Properties

Label 684.2.bp.a
Level $684$
Weight $2$
Character orbit 684.bp
Analytic conductor $5.462$
Analytic rank $0$
Dimension $120$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [684,2,Mod(25,684)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(684, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 12, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("684.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.bp (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(20\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 120 q + 6 q^{3} + 6 q^{9} + 3 q^{13} - 30 q^{15} - 9 q^{17} + 3 q^{19} + 12 q^{23} + 3 q^{27} + 18 q^{29} - 30 q^{33} + 18 q^{35} - 30 q^{39} - 6 q^{41} - 6 q^{43} + 36 q^{45} + 18 q^{47} - 60 q^{49} + 3 q^{51}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
25.1 0 −1.73167 0.0365126i 0 −0.880504 + 0.738830i 0 −2.04100 3.53512i 0 2.99733 + 0.126455i 0
25.2 0 −1.72285 + 0.178326i 0 0.132874 0.111494i 0 0.0149516 + 0.0258970i 0 2.93640 0.614456i 0
25.3 0 −1.56681 + 0.738318i 0 2.91102 2.44264i 0 −0.122987 0.213019i 0 1.90977 2.31360i 0
25.4 0 −1.30541 1.13838i 0 2.74415 2.30262i 0 1.96091 + 3.39640i 0 0.408196 + 2.97210i 0
25.5 0 −1.15839 1.28768i 0 0.437491 0.367098i 0 0.365440 + 0.632960i 0 −0.316246 + 2.98328i 0
25.6 0 −1.06145 + 1.36870i 0 −2.64995 + 2.22357i 0 0.0672552 + 0.116489i 0 −0.746653 2.90560i 0
25.7 0 −0.973793 + 1.43238i 0 −0.607196 + 0.509498i 0 1.87368 + 3.24530i 0 −1.10345 2.78969i 0
25.8 0 −0.826604 1.52208i 0 −1.43329 + 1.20267i 0 0.340213 + 0.589266i 0 −1.63345 + 2.51631i 0
25.9 0 −0.150334 + 1.72551i 0 1.01376 0.850642i 0 −1.60643 2.78241i 0 −2.95480 0.518808i 0
25.10 0 −0.116346 1.72814i 0 −1.03386 + 0.867509i 0 −1.25184 2.16826i 0 −2.97293 + 0.402124i 0
25.11 0 0.457634 1.67050i 0 2.15968 1.81219i 0 −2.04635 3.54438i 0 −2.58114 1.52895i 0
25.12 0 0.716443 + 1.57693i 0 0.952957 0.799626i 0 2.20520 + 3.81951i 0 −1.97342 + 2.25956i 0
25.13 0 0.756282 + 1.55822i 0 −1.44074 + 1.20892i 0 −1.78700 3.09517i 0 −1.85607 + 2.35690i 0
25.14 0 0.935085 1.45795i 0 1.54593 1.29719i 0 1.14317 + 1.98002i 0 −1.25123 2.72661i 0
25.15 0 0.985048 1.42467i 0 −2.83316 + 2.37730i 0 2.45902 + 4.25915i 0 −1.05936 2.80673i 0
25.16 0 1.49486 0.874868i 0 −2.98951 + 2.50849i 0 −1.57275 2.72408i 0 1.46921 2.61561i 0
25.17 0 1.54019 + 0.792349i 0 3.08832 2.59141i 0 −1.26670 2.19399i 0 1.74437 + 2.44073i 0
25.18 0 1.54150 + 0.789789i 0 −0.943148 + 0.791395i 0 0.627040 + 1.08607i 0 1.75247 + 2.43493i 0
25.19 0 1.67956 0.423188i 0 1.40319 1.17742i 0 0.664031 + 1.15014i 0 2.64182 1.42154i 0
25.20 0 1.68070 + 0.418633i 0 −1.57803 + 1.32413i 0 0.147792 + 0.255983i 0 2.64949 + 1.40719i 0
See next 80 embeddings (of 120 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 25.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
171.v even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 684.2.bp.a 120
9.c even 3 1 684.2.bq.a yes 120
19.e even 9 1 684.2.bq.a yes 120
171.v even 9 1 inner 684.2.bp.a 120
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
684.2.bp.a 120 1.a even 1 1 trivial
684.2.bp.a 120 171.v even 9 1 inner
684.2.bq.a yes 120 9.c even 3 1
684.2.bq.a yes 120 19.e even 9 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(684, [\chi])\).