1.28248 2.22132i
\(868\) 0 0
\(869\) −19.4801 + 33.7406i −0.660819 + 1.14457i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −0.252192 + 0.436810i −0.00853542 + 0.0147838i
\(874\) 0 0
\(875\) 22.0401 + 38.1745i 0.745090 + 1.29053i
\(876\) 0 0
\(877\) −22.4100 38.8152i −0.756732 1.31070i −0.944509 0.328486i \(-0.893462\pi\)
0.187777 0.982212i \(-0.439872\pi\)
\(878\) 0 0
\(879\) −52.0653 −1.75612
\(880\) 0 0
\(881\) −17.5945 + 30.4745i −0.592773 + 1.02671i 0.401084 + 0.916041i \(0.368634\pi\)
−0.993857 + 0.110672i \(0.964700\pi\)
\(882\) 0 0
\(883\) −34.6262 −1.16527 −0.582633 0.812736i \(-0.697977\pi\)
−0.582633 + 0.812736i \(0.697977\pi\)
\(884\) 0 0
\(885\) 4.72274 0.158753
\(886\) 0 0
\(887\) −1.05280 + 1.82351i −0.0353496 + 0.0612274i −0.883159 0.469074i \(-0.844588\pi\)
0.847809 + 0.530301i \(0.177921\pi\)
\(888\) 0 0
\(889\) 27.0984 0.908852
\(890\) 0 0
\(891\) −15.8204 27.4017i −0.530002 0.917990i
\(892\) 0 0
\(893\) −10.6598 18.4633i −0.356716 0.617851i
\(894\) 0 0
\(895\) −9.27671 + 16.0677i −0.310086 + 0.537085i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.25451 10.8331i 0.208600 0.361305i
\(900\) 0 0
\(901\) 21.3267 + 36.9389i 0.710495 + 1.23061i
\(902\) 0 0
\(903\) 3.21536 + 5.56916i 0.107000 + 0.185330i
\(904\) 0 0
\(905\) −6.79848 −0.225989
\(906\) 0 0
\(907\) 8.21864 14.2351i 0.272895 0.472669i −0.696707 0.717356i \(-0.745352\pi\)
0.969602 + 0.244688i \(0.0786854\pi\)
\(908\) 0 0
\(909\) 2.34721 0.0778519
\(910\) 0 0
\(911\) −12.5623 −0.416206 −0.208103 0.978107i \(-0.566729\pi\)
−0.208103 + 0.978107i \(0.566729\pi\)
\(912\) 0 0
\(913\) −9.68598 + 16.7766i −0.320559 + 0.555225i
\(914\) 0 0
\(915\) 12.6832 0.419293
\(916\) 0 0
\(917\) 30.7068 + 53.1858i 1.01403 + 1.75635i
\(918\) 0 0
\(919\) 18.1441 + 31.4264i 0.598517 + 1.03666i 0.993040 + 0.117776i \(0.0375766\pi\)
−0.394523 + 0.918886i \(0.629090\pi\)
\(920\) 0 0
\(921\) 17.1226 29.6572i 0.564208 0.977238i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 14.3242 24.8103i 0.470978 0.815758i
\(926\) 0 0
\(927\) 0.558311 + 0.967022i 0.0183373 + 0.0317612i
\(928\) 0 0
\(929\) 10.7860 + 18.6819i 0.353876 + 0.612932i 0.986925 0.161180i \(-0.0515301\pi\)
−0.633049 + 0.774112i \(0.718197\pi\)
\(930\) 0 0
\(931\) 53.2965 1.74672
\(932\) 0 0
\(933\) −15.9424 + 27.6130i −0.521929 + 0.904008i
\(934\) 0 0
\(935\) −34.7265 −1.13568
\(936\) 0 0
\(937\) 5.95599 0.194574 0.0972868 0.995256i \(-0.468984\pi\)
0.0972868 + 0.995256i \(0.468984\pi\)
\(938\) 0 0
\(939\) −4.12229 + 7.14002i −0.134526 + 0.233006i
\(940\) 0 0
\(941\) −46.8431 −1.52704 −0.763520 0.645784i \(-0.776531\pi\)
−0.763520 + 0.645784i \(0.776531\pi\)
\(942\) 0 0
\(943\) 15.0593 + 26.0834i 0.490397 + 0.849393i
\(944\) 0 0
\(945\) 13.6594 + 23.6588i 0.444341 + 0.769621i
\(946\) 0 0
\(947\) −21.5911 + 37.3969i −0.701617 + 1.21524i 0.266281 + 0.963895i \(0.414205\pi\)
−0.967898 + 0.251342i \(0.919128\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 11.1830 19.3695i 0.362634 0.628100i
\(952\) 0 0
\(953\) −17.9203 31.0390i −0.580497 1.00545i −0.995420 0.0955939i \(-0.969525\pi\)
0.414923 0.909856i \(-0.363808\pi\)
\(954\) 0 0
\(955\) −12.3319 21.3595i −0.399051 0.691177i
\(956\) 0 0
\(957\) −26.8364 −0.867497
\(958\) 0 0
\(959\) −24.0737 + 41.6968i −0.777379 + 1.34646i
\(960\) 0 0
\(961\) −22.5211 −0.726487
\(962\) 0 0
\(963\) −0.0773924 −0.00249393
\(964\) 0 0
\(965\) 11.3534 19.6647i 0.365480 0.633030i
\(966\) 0 0
\(967\) 13.9815 0.449614 0.224807 0.974403i \(-0.427825\pi\)
0.224807 + 0.974403i \(0.427825\pi\)
\(968\) 0 0
\(969\) 30.9034 + 53.5263i 0.992761 + 1.71951i
\(970\) 0 0
\(971\) 20.3049 + 35.1692i 0.651616 + 1.12863i 0.982731 + 0.185041i \(0.0592419\pi\)
−0.331115 + 0.943590i \(0.607425\pi\)
\(972\) 0 0
\(973\) 9.80463 16.9821i 0.314322 0.544421i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 7.47985 12.9555i 0.239302 0.414483i −0.721212 0.692714i \(-0.756415\pi\)
0.960514 + 0.278231i \(0.0897482\pi\)
\(978\) 0 0
\(979\) −17.4758 30.2690i −0.558530 0.967403i
\(980\) 0 0
\(981\) −0.140047 0.242569i −0.00447136 0.00774463i
\(982\) 0 0
\(983\) 25.4722 0.812437 0.406218 0.913776i \(-0.366847\pi\)
0.406218 + 0.913776i \(0.366847\pi\)
\(984\) 0 0
\(985\) 1.40203 2.42839i 0.0446725 0.0773751i
\(986\) 0 0
\(987\) −33.3062 −1.06015
\(988\) 0 0
\(989\) 3.28562 0.104477
\(990\) 0 0
\(991\) −10.5902 + 18.3427i −0.336408 + 0.582675i −0.983754 0.179520i \(-0.942545\pi\)
0.647346 + 0.762196i \(0.275879\pi\)
\(992\) 0 0
\(993\) −36.8944 −1.17081
\(994\) 0 0
\(995\) 3.37896 + 5.85253i 0.107120 + 0.185538i
\(996\) 0 0
\(997\) −26.2977 45.5489i −0.832856 1.44255i −0.895764 0.444530i \(-0.853371\pi\)
0.0629081 0.998019i \(-0.479962\pi\)
\(998\) 0 0
\(999\) 21.3297 36.9441i 0.674841 1.16886i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 676.2.e.f.529.1 6
13.2 odd 12 676.2.h.e.361.2 12
13.3 even 3 inner 676.2.e.f.653.1 6
13.4 even 6 676.2.a.h.1.3 yes 3
13.5 odd 4 676.2.h.e.485.2 12
13.6 odd 12 676.2.d.e.337.6 6
13.7 odd 12 676.2.d.e.337.5 6
13.8 odd 4 676.2.h.e.485.1 12
13.9 even 3 676.2.a.g.1.3 3
13.10 even 6 676.2.e.g.653.1 6
13.11 odd 12 676.2.h.e.361.1 12
13.12 even 2 676.2.e.g.529.1 6
39.17 odd 6 6084.2.a.x.1.3 3
39.20 even 12 6084.2.b.p.4393.4 6
39.32 even 12 6084.2.b.p.4393.3 6
39.35 odd 6 6084.2.a.bc.1.1 3
52.7 even 12 2704.2.f.n.337.1 6
52.19 even 12 2704.2.f.n.337.2 6
52.35 odd 6 2704.2.a.x.1.1 3
52.43 odd 6 2704.2.a.y.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
676.2.a.g.1.3 3 13.9 even 3
676.2.a.h.1.3 yes 3 13.4 even 6
676.2.d.e.337.5 6 13.7 odd 12
676.2.d.e.337.6 6 13.6 odd 12
676.2.e.f.529.1 6 1.1 even 1 trivial
676.2.e.f.653.1 6 13.3 even 3 inner
676.2.e.g.529.1 6 13.12 even 2
676.2.e.g.653.1 6 13.10 even 6
676.2.h.e.361.1 12 13.11 odd 12
676.2.h.e.361.2 12 13.2 odd 12
676.2.h.e.485.1 12 13.8 odd 4
676.2.h.e.485.2 12 13.5 odd 4
2704.2.a.x.1.1 3 52.35 odd 6
2704.2.a.y.1.1 3 52.43 odd 6
2704.2.f.n.337.1 6 52.7 even 12
2704.2.f.n.337.2 6 52.19 even 12
6084.2.a.x.1.3 3 39.17 odd 6
6084.2.a.bc.1.1 3 39.35 odd 6
6084.2.b.p.4393.3 6 39.32 even 12
6084.2.b.p.4393.4 6 39.20 even 12