Properties

Label 6776.2.a.o
Level $6776$
Weight $2$
Character orbit 6776.a
Self dual yes
Analytic conductor $54.107$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6776,2,Mod(1,6776)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6776, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6776.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6776 = 2^{3} \cdot 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6776.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.1066324096\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 1) q^{3} - 2 \beta q^{5} - q^{7} + (2 \beta + 1) q^{9} + ( - \beta + 3) q^{13} + ( - 2 \beta - 6) q^{15} + ( - \beta - 5) q^{17} + ( - 2 \beta - 2) q^{19} + ( - \beta - 1) q^{21} + ( - 2 \beta - 2) q^{23} + \cdots + (4 \beta + 10) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 2 q^{7} + 2 q^{9} + 6 q^{13} - 12 q^{15} - 10 q^{17} - 4 q^{19} - 2 q^{21} - 4 q^{23} + 14 q^{25} + 8 q^{27} + 12 q^{29} + 2 q^{31} + 12 q^{37} + 18 q^{41} - 16 q^{43} - 24 q^{45} + 6 q^{47}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0 −0.732051 0 3.46410 0 −1.00000 0 −2.46410 0
1.2 0 2.73205 0 −3.46410 0 −1.00000 0 4.46410 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6776.2.a.o 2
11.b odd 2 1 6776.2.a.p yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6776.2.a.o 2 1.a even 1 1 trivial
6776.2.a.p yes 2 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6776))\):

\( T_{3}^{2} - 2T_{3} - 2 \) Copy content Toggle raw display
\( T_{5}^{2} - 12 \) Copy content Toggle raw display
\( T_{13}^{2} - 6T_{13} + 6 \) Copy content Toggle raw display
\( T_{17}^{2} + 10T_{17} + 22 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 2T - 2 \) Copy content Toggle raw display
$5$ \( T^{2} - 12 \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 6T + 6 \) Copy content Toggle raw display
$17$ \( T^{2} + 10T + 22 \) Copy content Toggle raw display
$19$ \( T^{2} + 4T - 8 \) Copy content Toggle raw display
$23$ \( T^{2} + 4T - 8 \) Copy content Toggle raw display
$29$ \( T^{2} - 12T + 24 \) Copy content Toggle raw display
$31$ \( T^{2} - 2T - 74 \) Copy content Toggle raw display
$37$ \( T^{2} - 12T + 24 \) Copy content Toggle raw display
$41$ \( T^{2} - 18T + 78 \) Copy content Toggle raw display
$43$ \( T^{2} + 16T + 52 \) Copy content Toggle raw display
$47$ \( T^{2} - 6T + 6 \) Copy content Toggle raw display
$53$ \( T^{2} - 4T - 104 \) Copy content Toggle raw display
$59$ \( T^{2} - 6T + 6 \) Copy content Toggle raw display
$61$ \( T^{2} - 14T + 46 \) Copy content Toggle raw display
$67$ \( T^{2} - 12T + 24 \) Copy content Toggle raw display
$71$ \( T^{2} - 4T - 8 \) Copy content Toggle raw display
$73$ \( T^{2} + 22T + 118 \) Copy content Toggle raw display
$79$ \( T^{2} - 12 \) Copy content Toggle raw display
$83$ \( T^{2} + 4T - 8 \) Copy content Toggle raw display
$89$ \( (T - 6)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 20T + 52 \) Copy content Toggle raw display
show more
show less