Properties

Label 6897.2.a.bm.1.15
Level $6897$
Weight $2$
Character 6897.1
Self dual yes
Analytic conductor $55.073$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6897,2,Mod(1,6897)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6897, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6897.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6897 = 3 \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6897.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.0728222741\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} - 18 x^{14} + 57 x^{13} + 121 x^{12} - 417 x^{11} - 374 x^{10} + 1494 x^{9} + 490 x^{8} + \cdots - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 627)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Root \(2.41640\) of defining polynomial
Character \(\chi\) \(=\) 6897.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.41640 q^{2} -1.00000 q^{3} +3.83898 q^{4} -2.71140 q^{5} -2.41640 q^{6} +1.98097 q^{7} +4.44371 q^{8} +1.00000 q^{9} -6.55182 q^{10} -3.83898 q^{12} +4.07094 q^{13} +4.78681 q^{14} +2.71140 q^{15} +3.05980 q^{16} -0.380615 q^{17} +2.41640 q^{18} +1.00000 q^{19} -10.4090 q^{20} -1.98097 q^{21} +3.81700 q^{23} -4.44371 q^{24} +2.35169 q^{25} +9.83700 q^{26} -1.00000 q^{27} +7.60490 q^{28} +4.86770 q^{29} +6.55182 q^{30} -6.27840 q^{31} -1.49371 q^{32} -0.919718 q^{34} -5.37120 q^{35} +3.83898 q^{36} -1.36597 q^{37} +2.41640 q^{38} -4.07094 q^{39} -12.0487 q^{40} +3.74262 q^{41} -4.78681 q^{42} +3.45694 q^{43} -2.71140 q^{45} +9.22339 q^{46} +12.8422 q^{47} -3.05980 q^{48} -3.07576 q^{49} +5.68262 q^{50} +0.380615 q^{51} +15.6282 q^{52} -1.40293 q^{53} -2.41640 q^{54} +8.80284 q^{56} -1.00000 q^{57} +11.7623 q^{58} -1.27867 q^{59} +10.4090 q^{60} +1.72418 q^{61} -15.1711 q^{62} +1.98097 q^{63} -9.72900 q^{64} -11.0379 q^{65} -7.59547 q^{67} -1.46117 q^{68} -3.81700 q^{69} -12.9790 q^{70} -9.91341 q^{71} +4.44371 q^{72} +4.03479 q^{73} -3.30072 q^{74} -2.35169 q^{75} +3.83898 q^{76} -9.83700 q^{78} +5.90373 q^{79} -8.29635 q^{80} +1.00000 q^{81} +9.04365 q^{82} +5.04220 q^{83} -7.60490 q^{84} +1.03200 q^{85} +8.35334 q^{86} -4.86770 q^{87} +15.9000 q^{89} -6.55182 q^{90} +8.06440 q^{91} +14.6534 q^{92} +6.27840 q^{93} +31.0319 q^{94} -2.71140 q^{95} +1.49371 q^{96} -1.85278 q^{97} -7.43227 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 3 q^{2} - 16 q^{3} + 13 q^{4} + 8 q^{5} - 3 q^{6} - 2 q^{7} + 6 q^{8} + 16 q^{9} + 5 q^{10} - 13 q^{12} + 5 q^{13} + 4 q^{14} - 8 q^{15} + 3 q^{16} + 4 q^{17} + 3 q^{18} + 16 q^{19} + 10 q^{20} + 2 q^{21}+ \cdots - 41 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.41640 1.70865 0.854326 0.519738i \(-0.173970\pi\)
0.854326 + 0.519738i \(0.173970\pi\)
\(3\) −1.00000 −0.577350
\(4\) 3.83898 1.91949
\(5\) −2.71140 −1.21258 −0.606288 0.795246i \(-0.707342\pi\)
−0.606288 + 0.795246i \(0.707342\pi\)
\(6\) −2.41640 −0.986490
\(7\) 1.98097 0.748736 0.374368 0.927280i \(-0.377860\pi\)
0.374368 + 0.927280i \(0.377860\pi\)
\(8\) 4.44371 1.57109
\(9\) 1.00000 0.333333
\(10\) −6.55182 −2.07187
\(11\) 0 0
\(12\) −3.83898 −1.10822
\(13\) 4.07094 1.12907 0.564537 0.825408i \(-0.309055\pi\)
0.564537 + 0.825408i \(0.309055\pi\)
\(14\) 4.78681 1.27933
\(15\) 2.71140 0.700081
\(16\) 3.05980 0.764951
\(17\) −0.380615 −0.0923127 −0.0461564 0.998934i \(-0.514697\pi\)
−0.0461564 + 0.998934i \(0.514697\pi\)
\(18\) 2.41640 0.569550
\(19\) 1.00000 0.229416
\(20\) −10.4090 −2.32753
\(21\) −1.98097 −0.432283
\(22\) 0 0
\(23\) 3.81700 0.795899 0.397950 0.917407i \(-0.369722\pi\)
0.397950 + 0.917407i \(0.369722\pi\)
\(24\) −4.44371 −0.907068
\(25\) 2.35169 0.470338
\(26\) 9.83700 1.92919
\(27\) −1.00000 −0.192450
\(28\) 7.60490 1.43719
\(29\) 4.86770 0.903908 0.451954 0.892041i \(-0.350727\pi\)
0.451954 + 0.892041i \(0.350727\pi\)
\(30\) 6.55182 1.19619
\(31\) −6.27840 −1.12763 −0.563817 0.825900i \(-0.690668\pi\)
−0.563817 + 0.825900i \(0.690668\pi\)
\(32\) −1.49371 −0.264053
\(33\) 0 0
\(34\) −0.919718 −0.157730
\(35\) −5.37120 −0.907898
\(36\) 3.83898 0.639830
\(37\) −1.36597 −0.224564 −0.112282 0.993676i \(-0.535816\pi\)
−0.112282 + 0.993676i \(0.535816\pi\)
\(38\) 2.41640 0.391992
\(39\) −4.07094 −0.651871
\(40\) −12.0487 −1.90506
\(41\) 3.74262 0.584499 0.292249 0.956342i \(-0.405596\pi\)
0.292249 + 0.956342i \(0.405596\pi\)
\(42\) −4.78681 −0.738621
\(43\) 3.45694 0.527178 0.263589 0.964635i \(-0.415094\pi\)
0.263589 + 0.964635i \(0.415094\pi\)
\(44\) 0 0
\(45\) −2.71140 −0.404192
\(46\) 9.22339 1.35991
\(47\) 12.8422 1.87323 0.936615 0.350361i \(-0.113941\pi\)
0.936615 + 0.350361i \(0.113941\pi\)
\(48\) −3.05980 −0.441645
\(49\) −3.07576 −0.439395
\(50\) 5.68262 0.803644
\(51\) 0.380615 0.0532968
\(52\) 15.6282 2.16725
\(53\) −1.40293 −0.192707 −0.0963533 0.995347i \(-0.530718\pi\)
−0.0963533 + 0.995347i \(0.530718\pi\)
\(54\) −2.41640 −0.328830
\(55\) 0 0
\(56\) 8.80284 1.17633
\(57\) −1.00000 −0.132453
\(58\) 11.7623 1.54446
\(59\) −1.27867 −0.166469 −0.0832346 0.996530i \(-0.526525\pi\)
−0.0832346 + 0.996530i \(0.526525\pi\)
\(60\) 10.4090 1.34380
\(61\) 1.72418 0.220759 0.110379 0.993890i \(-0.464793\pi\)
0.110379 + 0.993890i \(0.464793\pi\)
\(62\) −15.1711 −1.92673
\(63\) 1.98097 0.249579
\(64\) −9.72900 −1.21613
\(65\) −11.0379 −1.36909
\(66\) 0 0
\(67\) −7.59547 −0.927935 −0.463967 0.885852i \(-0.653575\pi\)
−0.463967 + 0.885852i \(0.653575\pi\)
\(68\) −1.46117 −0.177193
\(69\) −3.81700 −0.459513
\(70\) −12.9790 −1.55128
\(71\) −9.91341 −1.17651 −0.588253 0.808677i \(-0.700184\pi\)
−0.588253 + 0.808677i \(0.700184\pi\)
\(72\) 4.44371 0.523696
\(73\) 4.03479 0.472237 0.236118 0.971724i \(-0.424125\pi\)
0.236118 + 0.971724i \(0.424125\pi\)
\(74\) −3.30072 −0.383701
\(75\) −2.35169 −0.271550
\(76\) 3.83898 0.440361
\(77\) 0 0
\(78\) −9.83700 −1.11382
\(79\) 5.90373 0.664221 0.332111 0.943240i \(-0.392239\pi\)
0.332111 + 0.943240i \(0.392239\pi\)
\(80\) −8.29635 −0.927560
\(81\) 1.00000 0.111111
\(82\) 9.04365 0.998704
\(83\) 5.04220 0.553454 0.276727 0.960949i \(-0.410750\pi\)
0.276727 + 0.960949i \(0.410750\pi\)
\(84\) −7.60490 −0.829762
\(85\) 1.03200 0.111936
\(86\) 8.35334 0.900764
\(87\) −4.86770 −0.521872
\(88\) 0 0
\(89\) 15.9000 1.68540 0.842700 0.538384i \(-0.180965\pi\)
0.842700 + 0.538384i \(0.180965\pi\)
\(90\) −6.55182 −0.690623
\(91\) 8.06440 0.845379
\(92\) 14.6534 1.52772
\(93\) 6.27840 0.651040
\(94\) 31.0319 3.20070
\(95\) −2.71140 −0.278184
\(96\) 1.49371 0.152451
\(97\) −1.85278 −0.188121 −0.0940607 0.995566i \(-0.529985\pi\)
−0.0940607 + 0.995566i \(0.529985\pi\)
\(98\) −7.43227 −0.750772
\(99\) 0 0
\(100\) 9.02809 0.902809
\(101\) 14.9641 1.48898 0.744490 0.667634i \(-0.232693\pi\)
0.744490 + 0.667634i \(0.232693\pi\)
\(102\) 0.919718 0.0910656
\(103\) 9.51262 0.937306 0.468653 0.883382i \(-0.344739\pi\)
0.468653 + 0.883382i \(0.344739\pi\)
\(104\) 18.0900 1.77387
\(105\) 5.37120 0.524175
\(106\) −3.39003 −0.329268
\(107\) 16.2310 1.56911 0.784553 0.620062i \(-0.212893\pi\)
0.784553 + 0.620062i \(0.212893\pi\)
\(108\) −3.83898 −0.369406
\(109\) 12.0781 1.15687 0.578436 0.815728i \(-0.303663\pi\)
0.578436 + 0.815728i \(0.303663\pi\)
\(110\) 0 0
\(111\) 1.36597 0.129652
\(112\) 6.06137 0.572746
\(113\) −3.96097 −0.372617 −0.186308 0.982491i \(-0.559652\pi\)
−0.186308 + 0.982491i \(0.559652\pi\)
\(114\) −2.41640 −0.226316
\(115\) −10.3494 −0.965088
\(116\) 18.6870 1.73504
\(117\) 4.07094 0.376358
\(118\) −3.08979 −0.284438
\(119\) −0.753987 −0.0691179
\(120\) 12.0487 1.09989
\(121\) 0 0
\(122\) 4.16631 0.377200
\(123\) −3.74262 −0.337460
\(124\) −24.1027 −2.16448
\(125\) 7.18062 0.642255
\(126\) 4.78681 0.426443
\(127\) −0.924370 −0.0820246 −0.0410123 0.999159i \(-0.513058\pi\)
−0.0410123 + 0.999159i \(0.513058\pi\)
\(128\) −20.5217 −1.81388
\(129\) −3.45694 −0.304366
\(130\) −26.6720 −2.33929
\(131\) 17.2255 1.50500 0.752499 0.658594i \(-0.228848\pi\)
0.752499 + 0.658594i \(0.228848\pi\)
\(132\) 0 0
\(133\) 1.98097 0.171772
\(134\) −18.3537 −1.58552
\(135\) 2.71140 0.233360
\(136\) −1.69134 −0.145031
\(137\) 16.9171 1.44532 0.722661 0.691202i \(-0.242919\pi\)
0.722661 + 0.691202i \(0.242919\pi\)
\(138\) −9.22339 −0.785147
\(139\) 15.4247 1.30830 0.654151 0.756364i \(-0.273026\pi\)
0.654151 + 0.756364i \(0.273026\pi\)
\(140\) −20.6199 −1.74270
\(141\) −12.8422 −1.08151
\(142\) −23.9547 −2.01024
\(143\) 0 0
\(144\) 3.05980 0.254984
\(145\) −13.1983 −1.09606
\(146\) 9.74966 0.806888
\(147\) 3.07576 0.253685
\(148\) −5.24392 −0.431047
\(149\) −13.4087 −1.09848 −0.549240 0.835665i \(-0.685083\pi\)
−0.549240 + 0.835665i \(0.685083\pi\)
\(150\) −5.68262 −0.463984
\(151\) 9.94201 0.809069 0.404535 0.914523i \(-0.367434\pi\)
0.404535 + 0.914523i \(0.367434\pi\)
\(152\) 4.44371 0.360432
\(153\) −0.380615 −0.0307709
\(154\) 0 0
\(155\) 17.0233 1.36734
\(156\) −15.6282 −1.25126
\(157\) −24.4982 −1.95517 −0.977585 0.210541i \(-0.932478\pi\)
−0.977585 + 0.210541i \(0.932478\pi\)
\(158\) 14.2658 1.13492
\(159\) 1.40293 0.111259
\(160\) 4.05004 0.320184
\(161\) 7.56136 0.595918
\(162\) 2.41640 0.189850
\(163\) −5.21612 −0.408558 −0.204279 0.978913i \(-0.565485\pi\)
−0.204279 + 0.978913i \(0.565485\pi\)
\(164\) 14.3678 1.12194
\(165\) 0 0
\(166\) 12.1840 0.945659
\(167\) 22.8758 1.77018 0.885090 0.465420i \(-0.154097\pi\)
0.885090 + 0.465420i \(0.154097\pi\)
\(168\) −8.80284 −0.679154
\(169\) 3.57252 0.274809
\(170\) 2.49372 0.191260
\(171\) 1.00000 0.0764719
\(172\) 13.2711 1.01191
\(173\) −16.2794 −1.23770 −0.618849 0.785510i \(-0.712401\pi\)
−0.618849 + 0.785510i \(0.712401\pi\)
\(174\) −11.7623 −0.891697
\(175\) 4.65863 0.352159
\(176\) 0 0
\(177\) 1.27867 0.0961111
\(178\) 38.4208 2.87976
\(179\) −20.9532 −1.56611 −0.783057 0.621949i \(-0.786341\pi\)
−0.783057 + 0.621949i \(0.786341\pi\)
\(180\) −10.4090 −0.775842
\(181\) 17.5122 1.30167 0.650835 0.759219i \(-0.274419\pi\)
0.650835 + 0.759219i \(0.274419\pi\)
\(182\) 19.4868 1.44446
\(183\) −1.72418 −0.127455
\(184\) 16.9616 1.25043
\(185\) 3.70368 0.272300
\(186\) 15.1711 1.11240
\(187\) 0 0
\(188\) 49.3010 3.59565
\(189\) −1.98097 −0.144094
\(190\) −6.55182 −0.475319
\(191\) −24.8822 −1.80041 −0.900207 0.435463i \(-0.856585\pi\)
−0.900207 + 0.435463i \(0.856585\pi\)
\(192\) 9.72900 0.702130
\(193\) 1.39448 0.100377 0.0501885 0.998740i \(-0.484018\pi\)
0.0501885 + 0.998740i \(0.484018\pi\)
\(194\) −4.47706 −0.321434
\(195\) 11.0379 0.790443
\(196\) −11.8078 −0.843414
\(197\) −3.64041 −0.259368 −0.129684 0.991555i \(-0.541396\pi\)
−0.129684 + 0.991555i \(0.541396\pi\)
\(198\) 0 0
\(199\) −10.2786 −0.728629 −0.364315 0.931276i \(-0.618697\pi\)
−0.364315 + 0.931276i \(0.618697\pi\)
\(200\) 10.4502 0.738942
\(201\) 7.59547 0.535743
\(202\) 36.1591 2.54415
\(203\) 9.64275 0.676789
\(204\) 1.46117 0.102303
\(205\) −10.1477 −0.708748
\(206\) 22.9863 1.60153
\(207\) 3.81700 0.265300
\(208\) 12.4563 0.863687
\(209\) 0 0
\(210\) 12.9790 0.895633
\(211\) −0.613934 −0.0422650 −0.0211325 0.999777i \(-0.506727\pi\)
−0.0211325 + 0.999777i \(0.506727\pi\)
\(212\) −5.38580 −0.369898
\(213\) 9.91341 0.679256
\(214\) 39.2204 2.68105
\(215\) −9.37314 −0.639243
\(216\) −4.44371 −0.302356
\(217\) −12.4373 −0.844300
\(218\) 29.1855 1.97669
\(219\) −4.03479 −0.272646
\(220\) 0 0
\(221\) −1.54946 −0.104228
\(222\) 3.30072 0.221530
\(223\) 19.2106 1.28644 0.643219 0.765682i \(-0.277598\pi\)
0.643219 + 0.765682i \(0.277598\pi\)
\(224\) −2.95899 −0.197706
\(225\) 2.35169 0.156779
\(226\) −9.57128 −0.636672
\(227\) 14.3541 0.952712 0.476356 0.879252i \(-0.341957\pi\)
0.476356 + 0.879252i \(0.341957\pi\)
\(228\) −3.83898 −0.254243
\(229\) −17.7597 −1.17359 −0.586797 0.809734i \(-0.699611\pi\)
−0.586797 + 0.809734i \(0.699611\pi\)
\(230\) −25.0083 −1.64900
\(231\) 0 0
\(232\) 21.6306 1.42012
\(233\) 12.5203 0.820233 0.410116 0.912033i \(-0.365488\pi\)
0.410116 + 0.912033i \(0.365488\pi\)
\(234\) 9.83700 0.643065
\(235\) −34.8204 −2.27143
\(236\) −4.90881 −0.319536
\(237\) −5.90373 −0.383488
\(238\) −1.82193 −0.118098
\(239\) −4.23480 −0.273926 −0.136963 0.990576i \(-0.543734\pi\)
−0.136963 + 0.990576i \(0.543734\pi\)
\(240\) 8.29635 0.535527
\(241\) −6.89447 −0.444112 −0.222056 0.975034i \(-0.571277\pi\)
−0.222056 + 0.975034i \(0.571277\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 6.61910 0.423744
\(245\) 8.33962 0.532799
\(246\) −9.04365 −0.576602
\(247\) 4.07094 0.259027
\(248\) −27.8994 −1.77161
\(249\) −5.04220 −0.319537
\(250\) 17.3512 1.09739
\(251\) 10.2944 0.649775 0.324888 0.945753i \(-0.394674\pi\)
0.324888 + 0.945753i \(0.394674\pi\)
\(252\) 7.60490 0.479064
\(253\) 0 0
\(254\) −2.23365 −0.140151
\(255\) −1.03200 −0.0646264
\(256\) −30.1306 −1.88317
\(257\) −30.7898 −1.92062 −0.960308 0.278944i \(-0.910016\pi\)
−0.960308 + 0.278944i \(0.910016\pi\)
\(258\) −8.35334 −0.520056
\(259\) −2.70594 −0.168139
\(260\) −42.3744 −2.62795
\(261\) 4.86770 0.301303
\(262\) 41.6236 2.57152
\(263\) −27.9296 −1.72221 −0.861105 0.508427i \(-0.830227\pi\)
−0.861105 + 0.508427i \(0.830227\pi\)
\(264\) 0 0
\(265\) 3.80389 0.233671
\(266\) 4.78681 0.293498
\(267\) −15.9000 −0.973066
\(268\) −29.1589 −1.78116
\(269\) 18.9856 1.15758 0.578788 0.815478i \(-0.303526\pi\)
0.578788 + 0.815478i \(0.303526\pi\)
\(270\) 6.55182 0.398731
\(271\) 14.9195 0.906292 0.453146 0.891436i \(-0.350302\pi\)
0.453146 + 0.891436i \(0.350302\pi\)
\(272\) −1.16461 −0.0706147
\(273\) −8.06440 −0.488080
\(274\) 40.8784 2.46955
\(275\) 0 0
\(276\) −14.6534 −0.882030
\(277\) 9.04573 0.543505 0.271753 0.962367i \(-0.412397\pi\)
0.271753 + 0.962367i \(0.412397\pi\)
\(278\) 37.2721 2.23543
\(279\) −6.27840 −0.375878
\(280\) −23.8680 −1.42639
\(281\) 26.1087 1.55752 0.778758 0.627325i \(-0.215850\pi\)
0.778758 + 0.627325i \(0.215850\pi\)
\(282\) −31.0319 −1.84792
\(283\) −24.7141 −1.46910 −0.734550 0.678555i \(-0.762607\pi\)
−0.734550 + 0.678555i \(0.762607\pi\)
\(284\) −38.0574 −2.25829
\(285\) 2.71140 0.160609
\(286\) 0 0
\(287\) 7.41401 0.437635
\(288\) −1.49371 −0.0880177
\(289\) −16.8551 −0.991478
\(290\) −31.8923 −1.87278
\(291\) 1.85278 0.108612
\(292\) 15.4895 0.906453
\(293\) 21.6622 1.26552 0.632759 0.774349i \(-0.281922\pi\)
0.632759 + 0.774349i \(0.281922\pi\)
\(294\) 7.43227 0.433459
\(295\) 3.46700 0.201856
\(296\) −6.06996 −0.352809
\(297\) 0 0
\(298\) −32.4006 −1.87692
\(299\) 15.5388 0.898630
\(300\) −9.02809 −0.521237
\(301\) 6.84809 0.394717
\(302\) 24.0238 1.38242
\(303\) −14.9641 −0.859663
\(304\) 3.05980 0.175492
\(305\) −4.67495 −0.267687
\(306\) −0.919718 −0.0525768
\(307\) −8.39607 −0.479189 −0.239595 0.970873i \(-0.577015\pi\)
−0.239595 + 0.970873i \(0.577015\pi\)
\(308\) 0 0
\(309\) −9.51262 −0.541154
\(310\) 41.1350 2.33631
\(311\) 19.9824 1.13310 0.566549 0.824028i \(-0.308278\pi\)
0.566549 + 0.824028i \(0.308278\pi\)
\(312\) −18.0900 −1.02415
\(313\) −7.35515 −0.415737 −0.207869 0.978157i \(-0.566653\pi\)
−0.207869 + 0.978157i \(0.566653\pi\)
\(314\) −59.1974 −3.34070
\(315\) −5.37120 −0.302633
\(316\) 22.6643 1.27497
\(317\) 4.09062 0.229752 0.114876 0.993380i \(-0.463353\pi\)
0.114876 + 0.993380i \(0.463353\pi\)
\(318\) 3.39003 0.190103
\(319\) 0 0
\(320\) 26.3792 1.47464
\(321\) −16.2310 −0.905923
\(322\) 18.2712 1.01822
\(323\) −0.380615 −0.0211780
\(324\) 3.83898 0.213277
\(325\) 9.57359 0.531047
\(326\) −12.6042 −0.698083
\(327\) −12.0781 −0.667920
\(328\) 16.6311 0.918298
\(329\) 25.4400 1.40255
\(330\) 0 0
\(331\) −17.3165 −0.951803 −0.475901 0.879499i \(-0.657878\pi\)
−0.475901 + 0.879499i \(0.657878\pi\)
\(332\) 19.3569 1.06235
\(333\) −1.36597 −0.0748545
\(334\) 55.2769 3.02462
\(335\) 20.5944 1.12519
\(336\) −6.06137 −0.330675
\(337\) −3.06979 −0.167222 −0.0836111 0.996498i \(-0.526645\pi\)
−0.0836111 + 0.996498i \(0.526645\pi\)
\(338\) 8.63263 0.469553
\(339\) 3.96097 0.215130
\(340\) 3.96183 0.214860
\(341\) 0 0
\(342\) 2.41640 0.130664
\(343\) −19.9598 −1.07773
\(344\) 15.3616 0.828243
\(345\) 10.3494 0.557194
\(346\) −39.3375 −2.11479
\(347\) −4.71298 −0.253006 −0.126503 0.991966i \(-0.540375\pi\)
−0.126503 + 0.991966i \(0.540375\pi\)
\(348\) −18.6870 −1.00173
\(349\) 1.85108 0.0990858 0.0495429 0.998772i \(-0.484224\pi\)
0.0495429 + 0.998772i \(0.484224\pi\)
\(350\) 11.2571 0.601717
\(351\) −4.07094 −0.217290
\(352\) 0 0
\(353\) −7.20110 −0.383276 −0.191638 0.981466i \(-0.561380\pi\)
−0.191638 + 0.981466i \(0.561380\pi\)
\(354\) 3.08979 0.164220
\(355\) 26.8792 1.42660
\(356\) 61.0399 3.23511
\(357\) 0.753987 0.0399052
\(358\) −50.6312 −2.67594
\(359\) 23.6552 1.24848 0.624238 0.781234i \(-0.285410\pi\)
0.624238 + 0.781234i \(0.285410\pi\)
\(360\) −12.0487 −0.635020
\(361\) 1.00000 0.0526316
\(362\) 42.3164 2.22410
\(363\) 0 0
\(364\) 30.9591 1.62270
\(365\) −10.9399 −0.572622
\(366\) −4.16631 −0.217776
\(367\) 18.7627 0.979407 0.489704 0.871889i \(-0.337105\pi\)
0.489704 + 0.871889i \(0.337105\pi\)
\(368\) 11.6793 0.608824
\(369\) 3.74262 0.194833
\(370\) 8.94957 0.465266
\(371\) −2.77915 −0.144286
\(372\) 24.1027 1.24966
\(373\) 17.7552 0.919332 0.459666 0.888092i \(-0.347969\pi\)
0.459666 + 0.888092i \(0.347969\pi\)
\(374\) 0 0
\(375\) −7.18062 −0.370806
\(376\) 57.0670 2.94301
\(377\) 19.8161 1.02058
\(378\) −4.78681 −0.246207
\(379\) −35.0648 −1.80116 −0.900578 0.434694i \(-0.856857\pi\)
−0.900578 + 0.434694i \(0.856857\pi\)
\(380\) −10.4090 −0.533971
\(381\) 0.924370 0.0473569
\(382\) −60.1253 −3.07628
\(383\) −31.7282 −1.62124 −0.810618 0.585576i \(-0.800868\pi\)
−0.810618 + 0.585576i \(0.800868\pi\)
\(384\) 20.5217 1.04724
\(385\) 0 0
\(386\) 3.36962 0.171509
\(387\) 3.45694 0.175726
\(388\) −7.11279 −0.361097
\(389\) 2.07556 0.105235 0.0526174 0.998615i \(-0.483244\pi\)
0.0526174 + 0.998615i \(0.483244\pi\)
\(390\) 26.6720 1.35059
\(391\) −1.45281 −0.0734717
\(392\) −13.6678 −0.690327
\(393\) −17.2255 −0.868911
\(394\) −8.79668 −0.443170
\(395\) −16.0074 −0.805418
\(396\) 0 0
\(397\) −35.6381 −1.78863 −0.894313 0.447443i \(-0.852335\pi\)
−0.894313 + 0.447443i \(0.852335\pi\)
\(398\) −24.8371 −1.24497
\(399\) −1.98097 −0.0991725
\(400\) 7.19571 0.359786
\(401\) 23.3571 1.16640 0.583200 0.812329i \(-0.301800\pi\)
0.583200 + 0.812329i \(0.301800\pi\)
\(402\) 18.3537 0.915399
\(403\) −25.5590 −1.27318
\(404\) 57.4467 2.85808
\(405\) −2.71140 −0.134731
\(406\) 23.3007 1.15640
\(407\) 0 0
\(408\) 1.69134 0.0837339
\(409\) 20.1272 0.995225 0.497612 0.867399i \(-0.334210\pi\)
0.497612 + 0.867399i \(0.334210\pi\)
\(410\) −24.5210 −1.21100
\(411\) −16.9171 −0.834457
\(412\) 36.5187 1.79915
\(413\) −2.53301 −0.124642
\(414\) 9.22339 0.453305
\(415\) −13.6714 −0.671104
\(416\) −6.08079 −0.298135
\(417\) −15.4247 −0.755349
\(418\) 0 0
\(419\) −12.7433 −0.622552 −0.311276 0.950320i \(-0.600756\pi\)
−0.311276 + 0.950320i \(0.600756\pi\)
\(420\) 20.6199 1.00615
\(421\) 5.03792 0.245533 0.122767 0.992436i \(-0.460823\pi\)
0.122767 + 0.992436i \(0.460823\pi\)
\(422\) −1.48351 −0.0722161
\(423\) 12.8422 0.624410
\(424\) −6.23419 −0.302759
\(425\) −0.895089 −0.0434182
\(426\) 23.9547 1.16061
\(427\) 3.41555 0.165290
\(428\) 62.3103 3.01188
\(429\) 0 0
\(430\) −22.6492 −1.09224
\(431\) −27.5373 −1.32642 −0.663212 0.748432i \(-0.730807\pi\)
−0.663212 + 0.748432i \(0.730807\pi\)
\(432\) −3.05980 −0.147215
\(433\) −16.1772 −0.777427 −0.388714 0.921359i \(-0.627080\pi\)
−0.388714 + 0.921359i \(0.627080\pi\)
\(434\) −30.0535 −1.44262
\(435\) 13.1983 0.632809
\(436\) 46.3676 2.22060
\(437\) 3.81700 0.182592
\(438\) −9.74966 −0.465857
\(439\) −15.2525 −0.727963 −0.363981 0.931406i \(-0.618583\pi\)
−0.363981 + 0.931406i \(0.618583\pi\)
\(440\) 0 0
\(441\) −3.07576 −0.146465
\(442\) −3.74411 −0.178089
\(443\) −6.99485 −0.332335 −0.166168 0.986098i \(-0.553139\pi\)
−0.166168 + 0.986098i \(0.553139\pi\)
\(444\) 5.24392 0.248865
\(445\) −43.1113 −2.04367
\(446\) 46.4205 2.19807
\(447\) 13.4087 0.634208
\(448\) −19.2728 −0.910557
\(449\) 24.8068 1.17070 0.585352 0.810779i \(-0.300956\pi\)
0.585352 + 0.810779i \(0.300956\pi\)
\(450\) 5.68262 0.267881
\(451\) 0 0
\(452\) −15.2061 −0.715234
\(453\) −9.94201 −0.467116
\(454\) 34.6851 1.62785
\(455\) −21.8658 −1.02508
\(456\) −4.44371 −0.208096
\(457\) −22.3656 −1.04622 −0.523110 0.852265i \(-0.675228\pi\)
−0.523110 + 0.852265i \(0.675228\pi\)
\(458\) −42.9145 −2.00526
\(459\) 0.380615 0.0177656
\(460\) −39.7312 −1.85248
\(461\) −18.8329 −0.877137 −0.438568 0.898698i \(-0.644514\pi\)
−0.438568 + 0.898698i \(0.644514\pi\)
\(462\) 0 0
\(463\) −9.61412 −0.446806 −0.223403 0.974726i \(-0.571717\pi\)
−0.223403 + 0.974726i \(0.571717\pi\)
\(464\) 14.8942 0.691446
\(465\) −17.0233 −0.789435
\(466\) 30.2540 1.40149
\(467\) 35.2153 1.62957 0.814784 0.579764i \(-0.196855\pi\)
0.814784 + 0.579764i \(0.196855\pi\)
\(468\) 15.6282 0.722416
\(469\) −15.0464 −0.694778
\(470\) −84.1399 −3.88109
\(471\) 24.4982 1.12882
\(472\) −5.68205 −0.261538
\(473\) 0 0
\(474\) −14.2658 −0.655248
\(475\) 2.35169 0.107903
\(476\) −2.89454 −0.132671
\(477\) −1.40293 −0.0642355
\(478\) −10.2330 −0.468045
\(479\) −11.9368 −0.545405 −0.272702 0.962098i \(-0.587917\pi\)
−0.272702 + 0.962098i \(0.587917\pi\)
\(480\) −4.05004 −0.184858
\(481\) −5.56076 −0.253549
\(482\) −16.6598 −0.758833
\(483\) −7.56136 −0.344054
\(484\) 0 0
\(485\) 5.02363 0.228111
\(486\) −2.41640 −0.109610
\(487\) −1.61768 −0.0733040 −0.0366520 0.999328i \(-0.511669\pi\)
−0.0366520 + 0.999328i \(0.511669\pi\)
\(488\) 7.66175 0.346831
\(489\) 5.21612 0.235881
\(490\) 20.1519 0.910368
\(491\) 23.3799 1.05512 0.527560 0.849518i \(-0.323107\pi\)
0.527560 + 0.849518i \(0.323107\pi\)
\(492\) −14.3678 −0.647752
\(493\) −1.85272 −0.0834423
\(494\) 9.83700 0.442588
\(495\) 0 0
\(496\) −19.2107 −0.862585
\(497\) −19.6382 −0.880892
\(498\) −12.1840 −0.545977
\(499\) −10.7934 −0.483177 −0.241589 0.970379i \(-0.577668\pi\)
−0.241589 + 0.970379i \(0.577668\pi\)
\(500\) 27.5663 1.23280
\(501\) −22.8758 −1.02201
\(502\) 24.8753 1.11024
\(503\) −7.98371 −0.355976 −0.177988 0.984033i \(-0.556959\pi\)
−0.177988 + 0.984033i \(0.556959\pi\)
\(504\) 8.80284 0.392110
\(505\) −40.5736 −1.80550
\(506\) 0 0
\(507\) −3.57252 −0.158661
\(508\) −3.54864 −0.157445
\(509\) −40.4404 −1.79249 −0.896244 0.443562i \(-0.853715\pi\)
−0.896244 + 0.443562i \(0.853715\pi\)
\(510\) −2.49372 −0.110424
\(511\) 7.99279 0.353580
\(512\) −31.7642 −1.40379
\(513\) −1.00000 −0.0441511
\(514\) −74.4004 −3.28166
\(515\) −25.7925 −1.13655
\(516\) −13.2711 −0.584228
\(517\) 0 0
\(518\) −6.53862 −0.287291
\(519\) 16.2794 0.714585
\(520\) −49.0493 −2.15096
\(521\) 10.7620 0.471491 0.235745 0.971815i \(-0.424247\pi\)
0.235745 + 0.971815i \(0.424247\pi\)
\(522\) 11.7623 0.514821
\(523\) −20.6043 −0.900962 −0.450481 0.892786i \(-0.648748\pi\)
−0.450481 + 0.892786i \(0.648748\pi\)
\(524\) 66.1283 2.88883
\(525\) −4.65863 −0.203319
\(526\) −67.4889 −2.94266
\(527\) 2.38966 0.104095
\(528\) 0 0
\(529\) −8.43051 −0.366544
\(530\) 9.19172 0.399263
\(531\) −1.27867 −0.0554898
\(532\) 7.60490 0.329714
\(533\) 15.2360 0.659942
\(534\) −38.4208 −1.66263
\(535\) −44.0086 −1.90266
\(536\) −33.7521 −1.45787
\(537\) 20.9532 0.904197
\(538\) 45.8769 1.97789
\(539\) 0 0
\(540\) 10.4090 0.447932
\(541\) −11.0958 −0.477046 −0.238523 0.971137i \(-0.576663\pi\)
−0.238523 + 0.971137i \(0.576663\pi\)
\(542\) 36.0513 1.54854
\(543\) −17.5122 −0.751520
\(544\) 0.568528 0.0243755
\(545\) −32.7486 −1.40279
\(546\) −19.4868 −0.833958
\(547\) 14.1474 0.604898 0.302449 0.953166i \(-0.402196\pi\)
0.302449 + 0.953166i \(0.402196\pi\)
\(548\) 64.9443 2.77428
\(549\) 1.72418 0.0735863
\(550\) 0 0
\(551\) 4.86770 0.207371
\(552\) −16.9616 −0.721935
\(553\) 11.6951 0.497326
\(554\) 21.8581 0.928661
\(555\) −3.70368 −0.157213
\(556\) 59.2149 2.51127
\(557\) 7.84237 0.332292 0.166146 0.986101i \(-0.446868\pi\)
0.166146 + 0.986101i \(0.446868\pi\)
\(558\) −15.1711 −0.642245
\(559\) 14.0730 0.595224
\(560\) −16.4348 −0.694498
\(561\) 0 0
\(562\) 63.0891 2.66125
\(563\) −4.36007 −0.183755 −0.0918776 0.995770i \(-0.529287\pi\)
−0.0918776 + 0.995770i \(0.529287\pi\)
\(564\) −49.3010 −2.07595
\(565\) 10.7398 0.451826
\(566\) −59.7191 −2.51018
\(567\) 1.98097 0.0831929
\(568\) −44.0523 −1.84839
\(569\) 25.6121 1.07372 0.536858 0.843673i \(-0.319611\pi\)
0.536858 + 0.843673i \(0.319611\pi\)
\(570\) 6.55182 0.274426
\(571\) −12.3483 −0.516759 −0.258380 0.966043i \(-0.583189\pi\)
−0.258380 + 0.966043i \(0.583189\pi\)
\(572\) 0 0
\(573\) 24.8822 1.03947
\(574\) 17.9152 0.747766
\(575\) 8.97640 0.374342
\(576\) −9.72900 −0.405375
\(577\) −15.9053 −0.662147 −0.331073 0.943605i \(-0.607411\pi\)
−0.331073 + 0.943605i \(0.607411\pi\)
\(578\) −40.7287 −1.69409
\(579\) −1.39448 −0.0579527
\(580\) −50.6679 −2.10387
\(581\) 9.98844 0.414390
\(582\) 4.47706 0.185580
\(583\) 0 0
\(584\) 17.9294 0.741925
\(585\) −11.0379 −0.456363
\(586\) 52.3445 2.16233
\(587\) −38.5275 −1.59020 −0.795100 0.606478i \(-0.792582\pi\)
−0.795100 + 0.606478i \(0.792582\pi\)
\(588\) 11.8078 0.486945
\(589\) −6.27840 −0.258697
\(590\) 8.37765 0.344902
\(591\) 3.64041 0.149746
\(592\) −4.17959 −0.171780
\(593\) 24.9717 1.02547 0.512733 0.858548i \(-0.328633\pi\)
0.512733 + 0.858548i \(0.328633\pi\)
\(594\) 0 0
\(595\) 2.04436 0.0838106
\(596\) −51.4755 −2.10852
\(597\) 10.2786 0.420674
\(598\) 37.5478 1.53545
\(599\) −5.89740 −0.240961 −0.120481 0.992716i \(-0.538444\pi\)
−0.120481 + 0.992716i \(0.538444\pi\)
\(600\) −10.4502 −0.426629
\(601\) 34.0666 1.38960 0.694802 0.719201i \(-0.255492\pi\)
0.694802 + 0.719201i \(0.255492\pi\)
\(602\) 16.5477 0.674434
\(603\) −7.59547 −0.309312
\(604\) 38.1672 1.55300
\(605\) 0 0
\(606\) −36.1591 −1.46886
\(607\) −31.2272 −1.26747 −0.633737 0.773549i \(-0.718480\pi\)
−0.633737 + 0.773549i \(0.718480\pi\)
\(608\) −1.49371 −0.0605779
\(609\) −9.64275 −0.390744
\(610\) −11.2965 −0.457383
\(611\) 52.2798 2.11502
\(612\) −1.46117 −0.0590644
\(613\) −36.7807 −1.48556 −0.742779 0.669537i \(-0.766493\pi\)
−0.742779 + 0.669537i \(0.766493\pi\)
\(614\) −20.2883 −0.818767
\(615\) 10.1477 0.409196
\(616\) 0 0
\(617\) 34.0252 1.36980 0.684902 0.728636i \(-0.259845\pi\)
0.684902 + 0.728636i \(0.259845\pi\)
\(618\) −22.9863 −0.924643
\(619\) 31.8467 1.28003 0.640013 0.768364i \(-0.278929\pi\)
0.640013 + 0.768364i \(0.278929\pi\)
\(620\) 65.3520 2.62460
\(621\) −3.81700 −0.153171
\(622\) 48.2855 1.93607
\(623\) 31.4974 1.26192
\(624\) −12.4563 −0.498650
\(625\) −31.2280 −1.24912
\(626\) −17.7730 −0.710350
\(627\) 0 0
\(628\) −94.0481 −3.75293
\(629\) 0.519908 0.0207301
\(630\) −12.9790 −0.517094
\(631\) 14.7162 0.585844 0.292922 0.956136i \(-0.405372\pi\)
0.292922 + 0.956136i \(0.405372\pi\)
\(632\) 26.2344 1.04355
\(633\) 0.613934 0.0244017
\(634\) 9.88457 0.392566
\(635\) 2.50634 0.0994610
\(636\) 5.38580 0.213561
\(637\) −12.5212 −0.496109
\(638\) 0 0
\(639\) −9.91341 −0.392168
\(640\) 55.6426 2.19947
\(641\) 21.0416 0.831094 0.415547 0.909572i \(-0.363590\pi\)
0.415547 + 0.909572i \(0.363590\pi\)
\(642\) −39.2204 −1.54791
\(643\) 33.8532 1.33504 0.667520 0.744592i \(-0.267356\pi\)
0.667520 + 0.744592i \(0.267356\pi\)
\(644\) 29.0279 1.14386
\(645\) 9.37314 0.369067
\(646\) −0.919718 −0.0361858
\(647\) 47.1764 1.85469 0.927347 0.374203i \(-0.122084\pi\)
0.927347 + 0.374203i \(0.122084\pi\)
\(648\) 4.44371 0.174565
\(649\) 0 0
\(650\) 23.1336 0.907374
\(651\) 12.4373 0.487457
\(652\) −20.0246 −0.784223
\(653\) 1.94079 0.0759488 0.0379744 0.999279i \(-0.487909\pi\)
0.0379744 + 0.999279i \(0.487909\pi\)
\(654\) −29.1855 −1.14124
\(655\) −46.7052 −1.82492
\(656\) 11.4517 0.447113
\(657\) 4.03479 0.157412
\(658\) 61.4732 2.39648
\(659\) −7.79796 −0.303766 −0.151883 0.988399i \(-0.548534\pi\)
−0.151883 + 0.988399i \(0.548534\pi\)
\(660\) 0 0
\(661\) −41.6336 −1.61936 −0.809679 0.586872i \(-0.800359\pi\)
−0.809679 + 0.586872i \(0.800359\pi\)
\(662\) −41.8436 −1.62630
\(663\) 1.54946 0.0601760
\(664\) 22.4061 0.869524
\(665\) −5.37120 −0.208286
\(666\) −3.30072 −0.127900
\(667\) 18.5800 0.719420
\(668\) 87.8196 3.39784
\(669\) −19.2106 −0.742725
\(670\) 49.7642 1.92256
\(671\) 0 0
\(672\) 2.95899 0.114146
\(673\) 20.1469 0.776606 0.388303 0.921532i \(-0.373061\pi\)
0.388303 + 0.921532i \(0.373061\pi\)
\(674\) −7.41784 −0.285724
\(675\) −2.35169 −0.0905166
\(676\) 13.7148 0.527494
\(677\) −17.4703 −0.671437 −0.335718 0.941962i \(-0.608979\pi\)
−0.335718 + 0.941962i \(0.608979\pi\)
\(678\) 9.57128 0.367583
\(679\) −3.67030 −0.140853
\(680\) 4.58590 0.175861
\(681\) −14.3541 −0.550049
\(682\) 0 0
\(683\) −9.67208 −0.370092 −0.185046 0.982730i \(-0.559243\pi\)
−0.185046 + 0.982730i \(0.559243\pi\)
\(684\) 3.83898 0.146787
\(685\) −45.8689 −1.75256
\(686\) −48.2308 −1.84146
\(687\) 17.7597 0.677575
\(688\) 10.5776 0.403265
\(689\) −5.71122 −0.217580
\(690\) 25.0083 0.952050
\(691\) 22.9560 0.873286 0.436643 0.899635i \(-0.356167\pi\)
0.436643 + 0.899635i \(0.356167\pi\)
\(692\) −62.4962 −2.37575
\(693\) 0 0
\(694\) −11.3884 −0.432299
\(695\) −41.8224 −1.58641
\(696\) −21.6306 −0.819906
\(697\) −1.42450 −0.0539567
\(698\) 4.47294 0.169303
\(699\) −12.5203 −0.473562
\(700\) 17.8844 0.675966
\(701\) −29.2883 −1.10620 −0.553101 0.833114i \(-0.686556\pi\)
−0.553101 + 0.833114i \(0.686556\pi\)
\(702\) −9.83700 −0.371274
\(703\) −1.36597 −0.0515184
\(704\) 0 0
\(705\) 34.8204 1.31141
\(706\) −17.4007 −0.654884
\(707\) 29.6433 1.11485
\(708\) 4.90881 0.184484
\(709\) 26.5445 0.996899 0.498450 0.866919i \(-0.333903\pi\)
0.498450 + 0.866919i \(0.333903\pi\)
\(710\) 64.9509 2.43756
\(711\) 5.90373 0.221407
\(712\) 70.6550 2.64791
\(713\) −23.9647 −0.897484
\(714\) 1.82193 0.0681841
\(715\) 0 0
\(716\) −80.4389 −3.00614
\(717\) 4.23480 0.158152
\(718\) 57.1605 2.13321
\(719\) −16.3628 −0.610229 −0.305115 0.952316i \(-0.598695\pi\)
−0.305115 + 0.952316i \(0.598695\pi\)
\(720\) −8.29635 −0.309187
\(721\) 18.8442 0.701795
\(722\) 2.41640 0.0899290
\(723\) 6.89447 0.256408
\(724\) 67.2289 2.49854
\(725\) 11.4473 0.425143
\(726\) 0 0
\(727\) 25.2731 0.937328 0.468664 0.883376i \(-0.344735\pi\)
0.468664 + 0.883376i \(0.344735\pi\)
\(728\) 35.8358 1.32816
\(729\) 1.00000 0.0370370
\(730\) −26.4352 −0.978412
\(731\) −1.31576 −0.0486653
\(732\) −6.61910 −0.244649
\(733\) −39.9922 −1.47715 −0.738573 0.674173i \(-0.764500\pi\)
−0.738573 + 0.674173i \(0.764500\pi\)
\(734\) 45.3383 1.67347
\(735\) −8.33962 −0.307612
\(736\) −5.70149 −0.210160
\(737\) 0 0
\(738\) 9.04365 0.332901
\(739\) −42.1816 −1.55168 −0.775838 0.630932i \(-0.782673\pi\)
−0.775838 + 0.630932i \(0.782673\pi\)
\(740\) 14.2184 0.522677
\(741\) −4.07094 −0.149550
\(742\) −6.71553 −0.246535
\(743\) −2.42319 −0.0888983 −0.0444491 0.999012i \(-0.514153\pi\)
−0.0444491 + 0.999012i \(0.514153\pi\)
\(744\) 27.8994 1.02284
\(745\) 36.3562 1.33199
\(746\) 42.9037 1.57082
\(747\) 5.04220 0.184485
\(748\) 0 0
\(749\) 32.1530 1.17485
\(750\) −17.3512 −0.633578
\(751\) −14.3133 −0.522300 −0.261150 0.965298i \(-0.584102\pi\)
−0.261150 + 0.965298i \(0.584102\pi\)
\(752\) 39.2947 1.43293
\(753\) −10.2944 −0.375148
\(754\) 47.8835 1.74382
\(755\) −26.9568 −0.981057
\(756\) −7.60490 −0.276587
\(757\) 4.62612 0.168139 0.0840697 0.996460i \(-0.473208\pi\)
0.0840697 + 0.996460i \(0.473208\pi\)
\(758\) −84.7305 −3.07755
\(759\) 0 0
\(760\) −12.0487 −0.437051
\(761\) −32.2344 −1.16850 −0.584249 0.811575i \(-0.698611\pi\)
−0.584249 + 0.811575i \(0.698611\pi\)
\(762\) 2.23365 0.0809165
\(763\) 23.9263 0.866191
\(764\) −95.5223 −3.45588
\(765\) 1.03200 0.0373120
\(766\) −76.6680 −2.77013
\(767\) −5.20540 −0.187956
\(768\) 30.1306 1.08725
\(769\) −40.2599 −1.45181 −0.725905 0.687795i \(-0.758579\pi\)
−0.725905 + 0.687795i \(0.758579\pi\)
\(770\) 0 0
\(771\) 30.7898 1.10887
\(772\) 5.35338 0.192672
\(773\) −9.91335 −0.356558 −0.178279 0.983980i \(-0.557053\pi\)
−0.178279 + 0.983980i \(0.557053\pi\)
\(774\) 8.35334 0.300255
\(775\) −14.7649 −0.530370
\(776\) −8.23322 −0.295555
\(777\) 2.70594 0.0970750
\(778\) 5.01537 0.179810
\(779\) 3.74262 0.134093
\(780\) 42.3744 1.51725
\(781\) 0 0
\(782\) −3.51056 −0.125537
\(783\) −4.86770 −0.173957
\(784\) −9.41123 −0.336115
\(785\) 66.4245 2.37079
\(786\) −41.6236 −1.48467
\(787\) −44.6044 −1.58998 −0.794988 0.606625i \(-0.792523\pi\)
−0.794988 + 0.606625i \(0.792523\pi\)
\(788\) −13.9755 −0.497855
\(789\) 27.9296 0.994319
\(790\) −38.6802 −1.37618
\(791\) −7.84656 −0.278991
\(792\) 0 0
\(793\) 7.01903 0.249253
\(794\) −86.1158 −3.05614
\(795\) −3.80389 −0.134910
\(796\) −39.4593 −1.39860
\(797\) −19.5372 −0.692042 −0.346021 0.938227i \(-0.612467\pi\)
−0.346021 + 0.938227i \(0.612467\pi\)
\(798\) −4.78681 −0.169451
\(799\) −4.88794 −0.172923
\(800\) −3.51274 −0.124194
\(801\) 15.9000 0.561800
\(802\) 56.4401 1.99297
\(803\) 0 0
\(804\) 29.1589 1.02835
\(805\) −20.5019 −0.722596
\(806\) −61.7607 −2.17543
\(807\) −18.9856 −0.668326
\(808\) 66.4959 2.33932
\(809\) −4.28885 −0.150788 −0.0753939 0.997154i \(-0.524021\pi\)
−0.0753939 + 0.997154i \(0.524021\pi\)
\(810\) −6.55182 −0.230208
\(811\) 40.2476 1.41329 0.706643 0.707570i \(-0.250209\pi\)
0.706643 + 0.707570i \(0.250209\pi\)
\(812\) 37.0183 1.29909
\(813\) −14.9195 −0.523248
\(814\) 0 0
\(815\) 14.1430 0.495407
\(816\) 1.16461 0.0407694
\(817\) 3.45694 0.120943
\(818\) 48.6353 1.70049
\(819\) 8.06440 0.281793
\(820\) −38.9569 −1.36044
\(821\) −28.3890 −0.990782 −0.495391 0.868670i \(-0.664975\pi\)
−0.495391 + 0.868670i \(0.664975\pi\)
\(822\) −40.8784 −1.42580
\(823\) 19.4943 0.679527 0.339764 0.940511i \(-0.389653\pi\)
0.339764 + 0.940511i \(0.389653\pi\)
\(824\) 42.2713 1.47259
\(825\) 0 0
\(826\) −6.12077 −0.212969
\(827\) −37.5772 −1.30669 −0.653344 0.757061i \(-0.726634\pi\)
−0.653344 + 0.757061i \(0.726634\pi\)
\(828\) 14.6534 0.509240
\(829\) 41.2628 1.43311 0.716557 0.697528i \(-0.245717\pi\)
0.716557 + 0.697528i \(0.245717\pi\)
\(830\) −33.0356 −1.14668
\(831\) −9.04573 −0.313793
\(832\) −39.6061 −1.37310
\(833\) 1.17068 0.0405617
\(834\) −37.2721 −1.29063
\(835\) −62.0253 −2.14648
\(836\) 0 0
\(837\) 6.27840 0.217013
\(838\) −30.7929 −1.06372
\(839\) 26.6255 0.919215 0.459608 0.888122i \(-0.347990\pi\)
0.459608 + 0.888122i \(0.347990\pi\)
\(840\) 23.8680 0.823525
\(841\) −5.30554 −0.182949
\(842\) 12.1736 0.419531
\(843\) −26.1087 −0.899232
\(844\) −2.35688 −0.0811271
\(845\) −9.68654 −0.333227
\(846\) 31.0319 1.06690
\(847\) 0 0
\(848\) −4.29268 −0.147411
\(849\) 24.7141 0.848185
\(850\) −2.16289 −0.0741866
\(851\) −5.21390 −0.178730
\(852\) 38.0574 1.30382
\(853\) 7.38894 0.252993 0.126496 0.991967i \(-0.459627\pi\)
0.126496 + 0.991967i \(0.459627\pi\)
\(854\) 8.25333 0.282423
\(855\) −2.71140 −0.0927279
\(856\) 72.1256 2.46520
\(857\) −21.9094 −0.748410 −0.374205 0.927346i \(-0.622084\pi\)
−0.374205 + 0.927346i \(0.622084\pi\)
\(858\) 0 0
\(859\) 10.6865 0.364617 0.182309 0.983241i \(-0.441643\pi\)
0.182309 + 0.983241i \(0.441643\pi\)
\(860\) −35.9833 −1.22702
\(861\) −7.41401 −0.252669
\(862\) −66.5410 −2.26639
\(863\) −10.8540 −0.369476 −0.184738 0.982788i \(-0.559144\pi\)
−0.184738 + 0.982788i \(0.559144\pi\)
\(864\) 1.49371 0.0508170
\(865\) 44.1399 1.50080
\(866\) −39.0906 −1.32835
\(867\) 16.8551 0.572430
\(868\) −47.7466 −1.62063
\(869\) 0 0
\(870\) 31.8923 1.08125
\(871\) −30.9207 −1.04771
\(872\) 53.6715 1.81755
\(873\) −1.85278 −0.0627072
\(874\) 9.22339 0.311986
\(875\) 14.2246 0.480879
\(876\) −15.4895 −0.523341
\(877\) −46.2754 −1.56261 −0.781305 0.624149i \(-0.785446\pi\)
−0.781305 + 0.624149i \(0.785446\pi\)
\(878\) −36.8561 −1.24383
\(879\) −21.6622 −0.730647
\(880\) 0 0
\(881\) −8.75040 −0.294808 −0.147404 0.989076i \(-0.547092\pi\)
−0.147404 + 0.989076i \(0.547092\pi\)
\(882\) −7.43227 −0.250257
\(883\) 32.5946 1.09690 0.548448 0.836185i \(-0.315219\pi\)
0.548448 + 0.836185i \(0.315219\pi\)
\(884\) −5.94835 −0.200065
\(885\) −3.46700 −0.116542
\(886\) −16.9023 −0.567845
\(887\) −39.7710 −1.33538 −0.667690 0.744439i \(-0.732717\pi\)
−0.667690 + 0.744439i \(0.732717\pi\)
\(888\) 6.06996 0.203694
\(889\) −1.83115 −0.0614148
\(890\) −104.174 −3.49192
\(891\) 0 0
\(892\) 73.7492 2.46930
\(893\) 12.8422 0.429748
\(894\) 32.4006 1.08364
\(895\) 56.8125 1.89903
\(896\) −40.6529 −1.35812
\(897\) −15.5388 −0.518824
\(898\) 59.9431 2.00033
\(899\) −30.5614 −1.01928
\(900\) 9.02809 0.300936
\(901\) 0.533975 0.0177893
\(902\) 0 0
\(903\) −6.84809 −0.227890
\(904\) −17.6014 −0.585413
\(905\) −47.4826 −1.57837
\(906\) −24.0238 −0.798139
\(907\) −18.5189 −0.614911 −0.307456 0.951562i \(-0.599478\pi\)
−0.307456 + 0.951562i \(0.599478\pi\)
\(908\) 55.1049 1.82872
\(909\) 14.9641 0.496327
\(910\) −52.8365 −1.75151
\(911\) −17.3452 −0.574672 −0.287336 0.957830i \(-0.592770\pi\)
−0.287336 + 0.957830i \(0.592770\pi\)
\(912\) −3.05980 −0.101320
\(913\) 0 0
\(914\) −54.0443 −1.78763
\(915\) 4.67495 0.154549
\(916\) −68.1791 −2.25270
\(917\) 34.1231 1.12685
\(918\) 0.919718 0.0303552
\(919\) −15.9679 −0.526731 −0.263366 0.964696i \(-0.584833\pi\)
−0.263366 + 0.964696i \(0.584833\pi\)
\(920\) −45.9897 −1.51624
\(921\) 8.39607 0.276660
\(922\) −45.5078 −1.49872
\(923\) −40.3569 −1.32836
\(924\) 0 0
\(925\) −3.21233 −0.105621
\(926\) −23.2315 −0.763436
\(927\) 9.51262 0.312435
\(928\) −7.27092 −0.238680
\(929\) 41.0151 1.34566 0.672831 0.739796i \(-0.265078\pi\)
0.672831 + 0.739796i \(0.265078\pi\)
\(930\) −41.1350 −1.34887
\(931\) −3.07576 −0.100804
\(932\) 48.0652 1.57443
\(933\) −19.9824 −0.654195
\(934\) 85.0941 2.78436
\(935\) 0 0
\(936\) 18.0900 0.591292
\(937\) −14.3060 −0.467356 −0.233678 0.972314i \(-0.575076\pi\)
−0.233678 + 0.972314i \(0.575076\pi\)
\(938\) −36.3581 −1.18713
\(939\) 7.35515 0.240026
\(940\) −133.675 −4.35999
\(941\) −13.9424 −0.454509 −0.227254 0.973835i \(-0.572975\pi\)
−0.227254 + 0.973835i \(0.572975\pi\)
\(942\) 59.1974 1.92876
\(943\) 14.2856 0.465202
\(944\) −3.91249 −0.127341
\(945\) 5.37120 0.174725
\(946\) 0 0
\(947\) −20.4080 −0.663172 −0.331586 0.943425i \(-0.607584\pi\)
−0.331586 + 0.943425i \(0.607584\pi\)
\(948\) −22.6643 −0.736102
\(949\) 16.4254 0.533190
\(950\) 5.68262 0.184369
\(951\) −4.09062 −0.132648
\(952\) −3.35050 −0.108590
\(953\) −33.9482 −1.09969 −0.549845 0.835266i \(-0.685313\pi\)
−0.549845 + 0.835266i \(0.685313\pi\)
\(954\) −3.39003 −0.109756
\(955\) 67.4656 2.18314
\(956\) −16.2573 −0.525799
\(957\) 0 0
\(958\) −28.8440 −0.931907
\(959\) 33.5122 1.08216
\(960\) −26.3792 −0.851386
\(961\) 8.41836 0.271560
\(962\) −13.4370 −0.433227
\(963\) 16.2310 0.523035
\(964\) −26.4677 −0.852469
\(965\) −3.78100 −0.121715
\(966\) −18.2712 −0.587868
\(967\) 14.7792 0.475268 0.237634 0.971355i \(-0.423628\pi\)
0.237634 + 0.971355i \(0.423628\pi\)
\(968\) 0 0
\(969\) 0.380615 0.0122271
\(970\) 12.1391 0.389763
\(971\) −46.5274 −1.49314 −0.746568 0.665310i \(-0.768300\pi\)
−0.746568 + 0.665310i \(0.768300\pi\)
\(972\) −3.83898 −0.123135
\(973\) 30.5558 0.979573
\(974\) −3.90895 −0.125251
\(975\) −9.57359 −0.306600
\(976\) 5.27566 0.168870
\(977\) −36.7798 −1.17669 −0.588345 0.808610i \(-0.700220\pi\)
−0.588345 + 0.808610i \(0.700220\pi\)
\(978\) 12.6042 0.403038
\(979\) 0 0
\(980\) 32.0156 1.02270
\(981\) 12.0781 0.385624
\(982\) 56.4951 1.80283
\(983\) 47.4862 1.51457 0.757287 0.653082i \(-0.226524\pi\)
0.757287 + 0.653082i \(0.226524\pi\)
\(984\) −16.6311 −0.530180
\(985\) 9.87061 0.314504
\(986\) −4.47691 −0.142574
\(987\) −25.4400 −0.809765
\(988\) 15.6282 0.497201
\(989\) 13.1951 0.419581
\(990\) 0 0
\(991\) −8.43710 −0.268013 −0.134007 0.990980i \(-0.542784\pi\)
−0.134007 + 0.990980i \(0.542784\pi\)
\(992\) 9.37811 0.297755
\(993\) 17.3165 0.549523
\(994\) −47.4536 −1.50514
\(995\) 27.8693 0.883518
\(996\) −19.3569 −0.613347
\(997\) 26.7930 0.848543 0.424271 0.905535i \(-0.360530\pi\)
0.424271 + 0.905535i \(0.360530\pi\)
\(998\) −26.0811 −0.825582
\(999\) 1.36597 0.0432173
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6897.2.a.bm.1.15 16
11.5 even 5 627.2.j.b.58.1 32
11.9 even 5 627.2.j.b.400.1 yes 32
11.10 odd 2 6897.2.a.bl.1.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
627.2.j.b.58.1 32 11.5 even 5
627.2.j.b.400.1 yes 32 11.9 even 5
6897.2.a.bl.1.2 16 11.10 odd 2
6897.2.a.bm.1.15 16 1.1 even 1 trivial