Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [684,2,Mod(11,684)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(684, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 1, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("684.11");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 684.o (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.46176749826\) |
Analytic rank: | \(0\) |
Dimension: | \(232\) |
Relative dimension: | \(116\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 | −1.41421 | + | 0.00455230i | 1.10804 | − | 1.33126i | 1.99996 | − | 0.0128758i | − | 4.21996i | −1.56094 | + | 1.88772i | 1.74097 | + | 1.00515i | −2.82830 | + | 0.0273134i | −0.544497 | − | 2.95017i | 0.0192105 | + | 5.96789i | |
11.2 | −1.41394 | − | 0.0277479i | −0.908967 | − | 1.47437i | 1.99846 | + | 0.0784677i | 0.306310i | 1.24431 | + | 2.10990i | 0.747988 | + | 0.431851i | −2.82353 | − | 0.166402i | −1.34756 | + | 2.68031i | 0.00849945 | − | 0.433105i | ||
11.3 | −1.41338 | − | 0.0484033i | −1.15926 | + | 1.28691i | 1.99531 | + | 0.136825i | − | 0.365397i | 1.70076 | − | 1.76278i | −3.58119 | − | 2.06760i | −2.81352 | − | 0.289966i | −0.312254 | − | 2.98371i | −0.0176864 | + | 0.516447i | |
11.4 | −1.41247 | − | 0.0701983i | 1.42043 | − | 0.991151i | 1.99014 | + | 0.198306i | 4.19860i | −2.07589 | + | 1.30026i | 3.34657 | + | 1.93215i | −2.79710 | − | 0.419806i | 1.03524 | − | 2.81572i | 0.294734 | − | 5.93039i | ||
11.5 | −1.41241 | − | 0.0714431i | 1.22511 | + | 1.22438i | 1.98979 | + | 0.201814i | 1.44578i | −1.64289 | − | 1.81684i | 2.47038 | + | 1.42627i | −2.79598 | − | 0.427200i | 0.00181117 | + | 3.00000i | 0.103291 | − | 2.04203i | ||
11.6 | −1.41239 | − | 0.0718796i | −1.68620 | − | 0.395888i | 1.98967 | + | 0.203043i | 2.95180i | 2.35311 | + | 0.680350i | −0.414473 | − | 0.239296i | −2.79558 | − | 0.429792i | 2.68655 | + | 1.33509i | 0.212174 | − | 4.16908i | ||
11.7 | −1.40988 | + | 0.110618i | −0.0126385 | + | 1.73200i | 1.97553 | − | 0.311917i | − | 2.54159i | −0.173773 | − | 2.44332i | −1.35871 | − | 0.784451i | −2.75075 | + | 0.658296i | −2.99968 | − | 0.0437799i | 0.281146 | + | 3.58333i | |
11.8 | −1.38778 | + | 0.272176i | 1.69723 | + | 0.345580i | 1.85184 | − | 0.755437i | − | 0.372058i | −2.44943 | − | 0.0176435i | 0.164660 | + | 0.0950666i | −2.36433 | + | 1.55240i | 2.76115 | + | 1.17305i | 0.101265 | + | 0.516332i | |
11.9 | −1.36579 | + | 0.366886i | 1.11809 | + | 1.32283i | 1.73079 | − | 1.00218i | 3.10398i | −2.01241 | − | 1.39650i | −4.42597 | − | 2.55533i | −1.99622 | + | 2.00378i | −0.499760 | + | 2.95808i | −1.13881 | − | 4.23939i | ||
11.10 | −1.35542 | + | 0.403535i | −1.43572 | + | 0.968869i | 1.67432 | − | 1.09392i | − | 2.62337i | 1.55503 | − | 1.89259i | 4.39328 | + | 2.53646i | −1.82797 | + | 2.15836i | 1.12259 | − | 2.78205i | 1.05862 | + | 3.55576i | |
11.11 | −1.33998 | + | 0.452168i | −0.0387989 | − | 1.73162i | 1.59109 | − | 1.21179i | − | 1.06785i | 0.834971 | + | 2.30279i | 0.640536 | + | 0.369814i | −1.58409 | + | 2.34321i | −2.99699 | + | 0.134370i | 0.482846 | + | 1.43089i | |
11.12 | −1.33660 | − | 0.462057i | 0.610129 | + | 1.62103i | 1.57301 | + | 1.23517i | − | 0.399409i | −0.0664904 | − | 2.44859i | 2.94561 | + | 1.70065i | −1.53176 | − | 2.37775i | −2.25549 | + | 1.97808i | −0.184550 | + | 0.533851i | |
11.13 | −1.33496 | − | 0.466773i | −1.66738 | − | 0.468866i | 1.56425 | + | 1.24625i | − | 1.96275i | 2.00704 | + | 1.40421i | 2.10937 | + | 1.21784i | −1.50649 | − | 2.39384i | 2.56033 | + | 1.56356i | −0.916161 | + | 2.62020i | |
11.14 | −1.32793 | + | 0.486408i | −1.56525 | − | 0.741608i | 1.52681 | − | 1.29184i | − | 2.79966i | 2.43928 | + | 0.223454i | −3.69046 | − | 2.13069i | −1.39915 | + | 2.45813i | 1.90004 | + | 2.32161i | 1.36178 | + | 3.71777i | |
11.15 | −1.30529 | − | 0.544263i | 1.25014 | − | 1.19881i | 1.40756 | + | 1.42084i | 1.79274i | −2.28426 | + | 0.884390i | −2.43772 | − | 1.40742i | −1.06395 | − | 2.62069i | 0.125699 | − | 2.99737i | 0.975721 | − | 2.34004i | ||
11.16 | −1.29647 | − | 0.564950i | 1.46938 | + | 0.917012i | 1.36166 | + | 1.46488i | − | 4.02699i | −1.38695 | − | 2.01901i | −2.34202 | − | 1.35217i | −0.937772 | − | 2.66844i | 1.31818 | + | 2.69488i | −2.27505 | + | 5.22087i | |
11.17 | −1.29024 | − | 0.579026i | −1.20544 | + | 1.24375i | 1.32946 | + | 1.49417i | 1.18126i | 2.27547 | − | 0.906761i | −0.0841210 | − | 0.0485673i | −0.850165 | − | 2.69763i | −0.0938310 | − | 2.99853i | 0.683980 | − | 1.52411i | ||
11.18 | −1.28188 | + | 0.597308i | 0.151881 | − | 1.72538i | 1.28645 | − | 1.53136i | 2.85550i | 0.835889 | + | 2.30245i | −1.95665 | − | 1.12967i | −0.734381 | + | 2.73143i | −2.95386 | − | 0.524105i | −1.70562 | − | 3.66042i | ||
11.19 | −1.23750 | − | 0.684543i | −0.706340 | − | 1.58148i | 1.06280 | + | 1.69424i | − | 3.02562i | −0.208498 | + | 2.44060i | −3.37115 | − | 1.94633i | −0.155435 | − | 2.82415i | −2.00217 | + | 2.23413i | −2.07117 | + | 3.74420i | |
11.20 | −1.22733 | + | 0.702609i | −1.62382 | + | 0.602662i | 1.01268 | − | 1.72467i | 0.824073i | 1.56953 | − | 1.88058i | −0.328516 | − | 0.189669i | −0.0311255 | + | 2.82826i | 2.27360 | − | 1.95723i | −0.579001 | − | 1.01141i | ||
See next 80 embeddings (of 232 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
171.n | odd | 6 | 1 | inner |
684.o | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 684.2.o.a | ✓ | 232 |
4.b | odd | 2 | 1 | inner | 684.2.o.a | ✓ | 232 |
9.d | odd | 6 | 1 | 684.2.bi.a | yes | 232 | |
19.c | even | 3 | 1 | 684.2.bi.a | yes | 232 | |
36.h | even | 6 | 1 | 684.2.bi.a | yes | 232 | |
76.g | odd | 6 | 1 | 684.2.bi.a | yes | 232 | |
171.n | odd | 6 | 1 | inner | 684.2.o.a | ✓ | 232 |
684.o | even | 6 | 1 | inner | 684.2.o.a | ✓ | 232 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
684.2.o.a | ✓ | 232 | 1.a | even | 1 | 1 | trivial |
684.2.o.a | ✓ | 232 | 4.b | odd | 2 | 1 | inner |
684.2.o.a | ✓ | 232 | 171.n | odd | 6 | 1 | inner |
684.2.o.a | ✓ | 232 | 684.o | even | 6 | 1 | inner |
684.2.bi.a | yes | 232 | 9.d | odd | 6 | 1 | |
684.2.bi.a | yes | 232 | 19.c | even | 3 | 1 | |
684.2.bi.a | yes | 232 | 36.h | even | 6 | 1 | |
684.2.bi.a | yes | 232 | 76.g | odd | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(684, [\chi])\).