Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [684,2,Mod(91,684)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(684, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([9, 0, 11]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("684.91");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 684.cf (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.46176749826\) |
Analytic rank: | \(0\) |
Dimension: | \(60\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{18})\) |
Twist minimal: | no (minimal twist has level 228) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
91.1 | −1.40972 | + | 0.112689i | 0 | 1.97460 | − | 0.317720i | −1.52856 | + | 1.28261i | 0 | −1.51170 | − | 0.872779i | −2.74783 | + | 0.670411i | 0 | 2.01030 | − | 1.98037i | ||||||
91.2 | −1.29298 | − | 0.572888i | 0 | 1.34360 | + | 1.48147i | 2.02034 | − | 1.69527i | 0 | −0.752594 | − | 0.434510i | −0.888536 | − | 2.68524i | 0 | −3.58346 | + | 1.03452i | ||||||
91.3 | −1.16563 | + | 0.800819i | 0 | 0.717378 | − | 1.86691i | 1.07136 | − | 0.898980i | 0 | 3.16192 | + | 1.82553i | 0.658864 | + | 2.75062i | 0 | −0.528890 | + | 1.90584i | ||||||
91.4 | −0.578232 | − | 1.29060i | 0 | −1.33130 | + | 1.49253i | −3.00606 | + | 2.52238i | 0 | 3.14549 | + | 1.81605i | 2.69606 | + | 0.855142i | 0 | 4.99358 | + | 2.42109i | ||||||
91.5 | −0.428246 | − | 1.34782i | 0 | −1.63321 | + | 1.15439i | 1.63332 | − | 1.37052i | 0 | −1.13591 | − | 0.655818i | 2.25532 | + | 1.70690i | 0 | −2.54667 | − | 1.61449i | ||||||
91.6 | −0.365891 | + | 1.36606i | 0 | −1.73225 | − | 0.999660i | −2.56653 | + | 2.15357i | 0 | −2.87385 | − | 1.65922i | 1.99941 | − | 2.00059i | 0 | −2.00284 | − | 4.29401i | ||||||
91.7 | 0.255165 | + | 1.39100i | 0 | −1.86978 | + | 0.709871i | 0.471332 | − | 0.395495i | 0 | 3.37123 | + | 1.94638i | −1.46454 | − | 2.41974i | 0 | 0.670402 | + | 0.554709i | ||||||
91.8 | 0.810901 | − | 1.15864i | 0 | −0.684878 | − | 1.87908i | 2.11944 | − | 1.77843i | 0 | 2.80017 | + | 1.61668i | −2.73254 | − | 0.730223i | 0 | −0.341888 | − | 3.89779i | ||||||
91.9 | 1.34509 | + | 0.436740i | 0 | 1.61852 | + | 1.17491i | −1.62636 | + | 1.36468i | 0 | 1.25845 | + | 0.726566i | 1.66392 | + | 2.28722i | 0 | −2.78361 | + | 1.12532i | ||||||
91.10 | 1.38985 | − | 0.261379i | 0 | 1.86336 | − | 0.726554i | 1.41171 | − | 1.18456i | 0 | −4.05173 | − | 2.33927i | 2.39989 | − | 1.49684i | 0 | 1.65244 | − | 2.01536i | ||||||
127.1 | −1.39185 | + | 0.250479i | 0 | 1.87452 | − | 0.697261i | −0.683388 | − | 3.87569i | 0 | 0.181667 | + | 0.104885i | −2.43441 | + | 1.44001i | 0 | 1.92196 | + | 5.22322i | ||||||
127.2 | −1.37128 | + | 0.345809i | 0 | 1.76083 | − | 0.948403i | 0.540387 | + | 3.06469i | 0 | −1.31815 | − | 0.761035i | −2.08663 | + | 1.90944i | 0 | −1.80082 | − | 4.01568i | ||||||
127.3 | −0.947134 | − | 1.05021i | 0 | −0.205875 | + | 1.98938i | −0.234529 | − | 1.33008i | 0 | 1.38264 | + | 0.798268i | 2.28425 | − | 1.66799i | 0 | −1.17473 | + | 1.50607i | ||||||
127.4 | −0.436096 | − | 1.34530i | 0 | −1.61964 | + | 1.17336i | 0.711633 | + | 4.03587i | 0 | −1.83842 | − | 1.06142i | 2.28483 | + | 1.66720i | 0 | 5.11910 | − | 2.71738i | ||||||
127.5 | −0.260406 | + | 1.39003i | 0 | −1.86438 | − | 0.723946i | 0.175493 | + | 0.995269i | 0 | −2.28954 | − | 1.32186i | 1.49180 | − | 2.40302i | 0 | −1.42916 | − | 0.0152335i | ||||||
127.6 | 0.526616 | − | 1.31251i | 0 | −1.44535 | − | 1.38238i | 0.0217506 | + | 0.123354i | 0 | 3.23383 | + | 1.86705i | −2.57552 | + | 1.16905i | 0 | 0.173357 | + | 0.0364123i | ||||||
127.7 | 0.626457 | + | 1.26789i | 0 | −1.21510 | + | 1.58856i | −0.316000 | − | 1.79212i | 0 | −0.258690 | − | 0.149354i | −2.77533 | − | 0.545458i | 0 | 2.07426 | − | 1.52334i | ||||||
127.8 | 1.02960 | − | 0.969499i | 0 | 0.120142 | − | 1.99639i | −0.162908 | − | 0.923898i | 0 | −2.27351 | − | 1.31261i | −1.81180 | − | 2.17195i | 0 | −1.06345 | − | 0.793304i | ||||||
127.9 | 1.11501 | + | 0.869917i | 0 | 0.486490 | + | 1.93993i | 0.379809 | + | 2.15400i | 0 | 3.95398 | + | 2.28283i | −1.14514 | + | 2.58625i | 0 | −1.45031 | + | 2.73213i | ||||||
127.10 | 1.37514 | + | 0.330144i | 0 | 1.78201 | + | 0.907986i | −0.432248 | − | 2.45140i | 0 | −1.95860 | − | 1.13080i | 2.15074 | + | 1.83693i | 0 | 0.214913 | − | 3.51371i | ||||||
See all 60 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
76.k | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 684.2.cf.b | 60 | |
3.b | odd | 2 | 1 | 228.2.w.b | yes | 60 | |
4.b | odd | 2 | 1 | 684.2.cf.c | 60 | ||
12.b | even | 2 | 1 | 228.2.w.a | ✓ | 60 | |
19.f | odd | 18 | 1 | 684.2.cf.c | 60 | ||
57.j | even | 18 | 1 | 228.2.w.a | ✓ | 60 | |
76.k | even | 18 | 1 | inner | 684.2.cf.b | 60 | |
228.u | odd | 18 | 1 | 228.2.w.b | yes | 60 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
228.2.w.a | ✓ | 60 | 12.b | even | 2 | 1 | |
228.2.w.a | ✓ | 60 | 57.j | even | 18 | 1 | |
228.2.w.b | yes | 60 | 3.b | odd | 2 | 1 | |
228.2.w.b | yes | 60 | 228.u | odd | 18 | 1 | |
684.2.cf.b | 60 | 1.a | even | 1 | 1 | trivial | |
684.2.cf.b | 60 | 76.k | even | 18 | 1 | inner | |
684.2.cf.c | 60 | 4.b | odd | 2 | 1 | ||
684.2.cf.c | 60 | 19.f | odd | 18 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(684, [\chi])\):
\( T_{5}^{60} - 12 T_{5}^{57} - 69 T_{5}^{56} - 528 T_{5}^{55} + 4170 T_{5}^{54} + 4236 T_{5}^{53} + \cdots + 2228834013184 \) |
\( T_{7}^{60} - 120 T_{7}^{58} + 8037 T_{7}^{56} + 234 T_{7}^{55} - 370070 T_{7}^{54} + \cdots + 54\!\cdots\!89 \) |