Properties

Label 6900.2.a.j
Level $6900$
Weight $2$
Character orbit 6900.a
Self dual yes
Analytic conductor $55.097$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6900,2,Mod(1,6900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6900, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6900.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6900.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.0967773947\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{15}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1380)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{15}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} - 3 q^{7} + q^{9} + ( - \beta + 1) q^{11} + ( - \beta - 1) q^{13} + \beta q^{17} + (\beta + 1) q^{19} + 3 q^{21} + q^{23} - q^{27} + (\beta - 2) q^{29} + 3 q^{31} + (\beta - 1) q^{33} - q^{37}+ \cdots + ( - \beta + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 6 q^{7} + 2 q^{9} + 2 q^{11} - 2 q^{13} + 2 q^{19} + 6 q^{21} + 2 q^{23} - 2 q^{27} - 4 q^{29} + 6 q^{31} - 2 q^{33} - 2 q^{37} + 2 q^{39} - 4 q^{41} + 8 q^{43} + 6 q^{47} + 4 q^{49} - 2 q^{57}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.87298
−3.87298
0 −1.00000 0 0 0 −3.00000 0 1.00000 0
1.2 0 −1.00000 0 0 0 −3.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6900.2.a.j 2
5.b even 2 1 1380.2.a.i 2
5.c odd 4 2 6900.2.f.o 4
15.d odd 2 1 4140.2.a.p 2
20.d odd 2 1 5520.2.a.bj 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1380.2.a.i 2 5.b even 2 1
4140.2.a.p 2 15.d odd 2 1
5520.2.a.bj 2 20.d odd 2 1
6900.2.a.j 2 1.a even 1 1 trivial
6900.2.f.o 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6900))\):

\( T_{7} + 3 \) Copy content Toggle raw display
\( T_{11}^{2} - 2T_{11} - 14 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 3)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 2T - 14 \) Copy content Toggle raw display
$13$ \( T^{2} + 2T - 14 \) Copy content Toggle raw display
$17$ \( T^{2} - 15 \) Copy content Toggle raw display
$19$ \( T^{2} - 2T - 14 \) Copy content Toggle raw display
$23$ \( (T - 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 4T - 11 \) Copy content Toggle raw display
$31$ \( (T - 3)^{2} \) Copy content Toggle raw display
$37$ \( (T + 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 4T - 11 \) Copy content Toggle raw display
$43$ \( T^{2} - 8T - 44 \) Copy content Toggle raw display
$47$ \( T^{2} - 6T - 6 \) Copy content Toggle raw display
$53$ \( T^{2} - 15 \) Copy content Toggle raw display
$59$ \( T^{2} - 4T - 11 \) Copy content Toggle raw display
$61$ \( T^{2} - 10T + 10 \) Copy content Toggle raw display
$67$ \( T^{2} + 6T - 51 \) Copy content Toggle raw display
$71$ \( T^{2} + 4T - 131 \) Copy content Toggle raw display
$73$ \( T^{2} + 2T - 14 \) Copy content Toggle raw display
$79$ \( (T - 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 8T + 1 \) Copy content Toggle raw display
$89$ \( T^{2} + 12T - 24 \) Copy content Toggle raw display
$97$ \( (T + 8)^{2} \) Copy content Toggle raw display
show more
show less