Properties

Label 676.2.l.g.319.1
Level $676$
Weight $2$
Character 676.319
Analytic conductor $5.398$
Analytic rank $0$
Dimension $4$
CM discriminant -4
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [676,2,Mod(19,676)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(676, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("676.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 676.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.39788717664\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{U}(1)[D_{12}]$

Embedding invariants

Embedding label 319.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 676.319
Dual form 676.2.l.g.587.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36603 - 0.366025i) q^{2} +(1.73205 - 1.00000i) q^{4} +(3.00000 + 3.00000i) q^{5} +(2.00000 - 2.00000i) q^{8} +(-1.50000 - 2.59808i) q^{9} +(5.19615 + 3.00000i) q^{10} +(2.00000 - 3.46410i) q^{16} +(-1.73205 + 1.00000i) q^{17} +(-3.00000 - 3.00000i) q^{18} +(8.19615 + 2.19615i) q^{20} +13.0000i q^{25} +(-2.00000 + 3.46410i) q^{29} +(1.46410 - 5.46410i) q^{32} +(-2.00000 + 2.00000i) q^{34} +(-5.19615 - 3.00000i) q^{36} +(-1.83013 - 6.83013i) q^{37} +12.0000 q^{40} +(-1.36603 + 0.366025i) q^{41} +(3.29423 - 12.2942i) q^{45} +(6.06218 + 3.50000i) q^{49} +(4.75833 + 17.7583i) q^{50} -14.0000 q^{53} +(-1.46410 + 5.46410i) q^{58} +(-5.00000 - 8.66025i) q^{61} -8.00000i q^{64} +(-2.00000 + 3.46410i) q^{68} +(-8.19615 - 2.19615i) q^{72} +(11.0000 - 11.0000i) q^{73} +(-5.00000 - 8.66025i) q^{74} +(16.3923 - 4.39230i) q^{80} +(-4.50000 + 7.79423i) q^{81} +(-1.73205 + 1.00000i) q^{82} +(-8.19615 - 2.19615i) q^{85} +(-1.09808 - 4.09808i) q^{89} -18.0000i q^{90} +(-1.83013 + 6.83013i) q^{97} +(9.56218 + 2.56218i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 12 q^{5} + 8 q^{8} - 6 q^{9} + 8 q^{16} - 12 q^{18} + 12 q^{20} - 8 q^{29} - 8 q^{32} - 8 q^{34} + 10 q^{37} + 48 q^{40} - 2 q^{41} - 18 q^{45} - 26 q^{50} - 56 q^{53} + 8 q^{58} - 20 q^{61}+ \cdots + 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/676\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(509\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 0.366025i 0.965926 0.258819i
\(3\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(4\) 1.73205 1.00000i 0.866025 0.500000i
\(5\) 3.00000 + 3.00000i 1.34164 + 1.34164i 0.894427 + 0.447214i \(0.147584\pi\)
0.447214 + 0.894427i \(0.352416\pi\)
\(6\) 0 0
\(7\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(8\) 2.00000 2.00000i 0.707107 0.707107i
\(9\) −1.50000 2.59808i −0.500000 0.866025i
\(10\) 5.19615 + 3.00000i 1.64317 + 0.948683i
\(11\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 0 0
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) −1.73205 + 1.00000i −0.420084 + 0.242536i −0.695113 0.718900i \(-0.744646\pi\)
0.275029 + 0.961436i \(0.411312\pi\)
\(18\) −3.00000 3.00000i −0.707107 0.707107i
\(19\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(20\) 8.19615 + 2.19615i 1.83272 + 0.491075i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 0 0
\(25\) 13.0000i 2.60000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00000 + 3.46410i −0.371391 + 0.643268i −0.989780 0.142605i \(-0.954452\pi\)
0.618389 + 0.785872i \(0.287786\pi\)
\(30\) 0 0
\(31\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(32\) 1.46410 5.46410i 0.258819 0.965926i
\(33\) 0 0
\(34\) −2.00000 + 2.00000i −0.342997 + 0.342997i
\(35\) 0 0
\(36\) −5.19615 3.00000i −0.866025 0.500000i
\(37\) −1.83013 6.83013i −0.300871 1.12287i −0.936442 0.350823i \(-0.885902\pi\)
0.635571 0.772043i \(-0.280765\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 12.0000 1.89737
\(41\) −1.36603 + 0.366025i −0.213337 + 0.0571636i −0.363905 0.931436i \(-0.618557\pi\)
0.150567 + 0.988600i \(0.451890\pi\)
\(42\) 0 0
\(43\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(44\) 0 0
\(45\) 3.29423 12.2942i 0.491075 1.83272i
\(46\) 0 0
\(47\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) 0 0
\(49\) 6.06218 + 3.50000i 0.866025 + 0.500000i
\(50\) 4.75833 + 17.7583i 0.672930 + 2.51141i
\(51\) 0 0
\(52\) 0 0
\(53\) −14.0000 −1.92305 −0.961524 0.274721i \(-0.911414\pi\)
−0.961524 + 0.274721i \(0.911414\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −1.46410 + 5.46410i −0.192246 + 0.717472i
\(59\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(60\) 0 0
\(61\) −5.00000 8.66025i −0.640184 1.10883i −0.985391 0.170305i \(-0.945525\pi\)
0.345207 0.938527i \(-0.387809\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(68\) −2.00000 + 3.46410i −0.242536 + 0.420084i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(72\) −8.19615 2.19615i −0.965926 0.258819i
\(73\) 11.0000 11.0000i 1.28745 1.28745i 0.351123 0.936329i \(-0.385800\pi\)
0.936329 0.351123i \(-0.114200\pi\)
\(74\) −5.00000 8.66025i −0.581238 1.00673i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 16.3923 4.39230i 1.83272 0.491075i
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) −1.73205 + 1.00000i −0.191273 + 0.110432i
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 0 0
\(85\) −8.19615 2.19615i −0.888998 0.238206i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.09808 4.09808i −0.116396 0.434395i 0.882992 0.469389i \(-0.155526\pi\)
−0.999388 + 0.0349934i \(0.988859\pi\)
\(90\) 18.0000i 1.89737i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.83013 + 6.83013i −0.185821 + 0.693494i 0.808632 + 0.588315i \(0.200208\pi\)
−0.994453 + 0.105180i \(0.966458\pi\)
\(98\) 9.56218 + 2.56218i 0.965926 + 0.258819i
\(99\) 0 0
\(100\) 13.0000 + 22.5167i 1.30000 + 2.25167i
\(101\) −17.3205 10.0000i −1.72345 0.995037i −0.911479 0.411346i \(-0.865059\pi\)
−0.811976 0.583691i \(-0.801608\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −19.1244 + 5.12436i −1.85752 + 0.497721i
\(107\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) 0 0
\(109\) 7.00000 + 7.00000i 0.670478 + 0.670478i 0.957826 0.287348i \(-0.0927736\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.00000 + 13.8564i 0.752577 + 1.30350i 0.946570 + 0.322498i \(0.104523\pi\)
−0.193993 + 0.981003i \(0.562144\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 8.00000i 0.742781i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −9.52628 + 5.50000i −0.866025 + 0.500000i
\(122\) −10.0000 10.0000i −0.905357 0.905357i
\(123\) 0 0
\(124\) 0 0
\(125\) −24.0000 + 24.0000i −2.14663 + 2.14663i
\(126\) 0 0
\(127\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(128\) −2.92820 10.9282i −0.258819 0.965926i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −1.46410 + 5.46410i −0.125546 + 0.468543i
\(137\) −9.56218 2.56218i −0.816952 0.218902i −0.173939 0.984757i \(-0.555649\pi\)
−0.643013 + 0.765855i \(0.722316\pi\)
\(138\) 0 0
\(139\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −12.0000 −1.00000
\(145\) −16.3923 + 4.39230i −1.36131 + 0.364761i
\(146\) 11.0000 19.0526i 0.910366 1.57680i
\(147\) 0 0
\(148\) −10.0000 10.0000i −0.821995 0.821995i
\(149\) −6.22243 + 23.2224i −0.509761 + 1.90246i −0.0870170 + 0.996207i \(0.527733\pi\)
−0.422744 + 0.906249i \(0.638933\pi\)
\(150\) 0 0
\(151\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(152\) 0 0
\(153\) 5.19615 + 3.00000i 0.420084 + 0.242536i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 12.0000 0.957704 0.478852 0.877896i \(-0.341053\pi\)
0.478852 + 0.877896i \(0.341053\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 20.7846 12.0000i 1.64317 0.948683i
\(161\) 0 0
\(162\) −3.29423 + 12.2942i −0.258819 + 0.965926i
\(163\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(164\) −2.00000 + 2.00000i −0.156174 + 0.156174i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −12.0000 −0.920358
\(171\) 0 0
\(172\) 0 0
\(173\) 3.46410 2.00000i 0.263371 0.152057i −0.362500 0.931984i \(-0.618077\pi\)
0.625871 + 0.779926i \(0.284744\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −3.00000 5.19615i −0.224860 0.389468i
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) −6.58846 24.5885i −0.491075 1.83272i
\(181\) 18.0000i 1.33793i −0.743294 0.668965i \(-0.766738\pi\)
0.743294 0.668965i \(-0.233262\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 15.0000 25.9808i 1.10282 1.91014i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) 0 0
\(193\) −1.83013 6.83013i −0.131735 0.491643i 0.868255 0.496119i \(-0.165242\pi\)
−0.999990 + 0.00447566i \(0.998575\pi\)
\(194\) 10.0000i 0.717958i
\(195\) 0 0
\(196\) 14.0000 1.00000
\(197\) 20.4904 5.49038i 1.45988 0.391173i 0.560431 0.828201i \(-0.310635\pi\)
0.899448 + 0.437028i \(0.143969\pi\)
\(198\) 0 0
\(199\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(200\) 26.0000 + 26.0000i 1.83848 + 1.83848i
\(201\) 0 0
\(202\) −27.3205 7.32051i −1.92226 0.515069i
\(203\) 0 0
\(204\) 0 0
\(205\) −5.19615 3.00000i −0.362915 0.209529i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) −24.2487 + 14.0000i −1.66541 + 0.961524i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 12.1244 + 7.00000i 0.821165 + 0.474100i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(224\) 0 0
\(225\) 33.7750 19.5000i 2.25167 1.30000i
\(226\) 16.0000 + 16.0000i 1.06430 + 1.06430i
\(227\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(228\) 0 0
\(229\) 17.0000 17.0000i 1.12339 1.12339i 0.132164 0.991228i \(-0.457808\pi\)
0.991228 0.132164i \(-0.0421925\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2.92820 + 10.9282i 0.192246 + 0.717472i
\(233\) 16.0000i 1.04819i −0.851658 0.524097i \(-0.824403\pi\)
0.851658 0.524097i \(-0.175597\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(240\) 0 0
\(241\) 25.9545 + 6.95448i 1.67188 + 0.447978i 0.965615 0.259975i \(-0.0837143\pi\)
0.706260 + 0.707953i \(0.250381\pi\)
\(242\) −11.0000 + 11.0000i −0.707107 + 0.707107i
\(243\) 0 0
\(244\) −17.3205 10.0000i −1.10883 0.640184i
\(245\) 7.68653 + 28.6865i 0.491075 + 1.83272i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −24.0000 + 41.5692i −1.51789 + 2.62907i
\(251\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 27.7128 + 16.0000i 1.72868 + 0.998053i 0.895528 + 0.445005i \(0.146798\pi\)
0.833150 + 0.553047i \(0.186535\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 12.0000 0.742781
\(262\) 0 0
\(263\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) 0 0
\(265\) −42.0000 42.0000i −2.58004 2.58004i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.0000 + 17.3205i 0.609711 + 1.05605i 0.991288 + 0.131713i \(0.0420477\pi\)
−0.381577 + 0.924337i \(0.624619\pi\)
\(270\) 0 0
\(271\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(272\) 8.00000i 0.485071i
\(273\) 0 0
\(274\) −14.0000 −0.845771
\(275\) 0 0
\(276\) 0 0
\(277\) −24.2487 + 14.0000i −1.45696 + 0.841178i −0.998861 0.0477206i \(-0.984804\pi\)
−0.458103 + 0.888899i \(0.651471\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 11.0000 11.0000i 0.656205 0.656205i −0.298275 0.954480i \(-0.596411\pi\)
0.954480 + 0.298275i \(0.0964112\pi\)
\(282\) 0 0
\(283\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −16.3923 + 4.39230i −0.965926 + 0.258819i
\(289\) −6.50000 + 11.2583i −0.382353 + 0.662255i
\(290\) −20.7846 + 12.0000i −1.22051 + 0.704664i
\(291\) 0 0
\(292\) 8.05256 30.0526i 0.471240 1.75869i
\(293\) 25.9545 + 6.95448i 1.51628 + 0.406285i 0.918514 0.395388i \(-0.129390\pi\)
0.597763 + 0.801673i \(0.296056\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −17.3205 10.0000i −1.00673 0.581238i
\(297\) 0 0
\(298\) 34.0000i 1.96957i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 10.9808 40.9808i 0.628757 2.34655i
\(306\) 8.19615 + 2.19615i 0.468543 + 0.125546i
\(307\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −24.0000 −1.35656 −0.678280 0.734803i \(-0.737274\pi\)
−0.678280 + 0.734803i \(0.737274\pi\)
\(314\) 16.3923 4.39230i 0.925071 0.247872i
\(315\) 0 0
\(316\) 0 0
\(317\) 3.00000 + 3.00000i 0.168497 + 0.168497i 0.786318 0.617822i \(-0.211985\pi\)
−0.617822 + 0.786318i \(0.711985\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 24.0000 24.0000i 1.34164 1.34164i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 18.0000i 1.00000i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) −2.00000 + 3.46410i −0.110432 + 0.191273i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(332\) 0 0
\(333\) −15.0000 + 15.0000i −0.821995 + 0.821995i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 18.0000i 0.980522i −0.871576 0.490261i \(-0.836901\pi\)
0.871576 0.490261i \(-0.163099\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) −16.3923 + 4.39230i −0.888998 + 0.238206i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 4.00000 4.00000i 0.215041 0.215041i
\(347\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(348\) 0 0
\(349\) 8.41858 + 31.4186i 0.450636 + 1.68180i 0.700609 + 0.713545i \(0.252912\pi\)
−0.249973 + 0.968253i \(0.580422\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 34.1506 9.15064i 1.81765 0.487039i 0.821160 0.570697i \(-0.193327\pi\)
0.996495 + 0.0836583i \(0.0266604\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −6.00000 6.00000i −0.317999 0.317999i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(360\) −18.0000 31.1769i −0.948683 1.64317i
\(361\) −16.4545 9.50000i −0.866025 0.500000i
\(362\) −6.58846 24.5885i −0.346282 1.29234i
\(363\) 0 0
\(364\) 0 0
\(365\) 66.0000 3.45460
\(366\) 0 0
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) 0 0
\(369\) 3.00000 + 3.00000i 0.156174 + 0.156174i
\(370\) 10.9808 40.9808i 0.570863 2.13049i
\(371\) 0 0
\(372\) 0 0
\(373\) −18.0000 31.1769i −0.932005 1.61428i −0.779890 0.625917i \(-0.784725\pi\)
−0.152115 0.988363i \(-0.548608\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −5.00000 8.66025i −0.254493 0.440795i
\(387\) 0 0
\(388\) 3.66025 + 13.6603i 0.185821 + 0.693494i
\(389\) 34.0000i 1.72387i 0.507020 + 0.861934i \(0.330747\pi\)
−0.507020 + 0.861934i \(0.669253\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 19.1244 5.12436i 0.965926 0.258819i
\(393\) 0 0
\(394\) 25.9808 15.0000i 1.30889 0.755689i
\(395\) 0 0
\(396\) 0 0
\(397\) −34.1506 9.15064i −1.71397 0.459257i −0.737579 0.675261i \(-0.764031\pi\)
−0.976392 + 0.216004i \(0.930698\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 45.0333 + 26.0000i 2.25167 + 1.30000i
\(401\) 7.68653 + 28.6865i 0.383847 + 1.43254i 0.839976 + 0.542623i \(0.182569\pi\)
−0.456129 + 0.889914i \(0.650764\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −40.0000 −1.99007
\(405\) −36.8827 + 9.88269i −1.83272 + 0.491075i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −6.22243 + 23.2224i −0.307679 + 1.14828i 0.622935 + 0.782274i \(0.285940\pi\)
−0.930614 + 0.366002i \(0.880726\pi\)
\(410\) −8.19615 2.19615i −0.404779 0.108460i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(420\) 0 0
\(421\) 29.0000 + 29.0000i 1.41337 + 1.41337i 0.731055 + 0.682318i \(0.239028\pi\)
0.682318 + 0.731055i \(0.260972\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −28.0000 + 28.0000i −1.35980 + 1.35980i
\(425\) −13.0000 22.5167i −0.630593 1.09222i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(432\) 0 0
\(433\) 20.7846 12.0000i 0.998845 0.576683i 0.0909384 0.995857i \(-0.471013\pi\)
0.907906 + 0.419173i \(0.137680\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 19.1244 + 5.12436i 0.915891 + 0.245412i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 0 0
\(441\) 21.0000i 1.00000i
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 9.00000 15.5885i 0.426641 0.738964i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 36.8827 + 9.88269i 1.74060 + 0.466393i 0.982581 0.185837i \(-0.0594997\pi\)
0.758021 + 0.652230i \(0.226166\pi\)
\(450\) 39.0000 39.0000i 1.83848 1.83848i
\(451\) 0 0
\(452\) 27.7128 + 16.0000i 1.30350 + 0.752577i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 34.1506 9.15064i 1.59750 0.428049i 0.653213 0.757174i \(-0.273421\pi\)
0.944286 + 0.329125i \(0.106754\pi\)
\(458\) 17.0000 29.4449i 0.794358 1.37587i
\(459\) 0 0
\(460\) 0 0
\(461\) 3.29423 12.2942i 0.153428 0.572599i −0.845807 0.533488i \(-0.820881\pi\)
0.999235 0.0391109i \(-0.0124526\pi\)
\(462\) 0 0
\(463\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(464\) 8.00000 + 13.8564i 0.371391 + 0.643268i
\(465\) 0 0
\(466\) −5.85641 21.8564i −0.271293 1.01248i
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 21.0000 + 36.3731i 0.961524 + 1.66541i
\(478\) 0 0
\(479\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 38.0000 1.73085
\(483\) 0 0
\(484\) −11.0000 + 19.0526i −0.500000 + 0.866025i
\(485\) −25.9808 + 15.0000i −1.17973 + 0.681115i
\(486\) 0 0
\(487\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(488\) −27.3205 7.32051i −1.23674 0.331384i
\(489\) 0 0
\(490\) 21.0000 + 36.3731i 0.948683 + 1.64317i
\(491\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(492\) 0 0
\(493\) 8.00000i 0.360302i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(500\) −17.5692 + 65.5692i −0.785719 + 2.93234i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(504\) 0 0
\(505\) −21.9615 81.9615i −0.977275 3.64724i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −36.8827 + 9.88269i −1.63480 + 0.438042i −0.955300 0.295637i \(-0.904468\pi\)
−0.679496 + 0.733679i \(0.737801\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −16.0000 16.0000i −0.707107 0.707107i
\(513\) 0 0
\(514\) 43.7128 + 11.7128i 1.92809 + 0.516630i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −40.0000 −1.75243 −0.876216 0.481919i \(-0.839940\pi\)
−0.876216 + 0.481919i \(0.839940\pi\)
\(522\) 16.3923 4.39230i 0.717472 0.192246i
\(523\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) −72.7461 42.0000i −3.15989 1.82436i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 20.0000 + 20.0000i 0.862261 + 0.862261i
\(539\) 0 0
\(540\) 0 0
\(541\) 11.0000 11.0000i 0.472927 0.472927i −0.429934 0.902861i \(-0.641463\pi\)
0.902861 + 0.429934i \(0.141463\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 2.92820 + 10.9282i 0.125546 + 0.468543i
\(545\) 42.0000i 1.79908i
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) −19.1244 + 5.12436i −0.816952 + 0.218902i
\(549\) −15.0000 + 25.9808i −0.640184 + 1.10883i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −28.0000 + 28.0000i −1.18961 + 1.18961i
\(555\) 0 0
\(556\) 0 0
\(557\) −1.83013 6.83013i −0.0775450 0.289402i 0.916253 0.400599i \(-0.131198\pi\)
−0.993798 + 0.111198i \(0.964531\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 11.0000 19.0526i 0.464007 0.803684i
\(563\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 0 0
\(565\) −17.5692 + 65.5692i −0.739143 + 2.75852i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 34.6410 + 20.0000i 1.45223 + 0.838444i 0.998608 0.0527519i \(-0.0167993\pi\)
0.453619 + 0.891196i \(0.350133\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −20.7846 + 12.0000i −0.866025 + 0.500000i
\(577\) −23.0000 23.0000i −0.957503 0.957503i 0.0416305 0.999133i \(-0.486745\pi\)
−0.999133 + 0.0416305i \(0.986745\pi\)
\(578\) −4.75833 + 17.7583i −0.197920 + 0.738649i
\(579\) 0 0
\(580\) −24.0000 + 24.0000i −0.996546 + 0.996546i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 44.0000i 1.82073i
\(585\) 0 0
\(586\) 38.0000 1.56977
\(587\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −27.3205 7.32051i −1.12287 0.300871i
\(593\) −15.0000 + 15.0000i −0.615976 + 0.615976i −0.944497 0.328521i \(-0.893450\pi\)
0.328521 + 0.944497i \(0.393450\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 12.4449 + 46.4449i 0.509761 + 1.90246i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 24.0000 41.5692i 0.978980 1.69564i 0.312861 0.949799i \(-0.398713\pi\)
0.666120 0.745845i \(-0.267954\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −45.0788 12.0788i −1.83272 0.491075i
\(606\) 0 0
\(607\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 60.0000i 2.42933i
\(611\) 0 0
\(612\) 12.0000 0.485071
\(613\) −1.36603 + 0.366025i −0.0551732 + 0.0147836i −0.286300 0.958140i \(-0.592425\pi\)
0.231127 + 0.972924i \(0.425759\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12.8109 47.8109i 0.515747 1.92479i 0.175382 0.984500i \(-0.443884\pi\)
0.340365 0.940294i \(-0.389449\pi\)
\(618\) 0 0
\(619\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −79.0000 −3.16000
\(626\) −32.7846 + 8.78461i −1.31034 + 0.351104i
\(627\) 0 0
\(628\) 20.7846 12.0000i 0.829396 0.478852i
\(629\) 10.0000 + 10.0000i 0.398726 + 0.398726i
\(630\) 0 0
\(631\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 5.19615 + 3.00000i 0.206366 + 0.119145i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 24.0000 41.5692i 0.948683 1.64317i
\(641\) 43.3013 25.0000i 1.71030 0.987441i 0.776153 0.630544i \(-0.217168\pi\)
0.934144 0.356897i \(-0.116165\pi\)
\(642\) 0 0
\(643\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(648\) 6.58846 + 24.5885i 0.258819 + 0.965926i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −22.0000 + 38.1051i −0.860927 + 1.49117i 0.0101092 + 0.999949i \(0.496782\pi\)
−0.871036 + 0.491220i \(0.836551\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −1.46410 + 5.46410i −0.0571636 + 0.213337i
\(657\) −45.0788 12.0788i −1.75869 0.471240i
\(658\) 0 0
\(659\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(660\) 0 0
\(661\) −11.3468 42.3468i −0.441339 1.64710i −0.725426 0.688301i \(-0.758357\pi\)
0.284087 0.958799i \(-0.408310\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −15.0000 + 25.9808i −0.581238 + 1.00673i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −39.8372 23.0000i −1.53561 0.886585i −0.999088 0.0426985i \(-0.986405\pi\)
−0.536522 0.843886i \(-0.680262\pi\)
\(674\) −6.58846 24.5885i −0.253778 0.947112i
\(675\) 0 0
\(676\) 0 0
\(677\) 2.00000 0.0768662 0.0384331 0.999261i \(-0.487763\pi\)
0.0384331 + 0.999261i \(0.487763\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −20.7846 + 12.0000i −0.797053 + 0.460179i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(684\) 0 0
\(685\) −21.0000 36.3731i −0.802369 1.38974i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(692\) 4.00000 6.92820i 0.152057 0.263371i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.00000 2.00000i 0.0757554 0.0757554i
\(698\) 23.0000 + 39.8372i 0.870563 + 1.50786i
\(699\) 0 0
\(700\) 0 0
\(701\) 10.0000i 0.377695i 0.982006 + 0.188847i \(0.0604752\pi\)
−0.982006 + 0.188847i \(0.939525\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 43.3013 25.0000i 1.62966 0.940887i
\(707\) 0 0
\(708\) 0 0
\(709\) −9.56218 2.56218i −0.359115 0.0962246i 0.0747503 0.997202i \(-0.476184\pi\)
−0.433865 + 0.900978i \(0.642851\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −10.3923 6.00000i −0.389468 0.224860i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) −36.0000 36.0000i −1.34164 1.34164i
\(721\) 0 0
\(722\) −25.9545 6.95448i −0.965926 0.258819i
\(723\) 0 0
\(724\) −18.0000 31.1769i −0.668965 1.15868i
\(725\) −45.0333 26.0000i −1.67250 0.965616i
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 90.1577 24.1577i 3.33689 0.894116i
\(731\) 0 0
\(732\) 0 0
\(733\) 29.0000 + 29.0000i 1.07114 + 1.07114i 0.997268 + 0.0738717i \(0.0235355\pi\)
0.0738717 + 0.997268i \(0.476464\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 5.19615 + 3.00000i 0.191273 + 0.110432i
\(739\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(740\) 60.0000i 2.20564i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(744\) 0 0
\(745\) −88.3346 + 51.0000i −3.23633 + 1.86850i
\(746\) −36.0000 36.0000i −1.31805 1.31805i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −9.00000 + 15.5885i −0.327111 + 0.566572i −0.981937 0.189207i \(-0.939408\pi\)
0.654827 + 0.755779i \(0.272742\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.36603 + 0.366025i 0.0495184 + 0.0132684i 0.283493 0.958974i \(-0.408507\pi\)
−0.233975 + 0.972243i \(0.575173\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 6.58846 + 24.5885i 0.238206 + 0.888998i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −50.5429 + 13.5429i −1.82263 + 0.488371i −0.997107 0.0760054i \(-0.975783\pi\)
−0.825518 + 0.564376i \(0.809117\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −10.0000 10.0000i −0.359908 0.359908i
\(773\) −1.83013 + 6.83013i −0.0658251 + 0.245663i −0.990997 0.133887i \(-0.957254\pi\)
0.925172 + 0.379549i \(0.123921\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 10.0000 + 17.3205i 0.358979 + 0.621770i
\(777\) 0 0
\(778\) 12.4449 + 46.4449i 0.446170 + 1.66513i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 24.2487 14.0000i 0.866025 0.500000i
\(785\) 36.0000 + 36.0000i 1.28490 + 1.28490i
\(786\) 0 0
\(787\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(788\) 30.0000 30.0000i 1.06871 1.06871i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) −50.0000 −1.77443
\(795\) 0 0
\(796\) 0 0
\(797\) −19.0526 + 11.0000i −0.674876 + 0.389640i −0.797922 0.602761i \(-0.794067\pi\)
0.123045 + 0.992401i \(0.460734\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 71.0333 + 19.0333i 2.51141 + 0.672930i
\(801\) −9.00000 + 9.00000i −0.317999 + 0.317999i
\(802\) 21.0000 + 36.3731i 0.741536 + 1.28438i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −54.6410 + 14.6410i −1.92226 + 0.515069i
\(809\) −28.0000 + 48.4974i −0.984428 + 1.70508i −0.339975 + 0.940435i \(0.610418\pi\)
−0.644453 + 0.764644i \(0.722915\pi\)
\(810\) −46.7654 + 27.0000i −1.64317 + 0.948683i
\(811\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 34.0000i 1.18878i
\(819\) 0 0
\(820\) −12.0000 −0.419058
\(821\) −15.0263 + 4.02628i −0.524421 + 0.140518i −0.511311 0.859396i \(-0.670840\pi\)
−0.0131101 + 0.999914i \(0.504173\pi\)
\(822\) 0 0
\(823\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) 0 0
\(829\) −17.3205 10.0000i −0.601566 0.347314i 0.168091 0.985771i \(-0.446240\pi\)
−0.769657 + 0.638457i \(0.779573\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −14.0000 −0.485071
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(840\) 0 0
\(841\) 6.50000 + 11.2583i 0.224138 + 0.388218i
\(842\) 50.2295 + 29.0000i 1.73102 + 0.999406i
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −28.0000 + 48.4974i −0.961524 + 1.66541i
\(849\) 0 0
\(850\) −26.0000 26.0000i −0.891793 0.891793i
\(851\) 0 0
\(852\) 0 0
\(853\) −41.0000 + 41.0000i −1.40381 + 1.40381i −0.616308 + 0.787505i \(0.711372\pi\)
−0.787505 + 0.616308i \(0.788628\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 8.00000i 0.273275i 0.990621 + 0.136637i \(0.0436295\pi\)
−0.990621 + 0.136637i \(0.956370\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(864\) 0 0
\(865\) 16.3923 + 4.39230i 0.557355 + 0.149343i
\(866\) 24.0000 24.0000i 0.815553 0.815553i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 28.0000 0.948200
\(873\) 20.4904 5.49038i 0.693494 0.185821i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 12.8109 47.8109i 0.432593 1.61446i −0.314169 0.949367i \(-0.601726\pi\)
0.746762 0.665092i \(-0.231608\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 27.7128 + 16.0000i 0.933668 + 0.539054i 0.887970 0.459902i \(-0.152115\pi\)
0.0456985 + 0.998955i \(0.485449\pi\)
\(882\) −7.68653 28.6865i −0.258819 0.965926i
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 6.58846 24.5885i 0.220846 0.824207i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 54.0000 1.80200
\(899\) 0 0
\(900\) 39.0000 67.5500i 1.30000 2.25167i
\(901\) 24.2487 14.0000i 0.807842 0.466408i
\(902\) 0 0
\(903\) 0 0
\(904\) 43.7128 + 11.7128i 1.45387 + 0.389562i
\(905\) 54.0000 54.0000i 1.79502 1.79502i
\(906\) 0 0
\(907\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(908\) 0 0
\(909\) 60.0000i 1.99007i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 43.3013 25.0000i 1.43228 0.826927i
\(915\) 0 0
\(916\) 12.4449 46.4449i 0.411190 1.53458i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 18.0000i 0.592798i
\(923\) 0 0
\(924\) 0 0
\(925\) 88.7917 23.7917i 2.91945 0.782265i
\(926\) 0 0
\(927\) 0 0
\(928\) 16.0000 + 16.0000i 0.525226 + 0.525226i
\(929\) −15.7391 + 58.7391i −0.516383 + 1.92717i −0.190965 + 0.981597i \(0.561162\pi\)
−0.325418 + 0.945570i \(0.605505\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −16.0000 27.7128i −0.524097 0.907763i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 38.0000 1.24141 0.620703 0.784046i \(-0.286847\pi\)
0.620703 + 0.784046i \(0.286847\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −19.0000 19.0000i −0.619382 0.619382i 0.325991 0.945373i \(-0.394302\pi\)
−0.945373 + 0.325991i \(0.894302\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 48.4974 28.0000i 1.57099 0.907009i 0.574937 0.818198i \(-0.305026\pi\)
0.996048 0.0888114i \(-0.0283068\pi\)
\(954\) 42.0000 + 42.0000i 1.35980 + 1.35980i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000i 1.00000i
\(962\) 0 0
\(963\) 0 0
\(964\) 51.9090 13.9090i 1.67188 0.447978i
\(965\) 15.0000 25.9808i 0.482867 0.836350i
\(966\) 0 0
\(967\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(968\) −8.05256 + 30.0526i −0.258819 + 0.965926i
\(969\) 0 0
\(970\) −30.0000 + 30.0000i −0.963242 + 0.963242i
\(971\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −40.0000 −1.28037
\(977\) −36.8827 + 9.88269i −1.17998 + 0.316175i −0.794919 0.606715i \(-0.792487\pi\)
−0.385063 + 0.922890i \(0.625820\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 42.0000 + 42.0000i 1.34164 + 1.34164i
\(981\) 7.68653 28.6865i 0.245412 0.915891i
\(982\) 0 0
\(983\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(984\) 0 0
\(985\) 77.9423 + 45.0000i 2.48345 + 1.43382i
\(986\) −2.92820 10.9282i −0.0932530 0.348025i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −31.0000 53.6936i −0.981780 1.70049i −0.655454 0.755235i \(-0.727523\pi\)
−0.326326 0.945257i \(-0.605811\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 676.2.l.g.319.1 4
4.3 odd 2 CM 676.2.l.g.319.1 4
13.2 odd 12 inner 676.2.l.g.587.1 4
13.3 even 3 inner 676.2.l.g.427.1 4
13.4 even 6 52.2.f.a.47.1 yes 2
13.5 odd 4 inner 676.2.l.g.19.1 4
13.6 odd 12 676.2.f.b.239.1 2
13.7 odd 12 52.2.f.a.31.1 2
13.8 odd 4 676.2.l.a.19.1 4
13.9 even 3 676.2.f.b.99.1 2
13.10 even 6 676.2.l.a.427.1 4
13.11 odd 12 676.2.l.a.587.1 4
13.12 even 2 676.2.l.a.319.1 4
39.17 odd 6 468.2.n.c.307.1 2
39.20 even 12 468.2.n.c.343.1 2
52.3 odd 6 inner 676.2.l.g.427.1 4
52.7 even 12 52.2.f.a.31.1 2
52.11 even 12 676.2.l.a.587.1 4
52.15 even 12 inner 676.2.l.g.587.1 4
52.19 even 12 676.2.f.b.239.1 2
52.23 odd 6 676.2.l.a.427.1 4
52.31 even 4 inner 676.2.l.g.19.1 4
52.35 odd 6 676.2.f.b.99.1 2
52.43 odd 6 52.2.f.a.47.1 yes 2
52.47 even 4 676.2.l.a.19.1 4
52.51 odd 2 676.2.l.a.319.1 4
104.43 odd 6 832.2.k.d.255.1 2
104.59 even 12 832.2.k.d.447.1 2
104.69 even 6 832.2.k.d.255.1 2
104.85 odd 12 832.2.k.d.447.1 2
156.59 odd 12 468.2.n.c.343.1 2
156.95 even 6 468.2.n.c.307.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.2.f.a.31.1 2 13.7 odd 12
52.2.f.a.31.1 2 52.7 even 12
52.2.f.a.47.1 yes 2 13.4 even 6
52.2.f.a.47.1 yes 2 52.43 odd 6
468.2.n.c.307.1 2 39.17 odd 6
468.2.n.c.307.1 2 156.95 even 6
468.2.n.c.343.1 2 39.20 even 12
468.2.n.c.343.1 2 156.59 odd 12
676.2.f.b.99.1 2 13.9 even 3
676.2.f.b.99.1 2 52.35 odd 6
676.2.f.b.239.1 2 13.6 odd 12
676.2.f.b.239.1 2 52.19 even 12
676.2.l.a.19.1 4 13.8 odd 4
676.2.l.a.19.1 4 52.47 even 4
676.2.l.a.319.1 4 13.12 even 2
676.2.l.a.319.1 4 52.51 odd 2
676.2.l.a.427.1 4 13.10 even 6
676.2.l.a.427.1 4 52.23 odd 6
676.2.l.a.587.1 4 13.11 odd 12
676.2.l.a.587.1 4 52.11 even 12
676.2.l.g.19.1 4 13.5 odd 4 inner
676.2.l.g.19.1 4 52.31 even 4 inner
676.2.l.g.319.1 4 1.1 even 1 trivial
676.2.l.g.319.1 4 4.3 odd 2 CM
676.2.l.g.427.1 4 13.3 even 3 inner
676.2.l.g.427.1 4 52.3 odd 6 inner
676.2.l.g.587.1 4 13.2 odd 12 inner
676.2.l.g.587.1 4 52.15 even 12 inner
832.2.k.d.255.1 2 104.43 odd 6
832.2.k.d.255.1 2 104.69 even 6
832.2.k.d.447.1 2 104.59 even 12
832.2.k.d.447.1 2 104.85 odd 12