Properties

Label 686.2.c.d
Level 686686
Weight 22
Character orbit 686.c
Analytic conductor 5.4785.478
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [686,2,Mod(361,686)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(686, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("686.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 686=273 686 = 2 \cdot 7^{3}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 686.c (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,3,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.477737578665.47773757866
Analytic rank: 00
Dimension: 66
Relative dimension: 33 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: 6.0.64827.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x6x5+3x4+5x22x+1 x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β5q2+β1q3+(β51)q4+(β52β4+β1)q5+β2q6q8+(2β5+β4++β1)q9+(β52β4β1+1)q10++(5β32β2+7)q99+O(q100) q + \beta_{5} q^{2} + \beta_1 q^{3} + (\beta_{5} - 1) q^{4} + ( - \beta_{5} - 2 \beta_{4} + \cdots - \beta_1) q^{5} + \beta_{2} q^{6} - q^{8} + (2 \beta_{5} + \beta_{4} + \cdots + \beta_1) q^{9} + ( - \beta_{5} - 2 \beta_{4} - \beta_1 + 1) q^{10}+ \cdots + (5 \beta_{3} - 2 \beta_{2} + 7) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+3q2+q33q4+2q66q8+4q9+q1218q133q16+4q174q18+13q197q23q24+q259q26+4q27+6q29+16q31++28q99+O(q100) 6 q + 3 q^{2} + q^{3} - 3 q^{4} + 2 q^{6} - 6 q^{8} + 4 q^{9} + q^{12} - 18 q^{13} - 3 q^{16} + 4 q^{17} - 4 q^{18} + 13 q^{19} - 7 q^{23} - q^{24} + q^{25} - 9 q^{26} + 4 q^{27} + 6 q^{29} + 16 q^{31}+ \cdots + 28 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6x5+3x4+5x22x+1 x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν5+3ν49ν3+5ν22ν+6)/13 ( -\nu^{5} + 3\nu^{4} - 9\nu^{3} + 5\nu^{2} - 2\nu + 6 ) / 13 Copy content Toggle raw display
β3\beta_{3}== (3ν5+9ν414ν3+15ν26ν+18)/13 ( -3\nu^{5} + 9\nu^{4} - 14\nu^{3} + 15\nu^{2} - 6\nu + 18 ) / 13 Copy content Toggle raw display
β4\beta_{4}== (4ν5ν410ν36ν234ν2)/13 ( -4\nu^{5} - \nu^{4} - 10\nu^{3} - 6\nu^{2} - 34\nu - 2 ) / 13 Copy content Toggle raw display
β5\beta_{5}== (6ν5+5ν415ν39ν225ν+10)/13 ( -6\nu^{5} + 5\nu^{4} - 15\nu^{3} - 9\nu^{2} - 25\nu + 10 ) / 13 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β5+β4+β3β2+β1 -\beta_{5} + \beta_{4} + \beta_{3} - \beta_{2} + \beta_1 Copy content Toggle raw display
ν3\nu^{3}== β33β2 \beta_{3} - 3\beta_{2} Copy content Toggle raw display
ν4\nu^{4}== 2β53β44β12 2\beta_{5} - 3\beta_{4} - 4\beta _1 - 2 Copy content Toggle raw display
ν5\nu^{5}== β54β44β3+9β29β1 \beta_{5} - 4\beta_{4} - 4\beta_{3} + 9\beta_{2} - 9\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/686Z)×\left(\mathbb{Z}/686\mathbb{Z}\right)^\times.

nn 33
χ(n)\chi(n) β5-\beta_{5}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
361.1
−0.623490 + 1.07992i
0.222521 0.385418i
0.900969 1.56052i
−0.623490 1.07992i
0.222521 + 0.385418i
0.900969 + 1.56052i
0.500000 + 0.866025i −0.623490 + 1.07992i −0.500000 + 0.866025i 0.678448 + 1.17511i −1.24698 0 −1.00000 0.722521 + 1.25144i −0.678448 + 1.17511i
361.2 0.500000 + 0.866025i 0.222521 0.385418i −0.500000 + 0.866025i −1.52446 2.64044i 0.445042 0 −1.00000 1.40097 + 2.42655i 1.52446 2.64044i
361.3 0.500000 + 0.866025i 0.900969 1.56052i −0.500000 + 0.866025i 0.846011 + 1.46533i 1.80194 0 −1.00000 −0.123490 0.213891i −0.846011 + 1.46533i
667.1 0.500000 0.866025i −0.623490 1.07992i −0.500000 0.866025i 0.678448 1.17511i −1.24698 0 −1.00000 0.722521 1.25144i −0.678448 1.17511i
667.2 0.500000 0.866025i 0.222521 + 0.385418i −0.500000 0.866025i −1.52446 + 2.64044i 0.445042 0 −1.00000 1.40097 2.42655i 1.52446 + 2.64044i
667.3 0.500000 0.866025i 0.900969 + 1.56052i −0.500000 0.866025i 0.846011 1.46533i 1.80194 0 −1.00000 −0.123490 + 0.213891i −0.846011 1.46533i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 361.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 686.2.c.d 6
7.b odd 2 1 686.2.c.c 6
7.c even 3 1 686.2.a.a 3
7.c even 3 1 inner 686.2.c.d 6
7.d odd 6 1 686.2.a.b yes 3
7.d odd 6 1 686.2.c.c 6
21.g even 6 1 6174.2.a.l 3
21.h odd 6 1 6174.2.a.k 3
28.f even 6 1 5488.2.a.b 3
28.g odd 6 1 5488.2.a.e 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
686.2.a.a 3 7.c even 3 1
686.2.a.b yes 3 7.d odd 6 1
686.2.c.c 6 7.b odd 2 1
686.2.c.c 6 7.d odd 6 1
686.2.c.d 6 1.a even 1 1 trivial
686.2.c.d 6 7.c even 3 1 inner
5488.2.a.b 3 28.f even 6 1
5488.2.a.e 3 28.g odd 6 1
6174.2.a.k 3 21.h odd 6 1
6174.2.a.l 3 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T36T35+3T34+5T322T3+1 T_{3}^{6} - T_{3}^{5} + 3T_{3}^{4} + 5T_{3}^{2} - 2T_{3} + 1 acting on S2new(686,[χ])S_{2}^{\mathrm{new}}(686, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2T+1)3 (T^{2} - T + 1)^{3} Copy content Toggle raw display
33 T6T5+3T4++1 T^{6} - T^{5} + 3 T^{4} + \cdots + 1 Copy content Toggle raw display
55 T6+7T4++49 T^{6} + 7 T^{4} + \cdots + 49 Copy content Toggle raw display
77 T6 T^{6} Copy content Toggle raw display
1111 T6+21T4++49 T^{6} + 21 T^{4} + \cdots + 49 Copy content Toggle raw display
1313 (T3+9T2+113)2 (T^{3} + 9 T^{2} + \cdots - 113)^{2} Copy content Toggle raw display
1717 T64T5++169 T^{6} - 4 T^{5} + \cdots + 169 Copy content Toggle raw display
1919 T613T5++1849 T^{6} - 13 T^{5} + \cdots + 1849 Copy content Toggle raw display
2323 T6+7T5++8281 T^{6} + 7 T^{5} + \cdots + 8281 Copy content Toggle raw display
2929 (T33T24T1)2 (T^{3} - 3 T^{2} - 4 T - 1)^{2} Copy content Toggle raw display
3131 T616T5++1681 T^{6} - 16 T^{5} + \cdots + 1681 Copy content Toggle raw display
3737 T6+6T5++729 T^{6} + 6 T^{5} + \cdots + 729 Copy content Toggle raw display
4141 (T3+11T2++13)2 (T^{3} + 11 T^{2} + \cdots + 13)^{2} Copy content Toggle raw display
4343 (T3+11T2+29)2 (T^{3} + 11 T^{2} + \cdots - 29)^{2} Copy content Toggle raw display
4747 T6+8T5++1 T^{6} + 8 T^{5} + \cdots + 1 Copy content Toggle raw display
5353 T63T5++613089 T^{6} - 3 T^{5} + \cdots + 613089 Copy content Toggle raw display
5959 T6+4T5++44521 T^{6} + 4 T^{5} + \cdots + 44521 Copy content Toggle raw display
6161 T631T5++829921 T^{6} - 31 T^{5} + \cdots + 829921 Copy content Toggle raw display
6767 T6+23T5++94249 T^{6} + 23 T^{5} + \cdots + 94249 Copy content Toggle raw display
7171 (T37T2++637)2 (T^{3} - 7 T^{2} + \cdots + 637)^{2} Copy content Toggle raw display
7373 T627T5++57121 T^{6} - 27 T^{5} + \cdots + 57121 Copy content Toggle raw display
7979 T632T5++1129969 T^{6} - 32 T^{5} + \cdots + 1129969 Copy content Toggle raw display
8383 (T311T2+181)2 (T^{3} - 11 T^{2} + \cdots - 181)^{2} Copy content Toggle raw display
8989 T610T5++841 T^{6} - 10 T^{5} + \cdots + 841 Copy content Toggle raw display
9797 (T3+5T2+6T+1)2 (T^{3} + 5 T^{2} + 6 T + 1)^{2} Copy content Toggle raw display
show more
show less