gp: [N,k,chi] = [686,2,Mod(361,686)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(686, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("686.361");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [6,3,1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 5 1,\beta_1,\ldots,\beta_{5} 1 , β 1 , … , β 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 6 − x 5 + 3 x 4 + 5 x 2 − 2 x + 1 x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 x 6 − x 5 + 3 x 4 + 5 x 2 − 2 x + 1
x^6 - x^5 + 3*x^4 + 5*x^2 - 2*x + 1
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( − ν 5 + 3 ν 4 − 9 ν 3 + 5 ν 2 − 2 ν + 6 ) / 13 ( -\nu^{5} + 3\nu^{4} - 9\nu^{3} + 5\nu^{2} - 2\nu + 6 ) / 13 ( − ν 5 + 3 ν 4 − 9 ν 3 + 5 ν 2 − 2 ν + 6 ) / 1 3
(-v^5 + 3*v^4 - 9*v^3 + 5*v^2 - 2*v + 6) / 13
β 3 \beta_{3} β 3 = = =
( − 3 ν 5 + 9 ν 4 − 14 ν 3 + 15 ν 2 − 6 ν + 18 ) / 13 ( -3\nu^{5} + 9\nu^{4} - 14\nu^{3} + 15\nu^{2} - 6\nu + 18 ) / 13 ( − 3 ν 5 + 9 ν 4 − 1 4 ν 3 + 1 5 ν 2 − 6 ν + 1 8 ) / 1 3
(-3*v^5 + 9*v^4 - 14*v^3 + 15*v^2 - 6*v + 18) / 13
β 4 \beta_{4} β 4 = = =
( − 4 ν 5 − ν 4 − 10 ν 3 − 6 ν 2 − 34 ν − 2 ) / 13 ( -4\nu^{5} - \nu^{4} - 10\nu^{3} - 6\nu^{2} - 34\nu - 2 ) / 13 ( − 4 ν 5 − ν 4 − 1 0 ν 3 − 6 ν 2 − 3 4 ν − 2 ) / 1 3
(-4*v^5 - v^4 - 10*v^3 - 6*v^2 - 34*v - 2) / 13
β 5 \beta_{5} β 5 = = =
( − 6 ν 5 + 5 ν 4 − 15 ν 3 − 9 ν 2 − 25 ν + 10 ) / 13 ( -6\nu^{5} + 5\nu^{4} - 15\nu^{3} - 9\nu^{2} - 25\nu + 10 ) / 13 ( − 6 ν 5 + 5 ν 4 − 1 5 ν 3 − 9 ν 2 − 2 5 ν + 1 0 ) / 1 3
(-6*v^5 + 5*v^4 - 15*v^3 - 9*v^2 - 25*v + 10) / 13
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
− β 5 + β 4 + β 3 − β 2 + β 1 -\beta_{5} + \beta_{4} + \beta_{3} - \beta_{2} + \beta_1 − β 5 + β 4 + β 3 − β 2 + β 1
-b5 + b4 + b3 - b2 + b1
ν 3 \nu^{3} ν 3 = = =
β 3 − 3 β 2 \beta_{3} - 3\beta_{2} β 3 − 3 β 2
b3 - 3*b2
ν 4 \nu^{4} ν 4 = = =
2 β 5 − 3 β 4 − 4 β 1 − 2 2\beta_{5} - 3\beta_{4} - 4\beta _1 - 2 2 β 5 − 3 β 4 − 4 β 1 − 2
2*b5 - 3*b4 - 4*b1 - 2
ν 5 \nu^{5} ν 5 = = =
β 5 − 4 β 4 − 4 β 3 + 9 β 2 − 9 β 1 \beta_{5} - 4\beta_{4} - 4\beta_{3} + 9\beta_{2} - 9\beta_1 β 5 − 4 β 4 − 4 β 3 + 9 β 2 − 9 β 1
b5 - 4*b4 - 4*b3 + 9*b2 - 9*b1
Character values
We give the values of χ \chi χ on generators for ( Z / 686 Z ) × \left(\mathbb{Z}/686\mathbb{Z}\right)^\times ( Z / 6 8 6 Z ) × .
n n n
3 3 3
χ ( n ) \chi(n) χ ( n )
− β 5 -\beta_{5} − β 5
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 6 − T 3 5 + 3 T 3 4 + 5 T 3 2 − 2 T 3 + 1 T_{3}^{6} - T_{3}^{5} + 3T_{3}^{4} + 5T_{3}^{2} - 2T_{3} + 1 T 3 6 − T 3 5 + 3 T 3 4 + 5 T 3 2 − 2 T 3 + 1
T3^6 - T3^5 + 3*T3^4 + 5*T3^2 - 2*T3 + 1
acting on S 2 n e w ( 686 , [ χ ] ) S_{2}^{\mathrm{new}}(686, [\chi]) S 2 n e w ( 6 8 6 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 − T + 1 ) 3 (T^{2} - T + 1)^{3} ( T 2 − T + 1 ) 3
(T^2 - T + 1)^3
3 3 3
T 6 − T 5 + 3 T 4 + ⋯ + 1 T^{6} - T^{5} + 3 T^{4} + \cdots + 1 T 6 − T 5 + 3 T 4 + ⋯ + 1
T^6 - T^5 + 3*T^4 + 5*T^2 - 2*T + 1
5 5 5
T 6 + 7 T 4 + ⋯ + 49 T^{6} + 7 T^{4} + \cdots + 49 T 6 + 7 T 4 + ⋯ + 4 9
T^6 + 7*T^4 - 14*T^3 + 49*T^2 - 49*T + 49
7 7 7
T 6 T^{6} T 6
T^6
11 11 1 1
T 6 + 21 T 4 + ⋯ + 49 T^{6} + 21 T^{4} + \cdots + 49 T 6 + 2 1 T 4 + ⋯ + 4 9
T^6 + 21*T^4 - 14*T^3 + 441*T^2 - 147*T + 49
13 13 1 3
( T 3 + 9 T 2 + ⋯ − 113 ) 2 (T^{3} + 9 T^{2} + \cdots - 113)^{2} ( T 3 + 9 T 2 + ⋯ − 1 1 3 ) 2
(T^3 + 9*T^2 - T - 113)^2
17 17 1 7
T 6 − 4 T 5 + ⋯ + 169 T^{6} - 4 T^{5} + \cdots + 169 T 6 − 4 T 5 + ⋯ + 1 6 9
T^6 - 4*T^5 + 41*T^4 + 126*T^3 + 573*T^2 + 325*T + 169
19 19 1 9
T 6 − 13 T 5 + ⋯ + 1849 T^{6} - 13 T^{5} + \cdots + 1849 T 6 − 1 3 T 5 + ⋯ + 1 8 4 9
T^6 - 13*T^5 + 122*T^4 - 525*T^3 + 1650*T^2 - 2021*T + 1849
23 23 2 3
T 6 + 7 T 5 + ⋯ + 8281 T^{6} + 7 T^{5} + \cdots + 8281 T 6 + 7 T 5 + ⋯ + 8 2 8 1
T^6 + 7*T^5 + 63*T^4 + 84*T^3 + 833*T^2 + 1274*T + 8281
29 29 2 9
( T 3 − 3 T 2 − 4 T − 1 ) 2 (T^{3} - 3 T^{2} - 4 T - 1)^{2} ( T 3 − 3 T 2 − 4 T − 1 ) 2
(T^3 - 3*T^2 - 4*T - 1)^2
31 31 3 1
T 6 − 16 T 5 + ⋯ + 1681 T^{6} - 16 T^{5} + \cdots + 1681 T 6 − 1 6 T 5 + ⋯ + 1 6 8 1
T^6 - 16*T^5 + 187*T^4 - 1022*T^3 + 4105*T^2 - 2829*T + 1681
37 37 3 7
T 6 + 6 T 5 + ⋯ + 729 T^{6} + 6 T^{5} + \cdots + 729 T 6 + 6 T 5 + ⋯ + 7 2 9
T^6 + 6*T^5 + 45*T^4 + 243*T^2 + 243*T + 729
41 41 4 1
( T 3 + 11 T 2 + ⋯ + 13 ) 2 (T^{3} + 11 T^{2} + \cdots + 13)^{2} ( T 3 + 1 1 T 2 + ⋯ + 1 3 ) 2
(T^3 + 11*T^2 + 31*T + 13)^2
43 43 4 3
( T 3 + 11 T 2 + ⋯ − 29 ) 2 (T^{3} + 11 T^{2} + \cdots - 29)^{2} ( T 3 + 1 1 T 2 + ⋯ − 2 9 ) 2
(T^3 + 11*T^2 + 24*T - 29)^2
47 47 4 7
T 6 + 8 T 5 + ⋯ + 1 T^{6} + 8 T^{5} + \cdots + 1 T 6 + 8 T 5 + ⋯ + 1
T^6 + 8*T^5 + 59*T^4 + 42*T^3 + 33*T^2 - 5*T + 1
53 53 5 3
T 6 − 3 T 5 + ⋯ + 613089 T^{6} - 3 T^{5} + \cdots + 613089 T 6 − 3 T 5 + ⋯ + 6 1 3 0 8 9
T^6 - 3*T^5 + 153*T^4 - 1134*T^3 + 23085*T^2 - 112752*T + 613089
59 59 5 9
T 6 + 4 T 5 + ⋯ + 44521 T^{6} + 4 T^{5} + \cdots + 44521 T 6 + 4 T 5 + ⋯ + 4 4 5 2 1
T^6 + 4*T^5 + 111*T^4 + 42*T^3 + 9869*T^2 + 20045*T + 44521
61 61 6 1
T 6 − 31 T 5 + ⋯ + 829921 T^{6} - 31 T^{5} + \cdots + 829921 T 6 − 3 1 T 5 + ⋯ + 8 2 9 9 2 1
T^6 - 31*T^5 + 657*T^4 - 7602*T^3 + 64175*T^2 - 276944*T + 829921
67 67 6 7
T 6 + 23 T 5 + ⋯ + 94249 T^{6} + 23 T^{5} + \cdots + 94249 T 6 + 2 3 T 5 + ⋯ + 9 4 2 4 9
T^6 + 23*T^5 + 369*T^4 + 3066*T^3 + 18539*T^2 + 49120*T + 94249
71 71 7 1
( T 3 − 7 T 2 + ⋯ + 637 ) 2 (T^{3} - 7 T^{2} + \cdots + 637)^{2} ( T 3 − 7 T 2 + ⋯ + 6 3 7 ) 2
(T^3 - 7*T^2 - 98*T + 637)^2
73 73 7 3
T 6 − 27 T 5 + ⋯ + 57121 T^{6} - 27 T^{5} + \cdots + 57121 T 6 − 2 7 T 5 + ⋯ + 5 7 1 2 1
T^6 - 27*T^5 + 535*T^4 - 4760*T^3 + 31183*T^2 - 46366*T + 57121
79 79 7 9
T 6 − 32 T 5 + ⋯ + 1129969 T^{6} - 32 T^{5} + \cdots + 1129969 T 6 − 3 2 T 5 + ⋯ + 1 1 2 9 9 6 9
T^6 - 32*T^5 + 699*T^4 - 8274*T^3 + 71609*T^2 - 345475*T + 1129969
83 83 8 3
( T 3 − 11 T 2 + ⋯ − 181 ) 2 (T^{3} - 11 T^{2} + \cdots - 181)^{2} ( T 3 − 1 1 T 2 + ⋯ − 1 8 1 ) 2
(T^3 - 11*T^2 - 102*T - 181)^2
89 89 8 9
T 6 − 10 T 5 + ⋯ + 841 T^{6} - 10 T^{5} + \cdots + 841 T 6 − 1 0 T 5 + ⋯ + 8 4 1
T^6 - 10*T^5 + 153*T^4 + 588*T^3 + 2519*T^2 + 1537*T + 841
97 97 9 7
( T 3 + 5 T 2 + 6 T + 1 ) 2 (T^{3} + 5 T^{2} + 6 T + 1)^{2} ( T 3 + 5 T 2 + 6 T + 1 ) 2
(T^3 + 5*T^2 + 6*T + 1)^2
show more
show less