Properties

Label 6897.2.a.p
Level $6897$
Weight $2$
Character orbit 6897.a
Self dual yes
Analytic conductor $55.073$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6897,2,Mod(1,6897)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6897, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6897.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6897 = 3 \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6897.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.0728222741\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.321.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 627)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} + q^{3} + (\beta_{2} - \beta_1 + 2) q^{4} + ( - \beta_{2} - \beta_1 - 1) q^{5} + ( - \beta_1 + 1) q^{6} + ( - \beta_{2} + 2) q^{7} + (2 \beta_{2} - \beta_1 + 4) q^{8} + q^{9}+ \cdots + ( - 5 \beta_{2} + 5 \beta_1 - 2) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{2} + 3 q^{3} + 4 q^{4} - 3 q^{5} + 2 q^{6} + 7 q^{7} + 9 q^{8} + 3 q^{9} + 5 q^{10} + 4 q^{12} + 13 q^{13} + 3 q^{14} - 3 q^{15} + 10 q^{16} + 6 q^{17} + 2 q^{18} + 3 q^{19} - 8 q^{20} + 7 q^{21}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.46050
0.239123
−1.69963
−1.46050 1.00000 0.133074 −4.05408 −1.46050 1.40642 2.72665 1.00000 5.92101
1.2 0.760877 1.00000 −1.42107 1.94282 0.760877 5.18194 −2.60301 1.00000 1.47825
1.3 2.69963 1.00000 5.28799 −0.888736 2.69963 0.411636 8.87636 1.00000 −2.39926
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(11\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6897.2.a.p 3
11.b odd 2 1 627.2.a.e 3
33.d even 2 1 1881.2.a.i 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
627.2.a.e 3 11.b odd 2 1
1881.2.a.i 3 33.d even 2 1
6897.2.a.p 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6897))\):

\( T_{2}^{3} - 2T_{2}^{2} - 3T_{2} + 3 \) Copy content Toggle raw display
\( T_{5}^{3} + 3T_{5}^{2} - 6T_{5} - 7 \) Copy content Toggle raw display
\( T_{7}^{3} - 7T_{7}^{2} + 10T_{7} - 3 \) Copy content Toggle raw display
\( T_{13}^{3} - 13T_{13}^{2} + 52T_{13} - 63 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 2 T^{2} + \cdots + 3 \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 3 T^{2} + \cdots - 7 \) Copy content Toggle raw display
$7$ \( T^{3} - 7 T^{2} + \cdots - 3 \) Copy content Toggle raw display
$11$ \( T^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 13 T^{2} + \cdots - 63 \) Copy content Toggle raw display
$17$ \( T^{3} - 6 T^{2} + \cdots + 81 \) Copy content Toggle raw display
$19$ \( (T - 1)^{3} \) Copy content Toggle raw display
$23$ \( (T + 5)^{3} \) Copy content Toggle raw display
$29$ \( T^{3} - 8 T^{2} + \cdots + 389 \) Copy content Toggle raw display
$31$ \( T^{3} - 12 T^{2} + \cdots + 97 \) Copy content Toggle raw display
$37$ \( T^{3} - 5 T^{2} + \cdots + 489 \) Copy content Toggle raw display
$41$ \( T^{3} - T^{2} - 4T + 1 \) Copy content Toggle raw display
$43$ \( T^{3} - 10 T^{2} + \cdots - 9 \) Copy content Toggle raw display
$47$ \( T^{3} + 8 T^{2} + \cdots - 93 \) Copy content Toggle raw display
$53$ \( T^{3} - 81T - 27 \) Copy content Toggle raw display
$59$ \( T^{3} - 3 T^{2} + \cdots - 81 \) Copy content Toggle raw display
$61$ \( T^{3} - 19 T^{2} + \cdots + 97 \) Copy content Toggle raw display
$67$ \( T^{3} - T^{2} + \cdots + 211 \) Copy content Toggle raw display
$71$ \( T^{3} + 22 T^{2} + \cdots + 363 \) Copy content Toggle raw display
$73$ \( T^{3} + 2 T^{2} + \cdots - 59 \) Copy content Toggle raw display
$79$ \( T^{3} + 6 T^{2} + \cdots - 1701 \) Copy content Toggle raw display
$83$ \( T^{3} + 13 T^{2} + \cdots - 1059 \) Copy content Toggle raw display
$89$ \( T^{3} + 12 T^{2} + \cdots - 97 \) Copy content Toggle raw display
$97$ \( T^{3} + 16 T^{2} + \cdots - 1141 \) Copy content Toggle raw display
show more
show less