Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [684,2,Mod(211,684)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(684, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([9, 6, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("684.211");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 684.cc (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.46176749826\) |
Analytic rank: | \(0\) |
Dimension: | \(696\) |
Relative dimension: | \(116\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
211.1 | −1.41419 | − | 0.00795020i | 0.932010 | − | 1.45992i | 1.99987 | + | 0.0224862i | −0.221464 | + | 1.25599i | −1.32965 | + | 2.05719i | 2.39632 | + | 1.38352i | −2.82802 | − | 0.0476992i | −1.26271 | − | 2.72131i | 0.323178 | − | 1.77444i |
211.2 | −1.41416 | − | 0.0122028i | −1.57703 | + | 0.716213i | 1.99970 | + | 0.0345136i | −0.487934 | + | 2.76721i | 2.23892 | − | 0.993596i | −1.71049 | − | 0.987554i | −2.82748 | − | 0.0732098i | 1.97408 | − | 2.25899i | 0.723785 | − | 3.90733i |
211.3 | −1.41415 | + | 0.0137416i | 1.44144 | − | 0.960342i | 1.99962 | − | 0.0388654i | −0.428293 | + | 2.42897i | −2.02521 | + | 1.37787i | −2.99634 | − | 1.72994i | −2.82723 | + | 0.0824394i | 1.15549 | − | 2.76855i | 0.572291 | − | 3.44081i |
211.4 | −1.41400 | + | 0.0246459i | 0.412982 | + | 1.68210i | 1.99879 | − | 0.0696986i | 0.504900 | − | 2.86343i | −0.625413 | − | 2.36830i | −0.170714 | − | 0.0985616i | −2.82456 | + | 0.147816i | −2.65889 | + | 1.38935i | −0.643356 | + | 4.06133i |
211.5 | −1.40991 | − | 0.110292i | −0.721709 | − | 1.57453i | 1.97567 | + | 0.311003i | 0.251320 | − | 1.42531i | 0.843885 | + | 2.29953i | −0.441456 | − | 0.254875i | −2.75121 | − | 0.656387i | −1.95827 | + | 2.27270i | −0.511538 | + | 1.98183i |
211.6 | −1.39629 | + | 0.224416i | 1.71078 | − | 0.270635i | 1.89927 | − | 0.626702i | 0.541604 | − | 3.07159i | −2.32801 | + | 0.761812i | 2.74289 | + | 1.58361i | −2.51130 | + | 1.30129i | 2.85351 | − | 0.925992i | −0.0669241 | + | 4.41039i |
211.7 | −1.38230 | − | 0.298732i | 1.72024 | + | 0.201885i | 1.82152 | + | 0.825876i | 0.221266 | − | 1.25486i | −2.31759 | − | 0.792958i | −3.98072 | − | 2.29827i | −2.27117 | − | 1.68576i | 2.91848 | + | 0.694584i | −0.680724 | + | 1.66850i |
211.8 | −1.37521 | + | 0.329836i | −1.73191 | + | 0.0221199i | 1.78242 | − | 0.907188i | 0.0398193 | − | 0.225827i | 2.37445 | − | 0.601665i | 4.04735 | + | 2.33674i | −2.15198 | + | 1.83548i | 2.99902 | − | 0.0766194i | 0.0197256 | + | 0.323693i |
211.9 | −1.37319 | + | 0.338140i | −1.45909 | − | 0.933306i | 1.77132 | − | 0.928663i | 0.279827 | − | 1.58698i | 2.31920 | + | 0.788234i | −2.00663 | − | 1.15853i | −2.11835 | + | 1.87419i | 1.25788 | + | 2.72355i | 0.152364 | + | 2.27385i |
211.10 | −1.36818 | − | 0.357897i | 0.308394 | + | 1.70437i | 1.74382 | + | 0.979332i | −0.488317 | + | 2.76938i | 0.188052 | − | 2.44226i | 1.81309 | + | 1.04679i | −2.03536 | − | 1.96401i | −2.80979 | + | 1.05124i | 1.65926 | − | 3.61424i |
211.11 | −1.36543 | + | 0.368223i | 1.40642 | + | 1.01093i | 1.72882 | − | 1.00557i | −0.560736 | + | 3.18009i | −2.29263 | − | 0.862475i | −0.491177 | − | 0.283581i | −1.99032 | + | 2.00963i | 0.956059 | + | 2.84358i | −0.405334 | − | 4.54868i |
211.12 | −1.35669 | + | 0.399256i | −0.883299 | + | 1.48989i | 1.68119 | − | 1.08333i | 0.190011 | − | 1.07761i | 0.603510 | − | 2.37398i | −2.34296 | − | 1.35271i | −1.84832 | + | 2.14096i | −1.43957 | − | 2.63204i | 0.172456 | + | 1.53784i |
211.13 | −1.33319 | − | 0.471815i | −1.43900 | + | 0.963992i | 1.55478 | + | 1.25804i | 0.0439475 | − | 0.249239i | 2.37328 | − | 0.606241i | 0.176578 | + | 0.101947i | −1.47925 | − | 2.41077i | 1.14144 | − | 2.77437i | −0.176185 | + | 0.311547i |
211.14 | −1.32811 | + | 0.485935i | −0.901949 | − | 1.47868i | 1.52773 | − | 1.29075i | −0.665002 | + | 3.77142i | 1.91643 | + | 1.52555i | −1.66340 | − | 0.960363i | −1.40178 | + | 2.45663i | −1.37298 | + | 2.66738i | −0.949468 | − | 5.33199i |
211.15 | −1.30169 | − | 0.552805i | −1.31885 | − | 1.12278i | 1.38881 | + | 1.43917i | −0.612489 | + | 3.47360i | 1.09605 | + | 2.19059i | 3.65674 | + | 2.11122i | −1.01223 | − | 2.64110i | 0.478708 | + | 2.96156i | 2.71750 | − | 4.18297i |
211.16 | −1.29054 | − | 0.578360i | −1.72737 | − | 0.127210i | 1.33100 | + | 1.49280i | 0.745816 | − | 4.22973i | 2.15568 | + | 1.16321i | 0.448734 | + | 0.259077i | −0.854340 | − | 2.69631i | 2.96764 | + | 0.439479i | −3.40881 | + | 5.02730i |
211.17 | −1.28452 | − | 0.591617i | −0.0622019 | − | 1.73093i | 1.29998 | + | 1.51989i | 0.494013 | − | 2.80169i | −0.944151 | + | 2.26022i | 2.08413 | + | 1.20327i | −0.770655 | − | 2.72141i | −2.99226 | + | 0.215335i | −2.29210 | + | 3.30655i |
211.18 | −1.27379 | − | 0.614383i | 1.70410 | + | 0.309904i | 1.24507 | + | 1.56519i | −0.202951 | + | 1.15099i | −1.98026 | − | 1.44172i | 1.91680 | + | 1.10667i | −0.624325 | − | 2.75866i | 2.80792 | + | 1.05622i | 0.965667 | − | 1.34143i |
211.19 | −1.25457 | + | 0.652729i | 0.528477 | − | 1.64946i | 1.14789 | − | 1.63779i | 0.600364 | − | 3.40483i | 0.413638 | + | 2.41431i | −2.98853 | − | 1.72543i | −0.371075 | + | 2.80398i | −2.44142 | − | 1.74340i | 1.46924 | + | 4.66348i |
211.20 | −1.24172 | + | 0.676851i | 1.50688 | + | 0.853991i | 1.08375 | − | 1.68092i | 0.189825 | − | 1.07655i | −2.44916 | − | 0.0404831i | 0.295212 | + | 0.170441i | −0.207978 | + | 2.82077i | 1.54140 | + | 2.57373i | 0.492954 | + | 1.46526i |
See next 80 embeddings (of 696 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
171.bc | odd | 18 | 1 | inner |
684.cc | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 684.2.cc.a | yes | 696 |
4.b | odd | 2 | 1 | inner | 684.2.cc.a | yes | 696 |
9.c | even | 3 | 1 | 684.2.bt.a | ✓ | 696 | |
19.f | odd | 18 | 1 | 684.2.bt.a | ✓ | 696 | |
36.f | odd | 6 | 1 | 684.2.bt.a | ✓ | 696 | |
76.k | even | 18 | 1 | 684.2.bt.a | ✓ | 696 | |
171.bc | odd | 18 | 1 | inner | 684.2.cc.a | yes | 696 |
684.cc | even | 18 | 1 | inner | 684.2.cc.a | yes | 696 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
684.2.bt.a | ✓ | 696 | 9.c | even | 3 | 1 | |
684.2.bt.a | ✓ | 696 | 19.f | odd | 18 | 1 | |
684.2.bt.a | ✓ | 696 | 36.f | odd | 6 | 1 | |
684.2.bt.a | ✓ | 696 | 76.k | even | 18 | 1 | |
684.2.cc.a | yes | 696 | 1.a | even | 1 | 1 | trivial |
684.2.cc.a | yes | 696 | 4.b | odd | 2 | 1 | inner |
684.2.cc.a | yes | 696 | 171.bc | odd | 18 | 1 | inner |
684.2.cc.a | yes | 696 | 684.cc | even | 18 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(684, [\chi])\).