Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [684,2,Mod(25,684)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(684, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 12, 14]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("684.25");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 684.bp (of order \(9\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.46176749826\) |
Analytic rank: | \(0\) |
Dimension: | \(120\) |
Relative dimension: | \(20\) over \(\Q(\zeta_{9})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25.1 | 0 | −1.73167 | − | 0.0365126i | 0 | −0.880504 | + | 0.738830i | 0 | −2.04100 | − | 3.53512i | 0 | 2.99733 | + | 0.126455i | 0 | ||||||||||
25.2 | 0 | −1.72285 | + | 0.178326i | 0 | 0.132874 | − | 0.111494i | 0 | 0.0149516 | + | 0.0258970i | 0 | 2.93640 | − | 0.614456i | 0 | ||||||||||
25.3 | 0 | −1.56681 | + | 0.738318i | 0 | 2.91102 | − | 2.44264i | 0 | −0.122987 | − | 0.213019i | 0 | 1.90977 | − | 2.31360i | 0 | ||||||||||
25.4 | 0 | −1.30541 | − | 1.13838i | 0 | 2.74415 | − | 2.30262i | 0 | 1.96091 | + | 3.39640i | 0 | 0.408196 | + | 2.97210i | 0 | ||||||||||
25.5 | 0 | −1.15839 | − | 1.28768i | 0 | 0.437491 | − | 0.367098i | 0 | 0.365440 | + | 0.632960i | 0 | −0.316246 | + | 2.98328i | 0 | ||||||||||
25.6 | 0 | −1.06145 | + | 1.36870i | 0 | −2.64995 | + | 2.22357i | 0 | 0.0672552 | + | 0.116489i | 0 | −0.746653 | − | 2.90560i | 0 | ||||||||||
25.7 | 0 | −0.973793 | + | 1.43238i | 0 | −0.607196 | + | 0.509498i | 0 | 1.87368 | + | 3.24530i | 0 | −1.10345 | − | 2.78969i | 0 | ||||||||||
25.8 | 0 | −0.826604 | − | 1.52208i | 0 | −1.43329 | + | 1.20267i | 0 | 0.340213 | + | 0.589266i | 0 | −1.63345 | + | 2.51631i | 0 | ||||||||||
25.9 | 0 | −0.150334 | + | 1.72551i | 0 | 1.01376 | − | 0.850642i | 0 | −1.60643 | − | 2.78241i | 0 | −2.95480 | − | 0.518808i | 0 | ||||||||||
25.10 | 0 | −0.116346 | − | 1.72814i | 0 | −1.03386 | + | 0.867509i | 0 | −1.25184 | − | 2.16826i | 0 | −2.97293 | + | 0.402124i | 0 | ||||||||||
25.11 | 0 | 0.457634 | − | 1.67050i | 0 | 2.15968 | − | 1.81219i | 0 | −2.04635 | − | 3.54438i | 0 | −2.58114 | − | 1.52895i | 0 | ||||||||||
25.12 | 0 | 0.716443 | + | 1.57693i | 0 | 0.952957 | − | 0.799626i | 0 | 2.20520 | + | 3.81951i | 0 | −1.97342 | + | 2.25956i | 0 | ||||||||||
25.13 | 0 | 0.756282 | + | 1.55822i | 0 | −1.44074 | + | 1.20892i | 0 | −1.78700 | − | 3.09517i | 0 | −1.85607 | + | 2.35690i | 0 | ||||||||||
25.14 | 0 | 0.935085 | − | 1.45795i | 0 | 1.54593 | − | 1.29719i | 0 | 1.14317 | + | 1.98002i | 0 | −1.25123 | − | 2.72661i | 0 | ||||||||||
25.15 | 0 | 0.985048 | − | 1.42467i | 0 | −2.83316 | + | 2.37730i | 0 | 2.45902 | + | 4.25915i | 0 | −1.05936 | − | 2.80673i | 0 | ||||||||||
25.16 | 0 | 1.49486 | − | 0.874868i | 0 | −2.98951 | + | 2.50849i | 0 | −1.57275 | − | 2.72408i | 0 | 1.46921 | − | 2.61561i | 0 | ||||||||||
25.17 | 0 | 1.54019 | + | 0.792349i | 0 | 3.08832 | − | 2.59141i | 0 | −1.26670 | − | 2.19399i | 0 | 1.74437 | + | 2.44073i | 0 | ||||||||||
25.18 | 0 | 1.54150 | + | 0.789789i | 0 | −0.943148 | + | 0.791395i | 0 | 0.627040 | + | 1.08607i | 0 | 1.75247 | + | 2.43493i | 0 | ||||||||||
25.19 | 0 | 1.67956 | − | 0.423188i | 0 | 1.40319 | − | 1.17742i | 0 | 0.664031 | + | 1.15014i | 0 | 2.64182 | − | 1.42154i | 0 | ||||||||||
25.20 | 0 | 1.68070 | + | 0.418633i | 0 | −1.57803 | + | 1.32413i | 0 | 0.147792 | + | 0.255983i | 0 | 2.64949 | + | 1.40719i | 0 | ||||||||||
See next 80 embeddings (of 120 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
171.v | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 684.2.bp.a | ✓ | 120 |
9.c | even | 3 | 1 | 684.2.bq.a | yes | 120 | |
19.e | even | 9 | 1 | 684.2.bq.a | yes | 120 | |
171.v | even | 9 | 1 | inner | 684.2.bp.a | ✓ | 120 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
684.2.bp.a | ✓ | 120 | 1.a | even | 1 | 1 | trivial |
684.2.bp.a | ✓ | 120 | 171.v | even | 9 | 1 | inner |
684.2.bq.a | yes | 120 | 9.c | even | 3 | 1 | |
684.2.bq.a | yes | 120 | 19.e | even | 9 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(684, [\chi])\).