Properties

Label 684.2.c.b.647.24
Level $684$
Weight $2$
Character 684.647
Analytic conductor $5.462$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [684,2,Mod(647,684)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(684, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("684.647");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 647.24
Character \(\chi\) \(=\) 684.647
Dual form 684.2.c.b.647.23

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.965364 + 1.03348i) q^{2} +(-0.136143 + 1.99536i) q^{4} +0.0590006i q^{5} +1.27229i q^{7} +(-2.19358 + 1.78555i) q^{8} +(-0.0609757 + 0.0569571i) q^{10} +5.27604 q^{11} -1.40536 q^{13} +(-1.31488 + 1.22822i) q^{14} +(-3.96293 - 0.543311i) q^{16} +8.20009i q^{17} -1.00000i q^{19} +(-0.117728 - 0.00803255i) q^{20} +(5.09330 + 5.45266i) q^{22} -7.75602 q^{23} +4.99652 q^{25} +(-1.35668 - 1.45241i) q^{26} +(-2.53867 - 0.173214i) q^{28} +6.17369i q^{29} -7.05893i q^{31} +(-3.26417 - 4.62008i) q^{32} +(-8.47459 + 7.91607i) q^{34} -0.0750657 q^{35} -5.75595 q^{37} +(1.03348 - 0.965364i) q^{38} +(-0.105349 - 0.129423i) q^{40} +7.99536i q^{41} -4.49049i q^{43} +(-0.718299 + 10.5276i) q^{44} +(-7.48738 - 8.01565i) q^{46} +6.31694 q^{47} +5.38129 q^{49} +(4.82346 + 5.16378i) q^{50} +(0.191331 - 2.80420i) q^{52} -10.5521i q^{53} +0.311290i q^{55} +(-2.27173 - 2.79087i) q^{56} +(-6.38036 + 5.95986i) q^{58} +6.05569 q^{59} +6.72327 q^{61} +(7.29524 - 6.81444i) q^{62} +(1.62363 - 7.83351i) q^{64} -0.0829171i q^{65} -2.89516i q^{67} +(-16.3621 - 1.11639i) q^{68} +(-0.0724658 - 0.0775786i) q^{70} +8.96642 q^{71} -3.05558 q^{73} +(-5.55659 - 5.94863i) q^{74} +(1.99536 + 0.136143i) q^{76} +6.71264i q^{77} -2.67861i q^{79} +(0.0320557 - 0.233815i) q^{80} +(-8.26301 + 7.71843i) q^{82} +9.34505 q^{83} -0.483810 q^{85} +(4.64082 - 4.33496i) q^{86} +(-11.5735 + 9.42064i) q^{88} -2.25918i q^{89} -1.78802i q^{91} +(1.05593 - 15.4761i) q^{92} +(6.09815 + 6.52840i) q^{94} +0.0590006 q^{95} -14.2821 q^{97} +(5.19490 + 5.56143i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{4} - 8 q^{10} - 24 q^{16} - 64 q^{25} + 48 q^{34} + 32 q^{37} + 8 q^{40} + 32 q^{46} + 16 q^{49} - 32 q^{58} + 56 q^{64} - 72 q^{70} - 48 q^{73} - 112 q^{82} - 16 q^{85} - 40 q^{88} + 88 q^{94}+ \cdots - 128 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.965364 + 1.03348i 0.682616 + 0.730778i
\(3\) 0 0
\(4\) −0.136143 + 1.99536i −0.0680717 + 0.997680i
\(5\) 0.0590006i 0.0263859i 0.999913 + 0.0131929i \(0.00419956\pi\)
−0.999913 + 0.0131929i \(0.995800\pi\)
\(6\) 0 0
\(7\) 1.27229i 0.480879i 0.970664 + 0.240440i \(0.0772916\pi\)
−0.970664 + 0.240440i \(0.922708\pi\)
\(8\) −2.19358 + 1.78555i −0.775549 + 0.631287i
\(9\) 0 0
\(10\) −0.0609757 + 0.0569571i −0.0192822 + 0.0180114i
\(11\) 5.27604 1.59079 0.795394 0.606093i \(-0.207264\pi\)
0.795394 + 0.606093i \(0.207264\pi\)
\(12\) 0 0
\(13\) −1.40536 −0.389777 −0.194888 0.980825i \(-0.562434\pi\)
−0.194888 + 0.980825i \(0.562434\pi\)
\(14\) −1.31488 + 1.22822i −0.351416 + 0.328256i
\(15\) 0 0
\(16\) −3.96293 0.543311i −0.990732 0.135828i
\(17\) 8.20009i 1.98881i 0.105618 + 0.994407i \(0.466318\pi\)
−0.105618 + 0.994407i \(0.533682\pi\)
\(18\) 0 0
\(19\) 1.00000i 0.229416i
\(20\) −0.117728 0.00803255i −0.0263247 0.00179613i
\(21\) 0 0
\(22\) 5.09330 + 5.45266i 1.08590 + 1.16251i
\(23\) −7.75602 −1.61724 −0.808621 0.588330i \(-0.799785\pi\)
−0.808621 + 0.588330i \(0.799785\pi\)
\(24\) 0 0
\(25\) 4.99652 0.999304
\(26\) −1.35668 1.45241i −0.266068 0.284840i
\(27\) 0 0
\(28\) −2.53867 0.173214i −0.479764 0.0327343i
\(29\) 6.17369i 1.14643i 0.819407 + 0.573213i \(0.194303\pi\)
−0.819407 + 0.573213i \(0.805697\pi\)
\(30\) 0 0
\(31\) 7.05893i 1.26782i −0.773406 0.633911i \(-0.781449\pi\)
0.773406 0.633911i \(-0.218551\pi\)
\(32\) −3.26417 4.62008i −0.577030 0.816723i
\(33\) 0 0
\(34\) −8.47459 + 7.91607i −1.45338 + 1.35760i
\(35\) −0.0750657 −0.0126884
\(36\) 0 0
\(37\) −5.75595 −0.946272 −0.473136 0.880989i \(-0.656878\pi\)
−0.473136 + 0.880989i \(0.656878\pi\)
\(38\) 1.03348 0.965364i 0.167652 0.156603i
\(39\) 0 0
\(40\) −0.105349 0.129423i −0.0166571 0.0204636i
\(41\) 7.99536i 1.24867i 0.781159 + 0.624333i \(0.214629\pi\)
−0.781159 + 0.624333i \(0.785371\pi\)
\(42\) 0 0
\(43\) 4.49049i 0.684794i −0.939555 0.342397i \(-0.888761\pi\)
0.939555 0.342397i \(-0.111239\pi\)
\(44\) −0.718299 + 10.5276i −0.108288 + 1.58710i
\(45\) 0 0
\(46\) −7.48738 8.01565i −1.10395 1.18184i
\(47\) 6.31694 0.921421 0.460710 0.887551i \(-0.347595\pi\)
0.460710 + 0.887551i \(0.347595\pi\)
\(48\) 0 0
\(49\) 5.38129 0.768755
\(50\) 4.82346 + 5.16378i 0.682140 + 0.730269i
\(51\) 0 0
\(52\) 0.191331 2.80420i 0.0265328 0.388873i
\(53\) 10.5521i 1.44944i −0.689043 0.724720i \(-0.741969\pi\)
0.689043 0.724720i \(-0.258031\pi\)
\(54\) 0 0
\(55\) 0.311290i 0.0419743i
\(56\) −2.27173 2.79087i −0.303573 0.372946i
\(57\) 0 0
\(58\) −6.38036 + 5.95986i −0.837782 + 0.782568i
\(59\) 6.05569 0.788384 0.394192 0.919028i \(-0.371025\pi\)
0.394192 + 0.919028i \(0.371025\pi\)
\(60\) 0 0
\(61\) 6.72327 0.860827 0.430413 0.902632i \(-0.358368\pi\)
0.430413 + 0.902632i \(0.358368\pi\)
\(62\) 7.29524 6.81444i 0.926496 0.865435i
\(63\) 0 0
\(64\) 1.62363 7.83351i 0.202953 0.979188i
\(65\) 0.0829171i 0.0102846i
\(66\) 0 0
\(67\) 2.89516i 0.353701i −0.984238 0.176850i \(-0.943409\pi\)
0.984238 0.176850i \(-0.0565908\pi\)
\(68\) −16.3621 1.11639i −1.98420 0.135382i
\(69\) 0 0
\(70\) −0.0724658 0.0775786i −0.00866132 0.00927241i
\(71\) 8.96642 1.06412 0.532059 0.846707i \(-0.321418\pi\)
0.532059 + 0.846707i \(0.321418\pi\)
\(72\) 0 0
\(73\) −3.05558 −0.357629 −0.178815 0.983883i \(-0.557226\pi\)
−0.178815 + 0.983883i \(0.557226\pi\)
\(74\) −5.55659 5.94863i −0.645940 0.691515i
\(75\) 0 0
\(76\) 1.99536 + 0.136143i 0.228884 + 0.0156167i
\(77\) 6.71264i 0.764977i
\(78\) 0 0
\(79\) 2.67861i 0.301367i −0.988582 0.150683i \(-0.951853\pi\)
0.988582 0.150683i \(-0.0481474\pi\)
\(80\) 0.0320557 0.233815i 0.00358393 0.0261413i
\(81\) 0 0
\(82\) −8.26301 + 7.71843i −0.912497 + 0.852359i
\(83\) 9.34505 1.02575 0.512876 0.858463i \(-0.328580\pi\)
0.512876 + 0.858463i \(0.328580\pi\)
\(84\) 0 0
\(85\) −0.483810 −0.0524766
\(86\) 4.64082 4.33496i 0.500432 0.467451i
\(87\) 0 0
\(88\) −11.5735 + 9.42064i −1.23373 + 1.00424i
\(89\) 2.25918i 0.239472i −0.992806 0.119736i \(-0.961795\pi\)
0.992806 0.119736i \(-0.0382049\pi\)
\(90\) 0 0
\(91\) 1.78802i 0.187436i
\(92\) 1.05593 15.4761i 0.110088 1.61349i
\(93\) 0 0
\(94\) 6.09815 + 6.52840i 0.628976 + 0.673353i
\(95\) 0.0590006 0.00605334
\(96\) 0 0
\(97\) −14.2821 −1.45013 −0.725065 0.688681i \(-0.758190\pi\)
−0.725065 + 0.688681i \(0.758190\pi\)
\(98\) 5.19490 + 5.56143i 0.524764 + 0.561789i
\(99\) 0 0
\(100\) −0.680243 + 9.96986i −0.0680243 + 0.996986i
\(101\) 8.91661i 0.887235i −0.896216 0.443618i \(-0.853695\pi\)
0.896216 0.443618i \(-0.146305\pi\)
\(102\) 0 0
\(103\) 4.17304i 0.411182i −0.978638 0.205591i \(-0.934088\pi\)
0.978638 0.205591i \(-0.0659116\pi\)
\(104\) 3.08278 2.50934i 0.302291 0.246061i
\(105\) 0 0
\(106\) 10.9053 10.1866i 1.05922 0.989411i
\(107\) −12.7308 −1.23073 −0.615367 0.788241i \(-0.710992\pi\)
−0.615367 + 0.788241i \(0.710992\pi\)
\(108\) 0 0
\(109\) 15.2273 1.45852 0.729258 0.684239i \(-0.239866\pi\)
0.729258 + 0.684239i \(0.239866\pi\)
\(110\) −0.321710 + 0.300508i −0.0306739 + 0.0286523i
\(111\) 0 0
\(112\) 0.691247 5.04198i 0.0653167 0.476423i
\(113\) 2.72179i 0.256045i 0.991771 + 0.128022i \(0.0408629\pi\)
−0.991771 + 0.128022i \(0.959137\pi\)
\(114\) 0 0
\(115\) 0.457610i 0.0426723i
\(116\) −12.3187 0.840507i −1.14377 0.0780392i
\(117\) 0 0
\(118\) 5.84595 + 6.25841i 0.538163 + 0.576133i
\(119\) −10.4329 −0.956379
\(120\) 0 0
\(121\) 16.8366 1.53060
\(122\) 6.49041 + 6.94834i 0.587614 + 0.629073i
\(123\) 0 0
\(124\) 14.0851 + 0.961028i 1.26488 + 0.0863028i
\(125\) 0.589801i 0.0527534i
\(126\) 0 0
\(127\) 17.9702i 1.59459i −0.603587 0.797297i \(-0.706262\pi\)
0.603587 0.797297i \(-0.293738\pi\)
\(128\) 9.66313 5.88421i 0.854108 0.520095i
\(129\) 0 0
\(130\) 0.0856928 0.0800452i 0.00751576 0.00702043i
\(131\) 17.1149 1.49534 0.747669 0.664072i \(-0.231173\pi\)
0.747669 + 0.664072i \(0.231173\pi\)
\(132\) 0 0
\(133\) 1.27229 0.110321
\(134\) 2.99208 2.79489i 0.258476 0.241442i
\(135\) 0 0
\(136\) −14.6417 17.9876i −1.25551 1.54242i
\(137\) 16.6962i 1.42645i −0.700935 0.713225i \(-0.747234\pi\)
0.700935 0.713225i \(-0.252766\pi\)
\(138\) 0 0
\(139\) 9.43783i 0.800506i 0.916405 + 0.400253i \(0.131078\pi\)
−0.916405 + 0.400253i \(0.868922\pi\)
\(140\) 0.0102197 0.149783i 0.000863723 0.0126590i
\(141\) 0 0
\(142\) 8.65586 + 9.26658i 0.726384 + 0.777634i
\(143\) −7.41474 −0.620052
\(144\) 0 0
\(145\) −0.364252 −0.0302494
\(146\) −2.94975 3.15787i −0.244123 0.261347i
\(147\) 0 0
\(148\) 0.783635 11.4852i 0.0644144 0.944077i
\(149\) 4.82279i 0.395098i 0.980293 + 0.197549i \(0.0632982\pi\)
−0.980293 + 0.197549i \(0.936702\pi\)
\(150\) 0 0
\(151\) 2.91310i 0.237065i 0.992950 + 0.118532i \(0.0378189\pi\)
−0.992950 + 0.118532i \(0.962181\pi\)
\(152\) 1.78555 + 2.19358i 0.144827 + 0.177923i
\(153\) 0 0
\(154\) −6.93735 + 6.48015i −0.559028 + 0.522185i
\(155\) 0.416481 0.0334526
\(156\) 0 0
\(157\) 13.5208 1.07908 0.539540 0.841960i \(-0.318598\pi\)
0.539540 + 0.841960i \(0.318598\pi\)
\(158\) 2.76828 2.58583i 0.220232 0.205718i
\(159\) 0 0
\(160\) 0.272588 0.192588i 0.0215500 0.0152254i
\(161\) 9.86788i 0.777698i
\(162\) 0 0
\(163\) 0.626149i 0.0490438i −0.999699 0.0245219i \(-0.992194\pi\)
0.999699 0.0245219i \(-0.00780634\pi\)
\(164\) −15.9536 1.08852i −1.24577 0.0849988i
\(165\) 0 0
\(166\) 9.02138 + 9.65788i 0.700195 + 0.749597i
\(167\) −6.55967 −0.507602 −0.253801 0.967256i \(-0.581681\pi\)
−0.253801 + 0.967256i \(0.581681\pi\)
\(168\) 0 0
\(169\) −11.0250 −0.848074
\(170\) −0.467053 0.500006i −0.0358213 0.0383487i
\(171\) 0 0
\(172\) 8.96016 + 0.611351i 0.683206 + 0.0466151i
\(173\) 10.2796i 0.781547i 0.920487 + 0.390773i \(0.127792\pi\)
−0.920487 + 0.390773i \(0.872208\pi\)
\(174\) 0 0
\(175\) 6.35701i 0.480544i
\(176\) −20.9086 2.86653i −1.57604 0.216073i
\(177\) 0 0
\(178\) 2.33480 2.18093i 0.175001 0.163468i
\(179\) −18.6314 −1.39258 −0.696288 0.717762i \(-0.745166\pi\)
−0.696288 + 0.717762i \(0.745166\pi\)
\(180\) 0 0
\(181\) −3.58568 −0.266522 −0.133261 0.991081i \(-0.542545\pi\)
−0.133261 + 0.991081i \(0.542545\pi\)
\(182\) 1.84788 1.72609i 0.136974 0.127946i
\(183\) 0 0
\(184\) 17.0135 13.8487i 1.25425 1.02094i
\(185\) 0.339605i 0.0249682i
\(186\) 0 0
\(187\) 43.2640i 3.16378i
\(188\) −0.860010 + 12.6046i −0.0627227 + 0.919283i
\(189\) 0 0
\(190\) 0.0569571 + 0.0609757i 0.00413210 + 0.00442364i
\(191\) 3.91466 0.283255 0.141627 0.989920i \(-0.454767\pi\)
0.141627 + 0.989920i \(0.454767\pi\)
\(192\) 0 0
\(193\) 7.01999 0.505310 0.252655 0.967556i \(-0.418696\pi\)
0.252655 + 0.967556i \(0.418696\pi\)
\(194\) −13.7874 14.7602i −0.989881 1.05972i
\(195\) 0 0
\(196\) −0.732627 + 10.7376i −0.0523305 + 0.766972i
\(197\) 5.42454i 0.386483i −0.981151 0.193241i \(-0.938100\pi\)
0.981151 0.193241i \(-0.0619000\pi\)
\(198\) 0 0
\(199\) 1.02347i 0.0725521i 0.999342 + 0.0362761i \(0.0115496\pi\)
−0.999342 + 0.0362761i \(0.988450\pi\)
\(200\) −10.9603 + 8.92153i −0.775009 + 0.630847i
\(201\) 0 0
\(202\) 9.21509 8.60777i 0.648372 0.605641i
\(203\) −7.85470 −0.551292
\(204\) 0 0
\(205\) −0.471731 −0.0329471
\(206\) 4.31273 4.02850i 0.300482 0.280679i
\(207\) 0 0
\(208\) 5.56934 + 0.763547i 0.386165 + 0.0529425i
\(209\) 5.27604i 0.364952i
\(210\) 0 0
\(211\) 12.6167i 0.868572i 0.900775 + 0.434286i \(0.142999\pi\)
−0.900775 + 0.434286i \(0.857001\pi\)
\(212\) 21.0552 + 1.43660i 1.44608 + 0.0986659i
\(213\) 0 0
\(214\) −12.2899 13.1570i −0.840118 0.899392i
\(215\) 0.264942 0.0180689
\(216\) 0 0
\(217\) 8.98099 0.609669
\(218\) 14.6999 + 15.7371i 0.995605 + 1.06585i
\(219\) 0 0
\(220\) −0.621136 0.0423801i −0.0418770 0.00285726i
\(221\) 11.5241i 0.775193i
\(222\) 0 0
\(223\) 27.0222i 1.80954i −0.425898 0.904771i \(-0.640042\pi\)
0.425898 0.904771i \(-0.359958\pi\)
\(224\) 5.87807 4.15296i 0.392745 0.277482i
\(225\) 0 0
\(226\) −2.81291 + 2.62752i −0.187112 + 0.174780i
\(227\) 20.2086 1.34129 0.670645 0.741778i \(-0.266017\pi\)
0.670645 + 0.741778i \(0.266017\pi\)
\(228\) 0 0
\(229\) 9.92551 0.655896 0.327948 0.944696i \(-0.393643\pi\)
0.327948 + 0.944696i \(0.393643\pi\)
\(230\) 0.472928 0.441760i 0.0311840 0.0291288i
\(231\) 0 0
\(232\) −11.0234 13.5425i −0.723723 0.889109i
\(233\) 1.92511i 0.126118i −0.998010 0.0630591i \(-0.979914\pi\)
0.998010 0.0630591i \(-0.0200857\pi\)
\(234\) 0 0
\(235\) 0.372703i 0.0243125i
\(236\) −0.824442 + 12.0833i −0.0536666 + 0.786555i
\(237\) 0 0
\(238\) −10.0715 10.7821i −0.652839 0.698900i
\(239\) −20.3148 −1.31406 −0.657029 0.753866i \(-0.728187\pi\)
−0.657029 + 0.753866i \(0.728187\pi\)
\(240\) 0 0
\(241\) 0.879196 0.0566340 0.0283170 0.999599i \(-0.490985\pi\)
0.0283170 + 0.999599i \(0.490985\pi\)
\(242\) 16.2535 + 17.4003i 1.04481 + 1.11853i
\(243\) 0 0
\(244\) −0.915329 + 13.4154i −0.0585980 + 0.858830i
\(245\) 0.317499i 0.0202843i
\(246\) 0 0
\(247\) 1.40536i 0.0894209i
\(248\) 12.6041 + 15.4844i 0.800359 + 0.983258i
\(249\) 0 0
\(250\) −0.609545 + 0.569373i −0.0385510 + 0.0360103i
\(251\) −10.2545 −0.647259 −0.323630 0.946184i \(-0.604903\pi\)
−0.323630 + 0.946184i \(0.604903\pi\)
\(252\) 0 0
\(253\) −40.9211 −2.57269
\(254\) 18.5717 17.3478i 1.16529 1.08850i
\(255\) 0 0
\(256\) 15.4096 + 4.30620i 0.963102 + 0.269138i
\(257\) 12.9473i 0.807633i −0.914840 0.403816i \(-0.867683\pi\)
0.914840 0.403816i \(-0.132317\pi\)
\(258\) 0 0
\(259\) 7.32322i 0.455043i
\(260\) 0.165450 + 0.0112886i 0.0102607 + 0.000700091i
\(261\) 0 0
\(262\) 16.5221 + 17.6878i 1.02074 + 1.09276i
\(263\) 1.76321 0.108724 0.0543620 0.998521i \(-0.482687\pi\)
0.0543620 + 0.998521i \(0.482687\pi\)
\(264\) 0 0
\(265\) 0.622580 0.0382448
\(266\) 1.22822 + 1.31488i 0.0753070 + 0.0806203i
\(267\) 0 0
\(268\) 5.77690 + 0.394158i 0.352880 + 0.0240770i
\(269\) 0.479329i 0.0292252i −0.999893 0.0146126i \(-0.995349\pi\)
0.999893 0.0146126i \(-0.00465150\pi\)
\(270\) 0 0
\(271\) 17.1638i 1.04262i 0.853366 + 0.521312i \(0.174557\pi\)
−0.853366 + 0.521312i \(0.825443\pi\)
\(272\) 4.45520 32.4964i 0.270136 1.97038i
\(273\) 0 0
\(274\) 17.2551 16.1179i 1.04242 0.973718i
\(275\) 26.3619 1.58968
\(276\) 0 0
\(277\) −14.0304 −0.843006 −0.421503 0.906827i \(-0.638497\pi\)
−0.421503 + 0.906827i \(0.638497\pi\)
\(278\) −9.75377 + 9.11094i −0.584992 + 0.546438i
\(279\) 0 0
\(280\) 0.164663 0.134034i 0.00984050 0.00801004i
\(281\) 14.7356i 0.879053i 0.898230 + 0.439526i \(0.144854\pi\)
−0.898230 + 0.439526i \(0.855146\pi\)
\(282\) 0 0
\(283\) 14.8917i 0.885219i −0.896715 0.442609i \(-0.854053\pi\)
0.896715 0.442609i \(-0.145947\pi\)
\(284\) −1.22072 + 17.8912i −0.0724364 + 1.06165i
\(285\) 0 0
\(286\) −7.15793 7.66296i −0.423257 0.453120i
\(287\) −10.1724 −0.600457
\(288\) 0 0
\(289\) −50.2415 −2.95538
\(290\) −0.351635 0.376445i −0.0206487 0.0221056i
\(291\) 0 0
\(292\) 0.415998 6.09699i 0.0243444 0.356799i
\(293\) 30.9507i 1.80816i 0.427362 + 0.904081i \(0.359443\pi\)
−0.427362 + 0.904081i \(0.640557\pi\)
\(294\) 0 0
\(295\) 0.357289i 0.0208022i
\(296\) 12.6262 10.2775i 0.733881 0.597369i
\(297\) 0 0
\(298\) −4.98423 + 4.65575i −0.288729 + 0.269700i
\(299\) 10.9000 0.630363
\(300\) 0 0
\(301\) 5.71320 0.329303
\(302\) −3.01062 + 2.81220i −0.173241 + 0.161824i
\(303\) 0 0
\(304\) −0.543311 + 3.96293i −0.0311610 + 0.227290i
\(305\) 0.396677i 0.0227137i
\(306\) 0 0
\(307\) 25.0882i 1.43186i 0.698172 + 0.715930i \(0.253997\pi\)
−0.698172 + 0.715930i \(0.746003\pi\)
\(308\) −13.3941 0.913882i −0.763202 0.0520733i
\(309\) 0 0
\(310\) 0.402056 + 0.430423i 0.0228353 + 0.0244464i
\(311\) −29.1948 −1.65548 −0.827742 0.561108i \(-0.810375\pi\)
−0.827742 + 0.561108i \(0.810375\pi\)
\(312\) 0 0
\(313\) −13.6549 −0.771819 −0.385909 0.922537i \(-0.626112\pi\)
−0.385909 + 0.922537i \(0.626112\pi\)
\(314\) 13.0525 + 13.9735i 0.736597 + 0.788568i
\(315\) 0 0
\(316\) 5.34479 + 0.364675i 0.300668 + 0.0205146i
\(317\) 10.3696i 0.582414i −0.956660 0.291207i \(-0.905943\pi\)
0.956660 0.291207i \(-0.0940568\pi\)
\(318\) 0 0
\(319\) 32.5727i 1.82372i
\(320\) 0.462182 + 0.0957950i 0.0258367 + 0.00535511i
\(321\) 0 0
\(322\) 10.1982 9.52610i 0.568324 0.530869i
\(323\) 8.20009 0.456265
\(324\) 0 0
\(325\) −7.02191 −0.389505
\(326\) 0.647110 0.604462i 0.0358401 0.0334780i
\(327\) 0 0
\(328\) −14.2761 17.5385i −0.788266 0.968402i
\(329\) 8.03696i 0.443092i
\(330\) 0 0
\(331\) 24.2153i 1.33099i −0.746402 0.665496i \(-0.768220\pi\)
0.746402 0.665496i \(-0.231780\pi\)
\(332\) −1.27227 + 18.6467i −0.0698247 + 1.02337i
\(333\) 0 0
\(334\) −6.33247 6.77926i −0.346497 0.370944i
\(335\) 0.170816 0.00933270
\(336\) 0 0
\(337\) −11.8973 −0.648085 −0.324043 0.946042i \(-0.605042\pi\)
−0.324043 + 0.946042i \(0.605042\pi\)
\(338\) −10.6431 11.3940i −0.578909 0.619753i
\(339\) 0 0
\(340\) 0.0658676 0.965376i 0.00357217 0.0523549i
\(341\) 37.2432i 2.01683i
\(342\) 0 0
\(343\) 15.7525i 0.850558i
\(344\) 8.01800 + 9.85028i 0.432302 + 0.531091i
\(345\) 0 0
\(346\) −10.6238 + 9.92360i −0.571137 + 0.533496i
\(347\) 3.57698 0.192022 0.0960112 0.995380i \(-0.469392\pi\)
0.0960112 + 0.995380i \(0.469392\pi\)
\(348\) 0 0
\(349\) 3.64766 0.195255 0.0976275 0.995223i \(-0.468875\pi\)
0.0976275 + 0.995223i \(0.468875\pi\)
\(350\) −6.56981 + 6.13683i −0.351171 + 0.328027i
\(351\) 0 0
\(352\) −17.2219 24.3758i −0.917931 1.29923i
\(353\) 1.39070i 0.0740197i −0.999315 0.0370098i \(-0.988217\pi\)
0.999315 0.0370098i \(-0.0117833\pi\)
\(354\) 0 0
\(355\) 0.529024i 0.0280777i
\(356\) 4.50787 + 0.307572i 0.238917 + 0.0163013i
\(357\) 0 0
\(358\) −17.9861 19.2551i −0.950595 1.01766i
\(359\) −31.8137 −1.67906 −0.839531 0.543311i \(-0.817170\pi\)
−0.839531 + 0.543311i \(0.817170\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) −3.46149 3.70572i −0.181932 0.194768i
\(363\) 0 0
\(364\) 3.56775 + 0.243427i 0.187001 + 0.0127591i
\(365\) 0.180281i 0.00943636i
\(366\) 0 0
\(367\) 13.2863i 0.693537i 0.937951 + 0.346768i \(0.112721\pi\)
−0.937951 + 0.346768i \(0.887279\pi\)
\(368\) 30.7365 + 4.21393i 1.60225 + 0.219666i
\(369\) 0 0
\(370\) 0.350973 0.327842i 0.0182462 0.0170437i
\(371\) 13.4253 0.697006
\(372\) 0 0
\(373\) −31.1909 −1.61500 −0.807502 0.589865i \(-0.799181\pi\)
−0.807502 + 0.589865i \(0.799181\pi\)
\(374\) −44.7123 + 41.7656i −2.31202 + 2.15965i
\(375\) 0 0
\(376\) −13.8567 + 11.2792i −0.714607 + 0.581681i
\(377\) 8.67626i 0.446850i
\(378\) 0 0
\(379\) 9.24887i 0.475083i −0.971377 0.237541i \(-0.923658\pi\)
0.971377 0.237541i \(-0.0763415\pi\)
\(380\) −0.00803255 + 0.117728i −0.000412061 + 0.00603929i
\(381\) 0 0
\(382\) 3.77907 + 4.04570i 0.193354 + 0.206996i
\(383\) 15.5740 0.795796 0.397898 0.917430i \(-0.369740\pi\)
0.397898 + 0.917430i \(0.369740\pi\)
\(384\) 0 0
\(385\) −0.396050 −0.0201846
\(386\) 6.77685 + 7.25499i 0.344933 + 0.369269i
\(387\) 0 0
\(388\) 1.94442 28.4980i 0.0987128 1.44677i
\(389\) 19.6827i 0.997951i 0.866616 + 0.498976i \(0.166290\pi\)
−0.866616 + 0.498976i \(0.833710\pi\)
\(390\) 0 0
\(391\) 63.6000i 3.21639i
\(392\) −11.8043 + 9.60855i −0.596208 + 0.485305i
\(393\) 0 0
\(394\) 5.60613 5.23666i 0.282433 0.263819i
\(395\) 0.158039 0.00795183
\(396\) 0 0
\(397\) 8.62956 0.433105 0.216553 0.976271i \(-0.430519\pi\)
0.216553 + 0.976271i \(0.430519\pi\)
\(398\) −1.05773 + 0.988025i −0.0530195 + 0.0495252i
\(399\) 0 0
\(400\) −19.8009 2.71466i −0.990043 0.135733i
\(401\) 20.6012i 1.02877i −0.857558 0.514387i \(-0.828019\pi\)
0.857558 0.514387i \(-0.171981\pi\)
\(402\) 0 0
\(403\) 9.92035i 0.494168i
\(404\) 17.7918 + 1.21394i 0.885177 + 0.0603956i
\(405\) 0 0
\(406\) −7.58265 8.11765i −0.376321 0.402872i
\(407\) −30.3686 −1.50532
\(408\) 0 0
\(409\) 33.3613 1.64961 0.824805 0.565418i \(-0.191285\pi\)
0.824805 + 0.565418i \(0.191285\pi\)
\(410\) −0.455392 0.487523i −0.0224902 0.0240770i
\(411\) 0 0
\(412\) 8.32672 + 0.568132i 0.410228 + 0.0279898i
\(413\) 7.70457i 0.379117i
\(414\) 0 0
\(415\) 0.551364i 0.0270654i
\(416\) 4.58734 + 6.49288i 0.224913 + 0.318340i
\(417\) 0 0
\(418\) 5.45266 5.09330i 0.266698 0.249122i
\(419\) 24.8571 1.21435 0.607174 0.794569i \(-0.292303\pi\)
0.607174 + 0.794569i \(0.292303\pi\)
\(420\) 0 0
\(421\) 18.1678 0.885446 0.442723 0.896659i \(-0.354013\pi\)
0.442723 + 0.896659i \(0.354013\pi\)
\(422\) −13.0391 + 12.1797i −0.634733 + 0.592901i
\(423\) 0 0
\(424\) 18.8413 + 23.1469i 0.915013 + 1.12411i
\(425\) 40.9719i 1.98743i
\(426\) 0 0
\(427\) 8.55393i 0.413954i
\(428\) 1.73322 25.4025i 0.0837781 1.22788i
\(429\) 0 0
\(430\) 0.255765 + 0.273811i 0.0123341 + 0.0132043i
\(431\) −19.1589 −0.922850 −0.461425 0.887179i \(-0.652662\pi\)
−0.461425 + 0.887179i \(0.652662\pi\)
\(432\) 0 0
\(433\) −5.63029 −0.270575 −0.135287 0.990806i \(-0.543196\pi\)
−0.135287 + 0.990806i \(0.543196\pi\)
\(434\) 8.66993 + 9.28163i 0.416170 + 0.445533i
\(435\) 0 0
\(436\) −2.07310 + 30.3840i −0.0992836 + 1.45513i
\(437\) 7.75602i 0.371021i
\(438\) 0 0
\(439\) 0.947873i 0.0452395i −0.999744 0.0226198i \(-0.992799\pi\)
0.999744 0.0226198i \(-0.00720071\pi\)
\(440\) −0.555823 0.682841i −0.0264978 0.0325532i
\(441\) 0 0
\(442\) 11.9099 11.1249i 0.566494 0.529159i
\(443\) 14.0866 0.669276 0.334638 0.942347i \(-0.391386\pi\)
0.334638 + 0.942347i \(0.391386\pi\)
\(444\) 0 0
\(445\) 0.133293 0.00631869
\(446\) 27.9268 26.0863i 1.32237 1.23522i
\(447\) 0 0
\(448\) 9.96647 + 2.06572i 0.470871 + 0.0975961i
\(449\) 9.55838i 0.451088i 0.974233 + 0.225544i \(0.0724159\pi\)
−0.974233 + 0.225544i \(0.927584\pi\)
\(450\) 0 0
\(451\) 42.1839i 1.98636i
\(452\) −5.43096 0.370554i −0.255451 0.0174294i
\(453\) 0 0
\(454\) 19.5086 + 20.8851i 0.915586 + 0.980185i
\(455\) 0.105494 0.00494565
\(456\) 0 0
\(457\) −13.0167 −0.608895 −0.304448 0.952529i \(-0.598472\pi\)
−0.304448 + 0.952529i \(0.598472\pi\)
\(458\) 9.58173 + 10.2578i 0.447725 + 0.479314i
\(459\) 0 0
\(460\) 0.913097 + 0.0623006i 0.0425733 + 0.00290478i
\(461\) 24.7561i 1.15301i 0.817095 + 0.576503i \(0.195583\pi\)
−0.817095 + 0.576503i \(0.804417\pi\)
\(462\) 0 0
\(463\) 23.0596i 1.07167i 0.844322 + 0.535836i \(0.180003\pi\)
−0.844322 + 0.535836i \(0.819997\pi\)
\(464\) 3.35423 24.4659i 0.155716 1.13580i
\(465\) 0 0
\(466\) 1.98956 1.85843i 0.0921644 0.0860903i
\(467\) −19.2484 −0.890712 −0.445356 0.895354i \(-0.646923\pi\)
−0.445356 + 0.895354i \(0.646923\pi\)
\(468\) 0 0
\(469\) 3.68348 0.170087
\(470\) −0.385180 + 0.359795i −0.0177670 + 0.0165961i
\(471\) 0 0
\(472\) −13.2837 + 10.8127i −0.611430 + 0.497696i
\(473\) 23.6920i 1.08936i
\(474\) 0 0
\(475\) 4.99652i 0.229256i
\(476\) 1.42037 20.8173i 0.0651024 0.954161i
\(477\) 0 0
\(478\) −19.6112 20.9949i −0.896996 0.960284i
\(479\) −24.6787 −1.12760 −0.563799 0.825912i \(-0.690661\pi\)
−0.563799 + 0.825912i \(0.690661\pi\)
\(480\) 0 0
\(481\) 8.08918 0.368835
\(482\) 0.848745 + 0.908628i 0.0386593 + 0.0413869i
\(483\) 0 0
\(484\) −2.29220 + 33.5952i −0.104191 + 1.52705i
\(485\) 0.842654i 0.0382629i
\(486\) 0 0
\(487\) 20.2803i 0.918986i −0.888181 0.459493i \(-0.848031\pi\)
0.888181 0.459493i \(-0.151969\pi\)
\(488\) −14.7481 + 12.0047i −0.667614 + 0.543429i
\(489\) 0 0
\(490\) −0.328128 + 0.306502i −0.0148233 + 0.0138464i
\(491\) −21.5002 −0.970289 −0.485144 0.874434i \(-0.661233\pi\)
−0.485144 + 0.874434i \(0.661233\pi\)
\(492\) 0 0
\(493\) −50.6248 −2.28003
\(494\) −1.45241 + 1.35668i −0.0653468 + 0.0610401i
\(495\) 0 0
\(496\) −3.83519 + 27.9741i −0.172205 + 1.25607i
\(497\) 11.4079i 0.511712i
\(498\) 0 0
\(499\) 13.8397i 0.619551i 0.950810 + 0.309776i \(0.100254\pi\)
−0.950810 + 0.309776i \(0.899746\pi\)
\(500\) −1.17687 0.0802975i −0.0526310 0.00359101i
\(501\) 0 0
\(502\) −9.89934 10.5978i −0.441829 0.473002i
\(503\) 30.3835 1.35473 0.677366 0.735646i \(-0.263121\pi\)
0.677366 + 0.735646i \(0.263121\pi\)
\(504\) 0 0
\(505\) 0.526085 0.0234105
\(506\) −39.5038 42.2909i −1.75616 1.88006i
\(507\) 0 0
\(508\) 35.8570 + 2.44652i 1.59090 + 0.108547i
\(509\) 1.67351i 0.0741769i 0.999312 + 0.0370884i \(0.0118083\pi\)
−0.999312 + 0.0370884i \(0.988192\pi\)
\(510\) 0 0
\(511\) 3.88758i 0.171976i
\(512\) 10.4255 + 20.0825i 0.460748 + 0.887531i
\(513\) 0 0
\(514\) 13.3808 12.4989i 0.590200 0.551303i
\(515\) 0.246212 0.0108494
\(516\) 0 0
\(517\) 33.3285 1.46578
\(518\) 7.56837 7.06958i 0.332535 0.310619i
\(519\) 0 0
\(520\) 0.148053 + 0.181886i 0.00649254 + 0.00797622i
\(521\) 1.00103i 0.0438557i −0.999760 0.0219279i \(-0.993020\pi\)
0.999760 0.0219279i \(-0.00698042\pi\)
\(522\) 0 0
\(523\) 10.5428i 0.461003i 0.973072 + 0.230502i \(0.0740367\pi\)
−0.973072 + 0.230502i \(0.925963\pi\)
\(524\) −2.33008 + 34.1504i −0.101790 + 1.49187i
\(525\) 0 0
\(526\) 1.70214 + 1.82223i 0.0742168 + 0.0794531i
\(527\) 57.8839 2.52146
\(528\) 0 0
\(529\) 37.1558 1.61547
\(530\) 0.601016 + 0.643421i 0.0261065 + 0.0279484i
\(531\) 0 0
\(532\) −0.173214 + 2.53867i −0.00750976 + 0.110065i
\(533\) 11.2364i 0.486701i
\(534\) 0 0
\(535\) 0.751125i 0.0324740i
\(536\) 5.16946 + 6.35079i 0.223287 + 0.274312i
\(537\) 0 0
\(538\) 0.495375 0.462727i 0.0213571 0.0199496i
\(539\) 28.3919 1.22293
\(540\) 0 0
\(541\) 12.8721 0.553414 0.276707 0.960954i \(-0.410757\pi\)
0.276707 + 0.960954i \(0.410757\pi\)
\(542\) −17.7383 + 16.5693i −0.761926 + 0.711712i
\(543\) 0 0
\(544\) 37.8851 26.7665i 1.62431 1.14760i
\(545\) 0.898423i 0.0384842i
\(546\) 0 0
\(547\) 6.97730i 0.298328i 0.988812 + 0.149164i \(0.0476582\pi\)
−0.988812 + 0.149164i \(0.952342\pi\)
\(548\) 33.3149 + 2.27308i 1.42314 + 0.0971010i
\(549\) 0 0
\(550\) 25.4488 + 27.2443i 1.08514 + 1.16170i
\(551\) 6.17369 0.263008
\(552\) 0 0
\(553\) 3.40796 0.144921
\(554\) −13.5445 14.5001i −0.575449 0.616050i
\(555\) 0 0
\(556\) −18.8319 1.28490i −0.798649 0.0544918i
\(557\) 25.0555i 1.06164i −0.847485 0.530819i \(-0.821885\pi\)
0.847485 0.530819i \(-0.178115\pi\)
\(558\) 0 0
\(559\) 6.31076i 0.266917i
\(560\) 0.297480 + 0.0407840i 0.0125708 + 0.00172344i
\(561\) 0 0
\(562\) −15.2289 + 14.2252i −0.642392 + 0.600055i
\(563\) −3.47474 −0.146443 −0.0732213 0.997316i \(-0.523328\pi\)
−0.0732213 + 0.997316i \(0.523328\pi\)
\(564\) 0 0
\(565\) −0.160587 −0.00675596
\(566\) 15.3902 14.3759i 0.646898 0.604264i
\(567\) 0 0
\(568\) −19.6686 + 16.0100i −0.825276 + 0.671764i
\(569\) 7.33875i 0.307656i −0.988098 0.153828i \(-0.950840\pi\)
0.988098 0.153828i \(-0.0491602\pi\)
\(570\) 0 0
\(571\) 11.2529i 0.470918i −0.971884 0.235459i \(-0.924341\pi\)
0.971884 0.235459i \(-0.0756593\pi\)
\(572\) 1.00947 14.7951i 0.0422080 0.618614i
\(573\) 0 0
\(574\) −9.82006 10.5129i −0.409882 0.438801i
\(575\) −38.7531 −1.61612
\(576\) 0 0
\(577\) 39.2311 1.63321 0.816606 0.577196i \(-0.195853\pi\)
0.816606 + 0.577196i \(0.195853\pi\)
\(578\) −48.5013 51.9233i −2.01739 2.15973i
\(579\) 0 0
\(580\) 0.0495905 0.726813i 0.00205913 0.0301793i
\(581\) 11.8896i 0.493263i
\(582\) 0 0
\(583\) 55.6733i 2.30575i
\(584\) 6.70268 5.45590i 0.277359 0.225767i
\(585\) 0 0
\(586\) −31.9868 + 29.8787i −1.32136 + 1.23428i
\(587\) 13.3109 0.549400 0.274700 0.961530i \(-0.411421\pi\)
0.274700 + 0.961530i \(0.411421\pi\)
\(588\) 0 0
\(589\) −7.05893 −0.290858
\(590\) −0.369250 + 0.344914i −0.0152018 + 0.0141999i
\(591\) 0 0
\(592\) 22.8104 + 3.12727i 0.937503 + 0.128530i
\(593\) 16.0593i 0.659475i 0.944073 + 0.329737i \(0.106960\pi\)
−0.944073 + 0.329737i \(0.893040\pi\)
\(594\) 0 0
\(595\) 0.615546i 0.0252349i
\(596\) −9.62320 0.656591i −0.394182 0.0268950i
\(597\) 0 0
\(598\) 10.5225 + 11.2649i 0.430296 + 0.460655i
\(599\) −19.0431 −0.778081 −0.389041 0.921221i \(-0.627193\pi\)
−0.389041 + 0.921221i \(0.627193\pi\)
\(600\) 0 0
\(601\) 19.3126 0.787776 0.393888 0.919158i \(-0.371130\pi\)
0.393888 + 0.919158i \(0.371130\pi\)
\(602\) 5.51532 + 5.90445i 0.224788 + 0.240647i
\(603\) 0 0
\(604\) −5.81268 0.396599i −0.236515 0.0161374i
\(605\) 0.993372i 0.0403863i
\(606\) 0 0
\(607\) 47.0591i 1.91007i −0.296496 0.955034i \(-0.595818\pi\)
0.296496 0.955034i \(-0.404182\pi\)
\(608\) −4.62008 + 3.26417i −0.187369 + 0.132380i
\(609\) 0 0
\(610\) −0.409956 + 0.382938i −0.0165986 + 0.0155047i
\(611\) −8.87758 −0.359148
\(612\) 0 0
\(613\) 17.2968 0.698611 0.349305 0.937009i \(-0.386418\pi\)
0.349305 + 0.937009i \(0.386418\pi\)
\(614\) −25.9280 + 24.2193i −1.04637 + 0.977410i
\(615\) 0 0
\(616\) −11.9858 14.7247i −0.482920 0.593277i
\(617\) 41.0256i 1.65163i −0.563943 0.825814i \(-0.690716\pi\)
0.563943 0.825814i \(-0.309284\pi\)
\(618\) 0 0
\(619\) 18.7560i 0.753868i 0.926240 + 0.376934i \(0.123022\pi\)
−0.926240 + 0.376934i \(0.876978\pi\)
\(620\) −0.0567012 + 0.831031i −0.00227718 + 0.0333750i
\(621\) 0 0
\(622\) −28.1836 30.1721i −1.13006 1.20979i
\(623\) 2.87432 0.115157
\(624\) 0 0
\(625\) 24.9478 0.997912
\(626\) −13.1819 14.1120i −0.526856 0.564028i
\(627\) 0 0
\(628\) −1.84077 + 26.9789i −0.0734549 + 1.07658i
\(629\) 47.1993i 1.88196i
\(630\) 0 0
\(631\) 33.5966i 1.33746i −0.743506 0.668729i \(-0.766839\pi\)
0.743506 0.668729i \(-0.233161\pi\)
\(632\) 4.78279 + 5.87575i 0.190249 + 0.233725i
\(633\) 0 0
\(634\) 10.7167 10.0104i 0.425615 0.397565i
\(635\) 1.06025 0.0420748
\(636\) 0 0
\(637\) −7.56265 −0.299643
\(638\) −33.6630 + 31.4445i −1.33273 + 1.24490i
\(639\) 0 0
\(640\) 0.347172 + 0.570131i 0.0137232 + 0.0225364i
\(641\) 13.0330i 0.514774i 0.966308 + 0.257387i \(0.0828614\pi\)
−0.966308 + 0.257387i \(0.917139\pi\)
\(642\) 0 0
\(643\) 43.7535i 1.72547i 0.505656 + 0.862735i \(0.331251\pi\)
−0.505656 + 0.862735i \(0.668749\pi\)
\(644\) 19.6900 + 1.34345i 0.775894 + 0.0529392i
\(645\) 0 0
\(646\) 7.91607 + 8.47459i 0.311454 + 0.333428i
\(647\) −13.7984 −0.542470 −0.271235 0.962513i \(-0.587432\pi\)
−0.271235 + 0.962513i \(0.587432\pi\)
\(648\) 0 0
\(649\) 31.9501 1.25415
\(650\) −6.77870 7.25697i −0.265883 0.284642i
\(651\) 0 0
\(652\) 1.24939 + 0.0852461i 0.0489300 + 0.00333849i
\(653\) 12.0895i 0.473098i 0.971620 + 0.236549i \(0.0760163\pi\)
−0.971620 + 0.236549i \(0.923984\pi\)
\(654\) 0 0
\(655\) 1.00979i 0.0394558i
\(656\) 4.34396 31.6850i 0.169603 1.23709i
\(657\) 0 0
\(658\) −8.30600 + 7.75860i −0.323802 + 0.302462i
\(659\) 11.0743 0.431395 0.215698 0.976460i \(-0.430797\pi\)
0.215698 + 0.976460i \(0.430797\pi\)
\(660\) 0 0
\(661\) −22.6286 −0.880151 −0.440075 0.897961i \(-0.645048\pi\)
−0.440075 + 0.897961i \(0.645048\pi\)
\(662\) 25.0259 23.3766i 0.972659 0.908556i
\(663\) 0 0
\(664\) −20.4992 + 16.6860i −0.795522 + 0.647544i
\(665\) 0.0750657i 0.00291092i
\(666\) 0 0
\(667\) 47.8832i 1.85405i
\(668\) 0.893056 13.0889i 0.0345534 0.506425i
\(669\) 0 0
\(670\) 0.164900 + 0.176535i 0.00637065 + 0.00682013i
\(671\) 35.4723 1.36939
\(672\) 0 0
\(673\) 10.8668 0.418885 0.209442 0.977821i \(-0.432835\pi\)
0.209442 + 0.977821i \(0.432835\pi\)
\(674\) −11.4852 12.2955i −0.442393 0.473606i
\(675\) 0 0
\(676\) 1.50098 21.9988i 0.0577299 0.846107i
\(677\) 14.7801i 0.568044i −0.958818 0.284022i \(-0.908331\pi\)
0.958818 0.284022i \(-0.0916688\pi\)
\(678\) 0 0
\(679\) 18.1709i 0.697337i
\(680\) 1.06128 0.863867i 0.0406982 0.0331278i
\(681\) 0 0
\(682\) 38.4900 35.9533i 1.47386 1.37672i
\(683\) 21.9180 0.838669 0.419334 0.907832i \(-0.362263\pi\)
0.419334 + 0.907832i \(0.362263\pi\)
\(684\) 0 0
\(685\) 0.985085 0.0376382
\(686\) −16.2799 + 15.2069i −0.621568 + 0.580604i
\(687\) 0 0
\(688\) −2.43973 + 17.7955i −0.0930140 + 0.678448i
\(689\) 14.8295i 0.564958i
\(690\) 0 0
\(691\) 5.66773i 0.215611i 0.994172 + 0.107805i \(0.0343823\pi\)
−0.994172 + 0.107805i \(0.965618\pi\)
\(692\) −20.5116 1.39951i −0.779734 0.0532012i
\(693\) 0 0
\(694\) 3.45309 + 3.69672i 0.131078 + 0.140326i
\(695\) −0.556838 −0.0211221
\(696\) 0 0
\(697\) −65.5627 −2.48336
\(698\) 3.52132 + 3.76977i 0.133284 + 0.142688i
\(699\) 0 0
\(700\) −12.6845 0.865465i −0.479430 0.0327115i
\(701\) 23.8905i 0.902331i −0.892440 0.451166i \(-0.851008\pi\)
0.892440 0.451166i \(-0.148992\pi\)
\(702\) 0 0
\(703\) 5.75595i 0.217090i
\(704\) 8.56633 41.3299i 0.322856 1.55768i
\(705\) 0 0
\(706\) 1.43726 1.34254i 0.0540919 0.0505270i
\(707\) 11.3445 0.426653
\(708\) 0 0
\(709\) 40.2727 1.51247 0.756237 0.654298i \(-0.227036\pi\)
0.756237 + 0.654298i \(0.227036\pi\)
\(710\) −0.546734 + 0.510701i −0.0205186 + 0.0191663i
\(711\) 0 0
\(712\) 4.03387 + 4.95570i 0.151176 + 0.185723i
\(713\) 54.7492i 2.05037i
\(714\) 0 0
\(715\) 0.437474i 0.0163606i
\(716\) 2.53654 37.1764i 0.0947951 1.38935i
\(717\) 0 0
\(718\) −30.7118 32.8787i −1.14615 1.22702i
\(719\) −11.8037 −0.440203 −0.220101 0.975477i \(-0.570639\pi\)
−0.220101 + 0.975477i \(0.570639\pi\)
\(720\) 0 0
\(721\) 5.30930 0.197729
\(722\) −0.965364 1.03348i −0.0359271 0.0384620i
\(723\) 0 0
\(724\) 0.488167 7.15473i 0.0181426 0.265903i
\(725\) 30.8470i 1.14563i
\(726\) 0 0
\(727\) 16.7659i 0.621813i 0.950441 + 0.310906i \(0.100633\pi\)
−0.950441 + 0.310906i \(0.899367\pi\)
\(728\) 3.19260 + 3.92218i 0.118326 + 0.145366i
\(729\) 0 0
\(730\) 0.186316 0.174037i 0.00689588 0.00644140i
\(731\) 36.8224 1.36193
\(732\) 0 0
\(733\) 20.1955 0.745936 0.372968 0.927844i \(-0.378340\pi\)
0.372968 + 0.927844i \(0.378340\pi\)
\(734\) −13.7310 + 12.8261i −0.506821 + 0.473419i
\(735\) 0 0
\(736\) 25.3170 + 35.8334i 0.933196 + 1.32084i
\(737\) 15.2750i 0.562662i
\(738\) 0 0
\(739\) 36.9489i 1.35919i −0.733589 0.679593i \(-0.762156\pi\)
0.733589 0.679593i \(-0.237844\pi\)
\(740\) 0.677634 + 0.0462349i 0.0249103 + 0.00169963i
\(741\) 0 0
\(742\) 12.9603 + 13.8747i 0.475787 + 0.509356i
\(743\) −0.783282 −0.0287358 −0.0143679 0.999897i \(-0.504574\pi\)
−0.0143679 + 0.999897i \(0.504574\pi\)
\(744\) 0 0
\(745\) −0.284547 −0.0104250
\(746\) −30.1106 32.2350i −1.10243 1.18021i
\(747\) 0 0
\(748\) −86.3274 5.89011i −3.15644 0.215364i
\(749\) 16.1972i 0.591834i
\(750\) 0 0
\(751\) 30.8590i 1.12606i −0.826437 0.563030i \(-0.809636\pi\)
0.826437 0.563030i \(-0.190364\pi\)
\(752\) −25.0336 3.43206i −0.912881 0.125154i
\(753\) 0 0
\(754\) 8.96670 8.37575i 0.326548 0.305027i
\(755\) −0.171875 −0.00625516
\(756\) 0 0
\(757\) 21.0549 0.765255 0.382627 0.923903i \(-0.375019\pi\)
0.382627 + 0.923903i \(0.375019\pi\)
\(758\) 9.55848 8.92853i 0.347180 0.324299i
\(759\) 0 0
\(760\) −0.129423 + 0.105349i −0.00469466 + 0.00382139i
\(761\) 2.32164i 0.0841592i −0.999114 0.0420796i \(-0.986602\pi\)
0.999114 0.0420796i \(-0.0133983\pi\)
\(762\) 0 0
\(763\) 19.3736i 0.701370i
\(764\) −0.532955 + 7.81115i −0.0192816 + 0.282598i
\(765\) 0 0
\(766\) 15.0346 + 16.0954i 0.543223 + 0.581550i
\(767\) −8.51042 −0.307294
\(768\) 0 0
\(769\) −37.4345 −1.34992 −0.674961 0.737853i \(-0.735840\pi\)
−0.674961 + 0.737853i \(0.735840\pi\)
\(770\) −0.382333 0.409308i −0.0137783 0.0147504i
\(771\) 0 0
\(772\) −0.955726 + 14.0074i −0.0343973 + 0.504138i
\(773\) 7.48535i 0.269229i 0.990898 + 0.134615i \(0.0429797\pi\)
−0.990898 + 0.134615i \(0.957020\pi\)
\(774\) 0 0
\(775\) 35.2701i 1.26694i
\(776\) 31.3290 25.5014i 1.12465 0.915448i
\(777\) 0 0
\(778\) −20.3416 + 19.0010i −0.729280 + 0.681217i
\(779\) 7.99536 0.286463
\(780\) 0 0
\(781\) 47.3072 1.69279
\(782\) 65.7291 61.3972i 2.35047 2.19556i
\(783\) 0 0
\(784\) −21.3257 2.92371i −0.761631 0.104418i
\(785\) 0.797738i 0.0284725i
\(786\) 0 0
\(787\) 2.29084i 0.0816598i −0.999166 0.0408299i \(-0.987000\pi\)
0.999166 0.0408299i \(-0.0130002\pi\)
\(788\) 10.8239 + 0.738516i 0.385586 + 0.0263085i
\(789\) 0 0
\(790\) 0.152566 + 0.163330i 0.00542804 + 0.00581102i
\(791\) −3.46290 −0.123127
\(792\) 0 0
\(793\) −9.44862 −0.335530
\(794\) 8.33067 + 8.91844i 0.295644 + 0.316504i
\(795\) 0 0
\(796\) −2.04220 0.139339i −0.0723838 0.00493875i
\(797\) 9.49545i 0.336346i −0.985757 0.168173i \(-0.946213\pi\)
0.985757 0.168173i \(-0.0537868\pi\)
\(798\) 0 0
\(799\) 51.7995i 1.83253i
\(800\) −16.3095 23.0843i −0.576628 0.816155i
\(801\) 0 0
\(802\) 21.2908 19.8877i 0.751805 0.702258i
\(803\) −16.1214 −0.568912
\(804\) 0 0
\(805\) 0.582211 0.0205202
\(806\) −10.2524 + 9.57675i −0.361127 + 0.337327i
\(807\) 0 0
\(808\) 15.9210 + 19.5593i 0.560100 + 0.688095i
\(809\) 52.8555i 1.85830i −0.369704 0.929150i \(-0.620541\pi\)
0.369704 0.929150i \(-0.379459\pi\)
\(810\) 0 0
\(811\) 53.7682i 1.88806i −0.329863 0.944029i \(-0.607002\pi\)
0.329863 0.944029i \(-0.392998\pi\)
\(812\) 1.06937 15.6730i 0.0375274 0.550013i
\(813\) 0 0
\(814\) −29.3168 31.3853i −1.02755 1.10005i
\(815\) 0.0369432 0.00129406
\(816\) 0 0
\(817\) −4.49049 −0.157103
\(818\) 32.2058 + 34.4781i 1.12605 + 1.20550i
\(819\) 0 0
\(820\) 0.0642231 0.941274i 0.00224277 0.0328707i
\(821\) 27.3310i 0.953860i 0.878941 + 0.476930i \(0.158250\pi\)
−0.878941 + 0.476930i \(0.841750\pi\)
\(822\) 0 0
\(823\) 5.84119i 0.203611i 0.994804 + 0.101805i \(0.0324619\pi\)
−0.994804 + 0.101805i \(0.967538\pi\)
\(824\) 7.45116 + 9.15391i 0.259574 + 0.318892i
\(825\) 0 0
\(826\) −7.96249 + 7.43772i −0.277050 + 0.258791i
\(827\) −42.5549 −1.47978 −0.739889 0.672729i \(-0.765122\pi\)
−0.739889 + 0.672729i \(0.765122\pi\)
\(828\) 0 0
\(829\) −52.5676 −1.82575 −0.912874 0.408240i \(-0.866143\pi\)
−0.912874 + 0.408240i \(0.866143\pi\)
\(830\) −0.569821 + 0.532267i −0.0197788 + 0.0184753i
\(831\) 0 0
\(832\) −2.28178 + 11.0089i −0.0791066 + 0.381665i
\(833\) 44.1270i 1.52891i
\(834\) 0 0
\(835\) 0.387024i 0.0133935i
\(836\) 10.5276 + 0.718299i 0.364105 + 0.0248429i
\(837\) 0 0
\(838\) 23.9961 + 25.6892i 0.828933 + 0.887418i
\(839\) 5.79622 0.200108 0.100054 0.994982i \(-0.468099\pi\)
0.100054 + 0.994982i \(0.468099\pi\)
\(840\) 0 0
\(841\) −9.11445 −0.314291
\(842\) 17.5386 + 18.7760i 0.604419 + 0.647064i
\(843\) 0 0
\(844\) −25.1749 1.71769i −0.866557 0.0591252i
\(845\) 0.650480i 0.0223772i
\(846\) 0 0
\(847\) 21.4210i 0.736036i
\(848\) −5.73306 + 41.8172i −0.196874 + 1.43601i
\(849\) 0 0
\(850\) −42.3435 + 39.5528i −1.45237 + 1.35665i
\(851\) 44.6432 1.53035
\(852\) 0 0
\(853\) −27.1964 −0.931186 −0.465593 0.884999i \(-0.654159\pi\)
−0.465593 + 0.884999i \(0.654159\pi\)
\(854\) −8.84028 + 8.25766i −0.302508 + 0.282571i
\(855\) 0 0
\(856\) 27.9261 22.7315i 0.954494 0.776946i
\(857\) 18.1477i 0.619912i 0.950751 + 0.309956i \(0.100314\pi\)
−0.950751 + 0.309956i \(0.899686\pi\)
\(858\) 0 0
\(859\) 22.4786i 0.766959i −0.923549 0.383479i \(-0.874726\pi\)
0.923549 0.383479i \(-0.125274\pi\)
\(860\) −0.0360701 + 0.528655i −0.00122998 + 0.0180270i
\(861\) 0 0
\(862\) −18.4953 19.8002i −0.629952 0.674398i
\(863\) −7.67220 −0.261165 −0.130582 0.991437i \(-0.541685\pi\)
−0.130582 + 0.991437i \(0.541685\pi\)
\(864\) 0 0
\(865\) −0.606505 −0.0206218
\(866\) −5.43528 5.81877i −0.184698 0.197730i
\(867\) 0 0
\(868\) −1.22270 + 17.9203i −0.0415012 + 0.608255i
\(869\) 14.1325i 0.479411i
\(870\) 0 0
\(871\) 4.06875i 0.137864i
\(872\) −33.4025 + 27.1892i −1.13115 + 0.920742i
\(873\) 0 0
\(874\) −8.01565 + 7.48738i −0.271134 + 0.253264i
\(875\) −0.750396 −0.0253680
\(876\) 0 0
\(877\) 23.0069 0.776888 0.388444 0.921472i \(-0.373013\pi\)
0.388444 + 0.921472i \(0.373013\pi\)
\(878\) 0.979604 0.915043i 0.0330600 0.0308812i
\(879\) 0 0
\(880\) 0.169127 1.23362i 0.00570127 0.0415853i
\(881\) 10.0755i 0.339452i 0.985491 + 0.169726i \(0.0542883\pi\)
−0.985491 + 0.169726i \(0.945712\pi\)
\(882\) 0 0
\(883\) 1.12094i 0.0377225i 0.999822 + 0.0188613i \(0.00600408\pi\)
−0.999822 + 0.0188613i \(0.993996\pi\)
\(884\) 22.9947 + 1.56893i 0.773395 + 0.0527688i
\(885\) 0 0
\(886\) 13.5987 + 14.5582i 0.456858 + 0.489092i
\(887\) −28.4631 −0.955698 −0.477849 0.878442i \(-0.658583\pi\)
−0.477849 + 0.878442i \(0.658583\pi\)
\(888\) 0 0
\(889\) 22.8632 0.766808
\(890\) 0.128676 + 0.137755i 0.00431324 + 0.00461756i
\(891\) 0 0
\(892\) 53.9191 + 3.67890i 1.80535 + 0.123179i
\(893\) 6.31694i 0.211388i
\(894\) 0 0
\(895\) 1.09926i 0.0367444i
\(896\) 7.48640 + 12.2943i 0.250103 + 0.410723i
\(897\) 0 0
\(898\) −9.87836 + 9.22732i −0.329645 + 0.307920i
\(899\) 43.5797 1.45346
\(900\) 0 0
\(901\) 86.5281 2.88267
\(902\) −43.5960 + 40.7228i −1.45159 + 1.35592i
\(903\) 0 0
\(904\) −4.85989 5.97048i −0.161638 0.198575i
\(905\) 0.211557i 0.00703241i
\(906\) 0 0
\(907\) 16.6933i 0.554292i 0.960828 + 0.277146i \(0.0893886\pi\)
−0.960828 + 0.277146i \(0.910611\pi\)
\(908\) −2.75127 + 40.3234i −0.0913040 + 1.33818i
\(909\) 0 0
\(910\) 0.101841 + 0.109026i 0.00337598 + 0.00361417i
\(911\) 40.2610 1.33391 0.666954 0.745099i \(-0.267598\pi\)
0.666954 + 0.745099i \(0.267598\pi\)
\(912\) 0 0
\(913\) 49.3049 1.63175
\(914\) −12.5659 13.4524i −0.415642 0.444967i
\(915\) 0 0
\(916\) −1.35129 + 19.8050i −0.0446480 + 0.654375i
\(917\) 21.7751i 0.719077i
\(918\) 0 0
\(919\) 52.2655i 1.72408i 0.506841 + 0.862040i \(0.330813\pi\)
−0.506841 + 0.862040i \(0.669187\pi\)
\(920\) 0.817085 + 1.00381i 0.0269385 + 0.0330945i
\(921\) 0 0
\(922\) −25.5848 + 23.8986i −0.842591 + 0.787060i
\(923\) −12.6011 −0.414769
\(924\) 0 0
\(925\) −28.7597 −0.945614
\(926\) −23.8315 + 22.2609i −0.783153 + 0.731539i
\(927\) 0 0
\(928\) 28.5230 20.1520i 0.936312 0.661522i
\(929\) 3.61665i 0.118658i 0.998238 + 0.0593291i \(0.0188961\pi\)
−0.998238 + 0.0593291i \(0.981104\pi\)
\(930\) 0 0
\(931\) 5.38129i 0.176365i
\(932\) 3.84129 + 0.262091i 0.125826 + 0.00858509i
\(933\) 0 0
\(934\) −18.5818 19.8928i −0.608014 0.650912i
\(935\) −2.55260 −0.0834791
\(936\) 0 0
\(937\) −42.8905 −1.40117 −0.700587 0.713567i \(-0.747078\pi\)
−0.700587 + 0.713567i \(0.747078\pi\)
\(938\) 3.55590 + 3.80679i 0.116104 + 0.124296i
\(939\) 0 0
\(940\) −0.743678 0.0507411i −0.0242561 0.00165499i
\(941\) 4.99580i 0.162858i 0.996679 + 0.0814292i \(0.0259484\pi\)
−0.996679 + 0.0814292i \(0.974052\pi\)
\(942\) 0 0
\(943\) 62.0121i 2.01939i
\(944\) −23.9983 3.29012i −0.781077 0.107084i
\(945\) 0 0
\(946\) 24.4852 22.8715i 0.796081 0.743615i
\(947\) 37.6577 1.22371 0.611856 0.790969i \(-0.290423\pi\)
0.611856 + 0.790969i \(0.290423\pi\)
\(948\) 0 0
\(949\) 4.29420 0.139396
\(950\) 5.16378 4.82346i 0.167535 0.156494i
\(951\) 0 0
\(952\) 22.8854 18.6284i 0.741719 0.603750i
\(953\) 15.6600i 0.507278i −0.967299 0.253639i \(-0.918373\pi\)
0.967299 0.253639i \(-0.0816274\pi\)
\(954\) 0 0
\(955\) 0.230967i 0.00747392i
\(956\) 2.76573 40.5354i 0.0894501 1.31101i
\(957\) 0 0
\(958\) −23.8239 25.5048i −0.769716 0.824024i
\(959\) 21.2423 0.685951
\(960\) 0 0
\(961\) −18.8285 −0.607372
\(962\) 7.80901 + 8.35997i 0.251773 + 0.269536i
\(963\) 0 0
\(964\) −0.119697 + 1.75431i −0.00385517 + 0.0565026i
\(965\) 0.414184i 0.0133331i
\(966\) 0 0
\(967\) 39.2763i 1.26304i 0.775360 + 0.631520i \(0.217569\pi\)
−0.775360 + 0.631520i \(0.782431\pi\)
\(968\) −36.9326 + 30.0627i −1.18706 + 0.966250i
\(969\) 0 0
\(970\) 0.870862 0.813468i 0.0279617 0.0261189i
\(971\) 30.1803 0.968532 0.484266 0.874921i \(-0.339087\pi\)
0.484266 + 0.874921i \(0.339087\pi\)
\(972\) 0 0
\(973\) −12.0076 −0.384947
\(974\) 20.9591 19.5778i 0.671574 0.627314i
\(975\) 0 0
\(976\) −26.6439 3.65283i −0.852849 0.116924i
\(977\) 4.23963i 0.135638i −0.997698 0.0678189i \(-0.978396\pi\)
0.997698 0.0678189i \(-0.0216040\pi\)
\(978\) 0 0
\(979\) 11.9195i 0.380950i
\(980\) −0.633525 0.0432254i −0.0202372 0.00138079i
\(981\) 0 0
\(982\) −20.7555 22.2199i −0.662334 0.709065i
\(983\) −33.6677 −1.07383 −0.536916 0.843635i \(-0.680411\pi\)
−0.536916 + 0.843635i \(0.680411\pi\)
\(984\) 0 0
\(985\) 0.320051 0.0101977
\(986\) −48.8714 52.3195i −1.55638 1.66619i
\(987\) 0 0
\(988\) −2.80420 0.191331i −0.0892135 0.00608704i
\(989\) 34.8283i 1.10748i
\(990\) 0 0
\(991\) 7.37922i 0.234409i 0.993108 + 0.117204i \(0.0373932\pi\)
−0.993108 + 0.117204i \(0.962607\pi\)
\(992\) −32.6129 + 23.0416i −1.03546 + 0.731571i
\(993\) 0 0
\(994\) −11.7897 + 11.0127i −0.373948 + 0.349303i
\(995\) −0.0603856 −0.00191435
\(996\) 0 0
\(997\) −25.7846 −0.816607 −0.408303 0.912846i \(-0.633879\pi\)
−0.408303 + 0.912846i \(0.633879\pi\)
\(998\) −14.3030 + 13.3604i −0.452754 + 0.422915i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.c.b.647.24 yes 32
3.2 odd 2 inner 684.2.c.b.647.9 32
4.3 odd 2 inner 684.2.c.b.647.10 yes 32
12.11 even 2 inner 684.2.c.b.647.23 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
684.2.c.b.647.9 32 3.2 odd 2 inner
684.2.c.b.647.10 yes 32 4.3 odd 2 inner
684.2.c.b.647.23 yes 32 12.11 even 2 inner
684.2.c.b.647.24 yes 32 1.1 even 1 trivial