Properties

Label 684.2.z.b
Level $684$
Weight $2$
Character orbit 684.z
Analytic conductor $5.462$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [684,2,Mod(467,684)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(684, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("684.467");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.z (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(36\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 72 q - 12 q^{4} + 12 q^{10} + 4 q^{13} + 20 q^{16} + 28 q^{25} - 20 q^{34} - 40 q^{37} - 40 q^{40} - 32 q^{46} - 32 q^{49} - 8 q^{52} + 96 q^{58} + 28 q^{61} + 48 q^{64} - 72 q^{70} - 20 q^{73} - 36 q^{76}+ \cdots - 112 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
467.1 −1.40394 0.170195i 0 1.94207 + 0.477886i −1.69671 0.979598i 0 0.187958i −2.64520 1.00145i 0 2.21535 + 1.66407i
467.2 −1.40322 + 0.175978i 0 1.93806 0.493874i 2.75201 + 1.58887i 0 2.00261i −2.63262 + 1.03407i 0 −4.14128 1.74525i
467.3 −1.39040 + 0.258456i 0 1.86640 0.718711i −0.458047 0.264454i 0 4.98089i −2.40928 + 1.48167i 0 0.705216 + 0.249310i
467.4 −1.38455 0.288112i 0 1.83398 + 0.797813i −2.41325 1.39329i 0 2.82389i −2.30939 1.63301i 0 2.93986 + 2.62438i
467.5 −1.30794 + 0.537849i 0 1.42144 1.40695i −0.345026 0.199201i 0 2.46529i −1.10243 + 2.60473i 0 0.558414 + 0.0749718i
467.6 −1.16717 + 0.798572i 0 0.724564 1.86414i −0.436776 0.252172i 0 1.18882i 0.642960 + 2.75438i 0 0.711169 0.0544691i
467.7 −1.13615 + 0.842123i 0 0.581656 1.91355i 3.01008 + 1.73787i 0 0.522990i 0.950599 + 2.66390i 0 −4.88339 + 0.560383i
467.8 −0.941790 1.05500i 0 −0.226065 + 1.98718i −2.41325 1.39329i 0 2.82389i 2.30939 1.63301i 0 0.802849 + 3.85818i
467.9 −0.929883 + 1.06551i 0 −0.270635 1.98160i −3.60678 2.08238i 0 4.46262i 2.36308 + 1.55430i 0 5.57268 1.90671i
467.10 −0.918370 + 1.07545i 0 −0.313194 1.97533i 0.367115 + 0.211954i 0 1.57832i 2.41200 + 1.47725i 0 −0.565094 + 0.200163i
467.11 −0.849361 1.13075i 0 −0.557172 + 1.92082i −1.69671 0.979598i 0 0.187958i 2.64520 1.00145i 0 0.333446 + 2.75059i
467.12 −0.549209 1.30321i 0 −1.39674 + 1.43148i 2.75201 + 1.58887i 0 2.00261i 2.63262 + 1.03407i 0 0.559214 4.45908i
467.13 −0.472184 + 1.33306i 0 −1.55408 1.25890i −0.367115 0.211954i 0 1.57832i 2.41200 1.47725i 0 0.455893 0.389305i
467.14 −0.471369 1.33335i 0 −1.55562 + 1.25700i −0.458047 0.264454i 0 4.98089i 2.40928 + 1.48167i 0 −0.136699 + 0.735390i
467.15 −0.457820 + 1.33806i 0 −1.58080 1.22518i 3.60678 + 2.08238i 0 4.46262i 2.36308 1.55430i 0 −4.43760 + 3.87273i
467.16 −0.188182 1.40164i 0 −1.92918 + 0.527525i −0.345026 0.199201i 0 2.46529i 1.10243 + 2.60473i 0 −0.214279 + 0.521087i
467.17 −0.161227 + 1.40499i 0 −1.94801 0.453046i −3.01008 1.73787i 0 0.522990i 0.950599 2.66390i 0 2.92700 3.94895i
467.18 −0.108000 + 1.41008i 0 −1.97667 0.304577i 0.436776 + 0.252172i 0 1.18882i 0.642960 2.75438i 0 −0.402756 + 0.588655i
467.19 0.108000 1.41008i 0 −1.97667 0.304577i −0.436776 0.252172i 0 1.18882i −0.642960 + 2.75438i 0 −0.402756 + 0.588655i
467.20 0.161227 1.40499i 0 −1.94801 0.453046i 3.01008 + 1.73787i 0 0.522990i −0.950599 + 2.66390i 0 2.92700 3.94895i
See all 72 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 467.36
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner
19.c even 3 1 inner
57.h odd 6 1 inner
76.g odd 6 1 inner
228.m even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 684.2.z.b 72
3.b odd 2 1 inner 684.2.z.b 72
4.b odd 2 1 inner 684.2.z.b 72
12.b even 2 1 inner 684.2.z.b 72
19.c even 3 1 inner 684.2.z.b 72
57.h odd 6 1 inner 684.2.z.b 72
76.g odd 6 1 inner 684.2.z.b 72
228.m even 6 1 inner 684.2.z.b 72
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
684.2.z.b 72 1.a even 1 1 trivial
684.2.z.b 72 3.b odd 2 1 inner
684.2.z.b 72 4.b odd 2 1 inner
684.2.z.b 72 12.b even 2 1 inner
684.2.z.b 72 19.c even 3 1 inner
684.2.z.b 72 57.h odd 6 1 inner
684.2.z.b 72 76.g odd 6 1 inner
684.2.z.b 72 228.m even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{36} - 52 T_{5}^{34} + 1664 T_{5}^{32} - 33968 T_{5}^{30} + 510748 T_{5}^{28} - 5572760 T_{5}^{26} + \cdots + 16384 \) acting on \(S_{2}^{\mathrm{new}}(684, [\chi])\). Copy content Toggle raw display