Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [684,2,Mod(467,684)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(684, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 3, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("684.467");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 684.z (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.46176749826\) |
Analytic rank: | \(0\) |
Dimension: | \(72\) |
Relative dimension: | \(36\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
467.1 | −1.40394 | − | 0.170195i | 0 | 1.94207 | + | 0.477886i | −1.69671 | − | 0.979598i | 0 | − | 0.187958i | −2.64520 | − | 1.00145i | 0 | 2.21535 | + | 1.66407i | |||||||
467.2 | −1.40322 | + | 0.175978i | 0 | 1.93806 | − | 0.493874i | 2.75201 | + | 1.58887i | 0 | − | 2.00261i | −2.63262 | + | 1.03407i | 0 | −4.14128 | − | 1.74525i | |||||||
467.3 | −1.39040 | + | 0.258456i | 0 | 1.86640 | − | 0.718711i | −0.458047 | − | 0.264454i | 0 | 4.98089i | −2.40928 | + | 1.48167i | 0 | 0.705216 | + | 0.249310i | ||||||||
467.4 | −1.38455 | − | 0.288112i | 0 | 1.83398 | + | 0.797813i | −2.41325 | − | 1.39329i | 0 | − | 2.82389i | −2.30939 | − | 1.63301i | 0 | 2.93986 | + | 2.62438i | |||||||
467.5 | −1.30794 | + | 0.537849i | 0 | 1.42144 | − | 1.40695i | −0.345026 | − | 0.199201i | 0 | 2.46529i | −1.10243 | + | 2.60473i | 0 | 0.558414 | + | 0.0749718i | ||||||||
467.6 | −1.16717 | + | 0.798572i | 0 | 0.724564 | − | 1.86414i | −0.436776 | − | 0.252172i | 0 | − | 1.18882i | 0.642960 | + | 2.75438i | 0 | 0.711169 | − | 0.0544691i | |||||||
467.7 | −1.13615 | + | 0.842123i | 0 | 0.581656 | − | 1.91355i | 3.01008 | + | 1.73787i | 0 | − | 0.522990i | 0.950599 | + | 2.66390i | 0 | −4.88339 | + | 0.560383i | |||||||
467.8 | −0.941790 | − | 1.05500i | 0 | −0.226065 | + | 1.98718i | −2.41325 | − | 1.39329i | 0 | 2.82389i | 2.30939 | − | 1.63301i | 0 | 0.802849 | + | 3.85818i | ||||||||
467.9 | −0.929883 | + | 1.06551i | 0 | −0.270635 | − | 1.98160i | −3.60678 | − | 2.08238i | 0 | − | 4.46262i | 2.36308 | + | 1.55430i | 0 | 5.57268 | − | 1.90671i | |||||||
467.10 | −0.918370 | + | 1.07545i | 0 | −0.313194 | − | 1.97533i | 0.367115 | + | 0.211954i | 0 | − | 1.57832i | 2.41200 | + | 1.47725i | 0 | −0.565094 | + | 0.200163i | |||||||
467.11 | −0.849361 | − | 1.13075i | 0 | −0.557172 | + | 1.92082i | −1.69671 | − | 0.979598i | 0 | 0.187958i | 2.64520 | − | 1.00145i | 0 | 0.333446 | + | 2.75059i | ||||||||
467.12 | −0.549209 | − | 1.30321i | 0 | −1.39674 | + | 1.43148i | 2.75201 | + | 1.58887i | 0 | 2.00261i | 2.63262 | + | 1.03407i | 0 | 0.559214 | − | 4.45908i | ||||||||
467.13 | −0.472184 | + | 1.33306i | 0 | −1.55408 | − | 1.25890i | −0.367115 | − | 0.211954i | 0 | 1.57832i | 2.41200 | − | 1.47725i | 0 | 0.455893 | − | 0.389305i | ||||||||
467.14 | −0.471369 | − | 1.33335i | 0 | −1.55562 | + | 1.25700i | −0.458047 | − | 0.264454i | 0 | − | 4.98089i | 2.40928 | + | 1.48167i | 0 | −0.136699 | + | 0.735390i | |||||||
467.15 | −0.457820 | + | 1.33806i | 0 | −1.58080 | − | 1.22518i | 3.60678 | + | 2.08238i | 0 | 4.46262i | 2.36308 | − | 1.55430i | 0 | −4.43760 | + | 3.87273i | ||||||||
467.16 | −0.188182 | − | 1.40164i | 0 | −1.92918 | + | 0.527525i | −0.345026 | − | 0.199201i | 0 | − | 2.46529i | 1.10243 | + | 2.60473i | 0 | −0.214279 | + | 0.521087i | |||||||
467.17 | −0.161227 | + | 1.40499i | 0 | −1.94801 | − | 0.453046i | −3.01008 | − | 1.73787i | 0 | 0.522990i | 0.950599 | − | 2.66390i | 0 | 2.92700 | − | 3.94895i | ||||||||
467.18 | −0.108000 | + | 1.41008i | 0 | −1.97667 | − | 0.304577i | 0.436776 | + | 0.252172i | 0 | 1.18882i | 0.642960 | − | 2.75438i | 0 | −0.402756 | + | 0.588655i | ||||||||
467.19 | 0.108000 | − | 1.41008i | 0 | −1.97667 | − | 0.304577i | −0.436776 | − | 0.252172i | 0 | 1.18882i | −0.642960 | + | 2.75438i | 0 | −0.402756 | + | 0.588655i | ||||||||
467.20 | 0.161227 | − | 1.40499i | 0 | −1.94801 | − | 0.453046i | 3.01008 | + | 1.73787i | 0 | 0.522990i | −0.950599 | + | 2.66390i | 0 | 2.92700 | − | 3.94895i | ||||||||
See all 72 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
4.b | odd | 2 | 1 | inner |
12.b | even | 2 | 1 | inner |
19.c | even | 3 | 1 | inner |
57.h | odd | 6 | 1 | inner |
76.g | odd | 6 | 1 | inner |
228.m | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 684.2.z.b | ✓ | 72 |
3.b | odd | 2 | 1 | inner | 684.2.z.b | ✓ | 72 |
4.b | odd | 2 | 1 | inner | 684.2.z.b | ✓ | 72 |
12.b | even | 2 | 1 | inner | 684.2.z.b | ✓ | 72 |
19.c | even | 3 | 1 | inner | 684.2.z.b | ✓ | 72 |
57.h | odd | 6 | 1 | inner | 684.2.z.b | ✓ | 72 |
76.g | odd | 6 | 1 | inner | 684.2.z.b | ✓ | 72 |
228.m | even | 6 | 1 | inner | 684.2.z.b | ✓ | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
684.2.z.b | ✓ | 72 | 1.a | even | 1 | 1 | trivial |
684.2.z.b | ✓ | 72 | 3.b | odd | 2 | 1 | inner |
684.2.z.b | ✓ | 72 | 4.b | odd | 2 | 1 | inner |
684.2.z.b | ✓ | 72 | 12.b | even | 2 | 1 | inner |
684.2.z.b | ✓ | 72 | 19.c | even | 3 | 1 | inner |
684.2.z.b | ✓ | 72 | 57.h | odd | 6 | 1 | inner |
684.2.z.b | ✓ | 72 | 76.g | odd | 6 | 1 | inner |
684.2.z.b | ✓ | 72 | 228.m | even | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{36} - 52 T_{5}^{34} + 1664 T_{5}^{32} - 33968 T_{5}^{30} + 510748 T_{5}^{28} - 5572760 T_{5}^{26} + \cdots + 16384 \) acting on \(S_{2}^{\mathrm{new}}(684, [\chi])\).