Properties

Label 693.1.bp.a.314.1
Level 693693
Weight 11
Character 693.314
Analytic conductor 0.3460.346
Analytic rank 00
Dimension 1616
Projective image D20D_{20}
CM discriminant -7
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,1,Mod(62,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 7]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.62");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 693=32711 693 = 3^{2} \cdot 7 \cdot 11
Weight: k k == 1 1
Character orbit: [χ][\chi] == 693.bp (of order 1010, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.3458520537550.345852053755
Analytic rank: 00
Dimension: 1616
Relative dimension: 44 over Q(ζ10)\Q(\zeta_{10})
Coefficient field: Q(ζ40)\Q(\zeta_{40})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16x12+x8x4+1 x^{16} - x^{12} + x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D20D_{20}
Projective field: Galois closure of Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)

Embedding invariants

Embedding label 314.1
Root 0.4539900.891007i-0.453990 - 0.891007i of defining polynomial
Character χ\chi == 693.314
Dual form 693.1.bp.a.629.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.6104251.87869i)q2+(2.34786+1.70582i)q4+(0.587785+0.809017i)q7+(3.03979+2.20854i)q8+(0.8910070.453990i)q11+(1.161101.59811i)q14+(1.396804.29892i)q16+(1.396801.39680i)q220.312869iq23+(0.809017+0.587785i)q25+(2.760070.896802i)q28+(0.734572+0.533698i)q295.17160q32+(0.9510570.690983i)q370.618034iq43+(1.31753+2.58580i)q44+(0.587785+0.190983i)q46+(0.309017+0.951057i)q49+(0.6104251.87869i)q50+(0.8635410.280582i)q53+3.75739iq56+(1.45106+1.05425i)q58+(1.76007+5.41695i)q64+0.618034q67+(1.694800.550672i)q71+(1.878691.36495i)q74+(0.891007+0.453990i)q77+(1.80902+0.587785i)q79+(1.16110+0.377263i)q86+(3.71113+0.587785i)q88+(0.533698+0.734572i)q92+1.97538q98+O(q100)q+(-0.610425 - 1.87869i) q^{2} +(-2.34786 + 1.70582i) q^{4} +(0.587785 + 0.809017i) q^{7} +(3.03979 + 2.20854i) q^{8} +(0.891007 - 0.453990i) q^{11} +(1.16110 - 1.59811i) q^{14} +(1.39680 - 4.29892i) q^{16} +(-1.39680 - 1.39680i) q^{22} -0.312869i q^{23} +(0.809017 + 0.587785i) q^{25} +(-2.76007 - 0.896802i) q^{28} +(-0.734572 + 0.533698i) q^{29} -5.17160 q^{32} +(0.951057 - 0.690983i) q^{37} -0.618034i q^{43} +(-1.31753 + 2.58580i) q^{44} +(-0.587785 + 0.190983i) q^{46} +(-0.309017 + 0.951057i) q^{49} +(0.610425 - 1.87869i) q^{50} +(0.863541 - 0.280582i) q^{53} +3.75739i q^{56} +(1.45106 + 1.05425i) q^{58} +(1.76007 + 5.41695i) q^{64} +0.618034 q^{67} +(-1.69480 - 0.550672i) q^{71} +(-1.87869 - 1.36495i) q^{74} +(0.891007 + 0.453990i) q^{77} +(-1.80902 + 0.587785i) q^{79} +(-1.16110 + 0.377263i) q^{86} +(3.71113 + 0.587785i) q^{88} +(0.533698 + 0.734572i) q^{92} +1.97538 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q4q4+4q164q22+4q2520q28+4q49+8q58+4q648q6720q79+20q88+O(q100) 16 q - 4 q^{4} + 4 q^{16} - 4 q^{22} + 4 q^{25} - 20 q^{28} + 4 q^{49} + 8 q^{58} + 4 q^{64} - 8 q^{67} - 20 q^{79} + 20 q^{88}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/693Z)×\left(\mathbb{Z}/693\mathbb{Z}\right)^\times.

nn 155155 199199 442442
χ(n)\chi(n) 1-1 1-1 e(910)e\left(\frac{9}{10}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.610425 1.87869i −0.610425 1.87869i −0.453990 0.891007i 0.650000π-0.650000\pi
−0.156434 0.987688i 0.550000π-0.550000\pi
33 0 0
44 −2.34786 + 1.70582i −2.34786 + 1.70582i
55 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
66 0 0
77 0.587785 + 0.809017i 0.587785 + 0.809017i
88 3.03979 + 2.20854i 3.03979 + 2.20854i
99 0 0
1010 0 0
1111 0.891007 0.453990i 0.891007 0.453990i
1212 0 0
1313 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
1414 1.16110 1.59811i 1.16110 1.59811i
1515 0 0
1616 1.39680 4.29892i 1.39680 4.29892i
1717 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
1818 0 0
1919 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
2020 0 0
2121 0 0
2222 −1.39680 1.39680i −1.39680 1.39680i
2323 0.312869i 0.312869i −0.987688 0.156434i 0.950000π-0.950000\pi
0.987688 0.156434i 0.0500000π-0.0500000\pi
2424 0 0
2525 0.809017 + 0.587785i 0.809017 + 0.587785i
2626 0 0
2727 0 0
2828 −2.76007 0.896802i −2.76007 0.896802i
2929 −0.734572 + 0.533698i −0.734572 + 0.533698i −0.891007 0.453990i 0.850000π-0.850000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
3030 0 0
3131 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
3232 −5.17160 −5.17160
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 0.951057 0.690983i 0.951057 0.690983i 1.00000i 0.5π-0.5\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
4242 0 0
4343 0.618034i 0.618034i −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
4444 −1.31753 + 2.58580i −1.31753 + 2.58580i
4545 0 0
4646 −0.587785 + 0.190983i −0.587785 + 0.190983i
4747 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
4848 0 0
4949 −0.309017 + 0.951057i −0.309017 + 0.951057i
5050 0.610425 1.87869i 0.610425 1.87869i
5151 0 0
5252 0 0
5353 0.863541 0.280582i 0.863541 0.280582i 0.156434 0.987688i 0.450000π-0.450000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
5454 0 0
5555 0 0
5656 3.75739i 3.75739i
5757 0 0
5858 1.45106 + 1.05425i 1.45106 + 1.05425i
5959 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
6060 0 0
6161 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
6262 0 0
6363 0 0
6464 1.76007 + 5.41695i 1.76007 + 5.41695i
6565 0 0
6666 0 0
6767 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
6868 0 0
6969 0 0
7070 0 0
7171 −1.69480 0.550672i −1.69480 0.550672i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
7272 0 0
7373 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
7474 −1.87869 1.36495i −1.87869 1.36495i
7575 0 0
7676 0 0
7777 0.891007 + 0.453990i 0.891007 + 0.453990i
7878 0 0
7979 −1.80902 + 0.587785i −1.80902 + 0.587785i −0.809017 + 0.587785i 0.800000π0.800000\pi
−1.00000 π\pi
8080 0 0
8181 0 0
8282 0 0
8383 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
8484 0 0
8585 0 0
8686 −1.16110 + 0.377263i −1.16110 + 0.377263i
8787 0 0
8888 3.71113 + 0.587785i 3.71113 + 0.587785i
8989 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9090 0 0
9191 0 0
9292 0.533698 + 0.734572i 0.533698 + 0.734572i
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
9898 1.97538 1.97538
9999 0 0
100100 −2.90211 −2.90211
101101 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
102102 0 0
103103 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
104104 0 0
105105 0 0
106106 −1.05425 1.45106i −1.05425 1.45106i
107107 0.253116 + 0.183900i 0.253116 + 0.183900i 0.707107 0.707107i 0.250000π-0.250000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
108108 0 0
109109 1.61803i 1.61803i −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 0.809017i 0.300000π-0.300000\pi
110110 0 0
111111 0 0
112112 4.29892 1.39680i 4.29892 1.39680i
113113 −1.04744 + 1.44168i −1.04744 + 1.44168i −0.156434 + 0.987688i 0.550000π0.550000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
114114 0 0
115115 0 0
116116 0.814279 2.50609i 0.814279 2.50609i
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 0.587785 0.809017i 0.587785 0.809017i
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 −1.11803 0.363271i −1.11803 0.363271i −0.309017 0.951057i 0.600000π-0.600000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
128128 4.91849 3.57349i 4.91849 3.57349i
129129 0 0
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 0 0
134134 −0.377263 1.16110i −0.377263 1.16110i
135135 0 0
136136 0 0
137137 1.87869 + 0.610425i 1.87869 + 0.610425i 0.987688 + 0.156434i 0.0500000π0.0500000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
138138 0 0
139139 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
140140 0 0
141141 0 0
142142 3.52015i 3.52015i
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 −1.05425 + 3.24466i −1.05425 + 3.24466i
149149 −0.437016 + 1.34500i −0.437016 + 1.34500i 0.453990 + 0.891007i 0.350000π0.350000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
150150 0 0
151151 −0.951057 + 1.30902i −0.951057 + 1.30902i 1.00000i 0.5π0.5\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
152152 0 0
153153 0 0
154154 0.309017 1.95106i 0.309017 1.95106i
155155 0 0
156156 0 0
157157 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
158158 2.20854 + 3.03979i 2.20854 + 3.03979i
159159 0 0
160160 0 0
161161 0.253116 0.183900i 0.253116 0.183900i
162162 0 0
163163 −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
168168 0 0
169169 0.809017 0.587785i 0.809017 0.587785i
170170 0 0
171171 0 0
172172 1.05425 + 1.45106i 1.05425 + 1.45106i
173173 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
174174 0 0
175175 1.00000i 1.00000i
176176 −0.707107 4.46450i −0.707107 4.46450i
177177 0 0
178178 0 0
179179 −1.16110 + 1.59811i −1.16110 + 1.59811i −0.453990 + 0.891007i 0.650000π0.650000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
180180 0 0
181181 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
182182 0 0
183183 0 0
184184 0.690983 0.951057i 0.690983 0.951057i
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 −0.533698 0.734572i −0.533698 0.734572i 0.453990 0.891007i 0.350000π-0.350000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
192192 0 0
193193 −0.587785 0.190983i −0.587785 0.190983i 1.00000i 0.5π-0.5\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
194194 0 0
195195 0 0
196196 −0.896802 2.76007i −0.896802 2.76007i
197197 −0.312869 −0.312869 −0.156434 0.987688i 0.550000π-0.550000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 1.16110 + 3.57349i 1.16110 + 3.57349i
201201 0 0
202202 0 0
203203 −0.863541 0.280582i −0.863541 0.280582i
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 −1.53884 + 0.500000i −1.53884 + 0.500000i −0.951057 0.309017i 0.900000π-0.900000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
212212 −1.54885 + 2.13181i −1.54885 + 2.13181i
213213 0 0
214214 0.190983 0.587785i 0.190983 0.587785i
215215 0 0
216216 0 0
217217 0 0
218218 −3.03979 + 0.987688i −3.03979 + 0.987688i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
224224 −3.03979 4.18391i −3.03979 4.18391i
225225 0 0
226226 3.34786 + 1.08779i 3.34786 + 1.08779i
227227 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
228228 0 0
229229 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
230230 0 0
231231 0 0
232232 −3.41164 −3.41164
233233 −0.437016 1.34500i −0.437016 1.34500i −0.891007 0.453990i 0.850000π-0.850000\pi
0.453990 0.891007i 0.350000π-0.350000\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 −1.44168 1.04744i −1.44168 1.04744i −0.987688 0.156434i 0.950000π-0.950000\pi
−0.453990 0.891007i 0.650000π-0.650000\pi
240240 0 0
241241 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
242242 −1.87869 0.610425i −1.87869 0.610425i
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
252252 0 0
253253 −0.142040 0.278768i −0.142040 0.278768i
254254 2.32219i 2.32219i
255255 0 0
256256 −5.10793 3.71113i −5.10793 3.71113i
257257 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
258258 0 0
259259 1.11803 + 0.363271i 1.11803 + 0.363271i
260260 0 0
261261 0 0
262262 0 0
263263 0.907981 0.907981 0.453990 0.891007i 0.350000π-0.350000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 −1.45106 + 1.05425i −1.45106 + 1.05425i
269269 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
270270 0 0
271271 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
272272 0 0
273273 0 0
274274 3.90211i 3.90211i
275275 0.987688 + 0.156434i 0.987688 + 0.156434i
276276 0 0
277277 −1.11803 + 0.363271i −1.11803 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
278278 0 0
279279 0 0
280280 0 0
281281 −0.550672 + 1.69480i −0.550672 + 1.69480i 0.156434 + 0.987688i 0.450000π0.450000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
282282 0 0
283283 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
284284 4.91849 1.59811i 4.91849 1.59811i
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −0.809017 0.587785i −0.809017 0.587785i
290290 0 0
291291 0 0
292292 0 0
293293 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
294294 0 0
295295 0 0
296296 4.41708 4.41708
297297 0 0
298298 2.79360 2.79360
299299 0 0
300300 0 0
301301 0.500000 0.363271i 0.500000 0.363271i
302302 3.03979 + 0.987688i 3.03979 + 0.987688i
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 −2.86638 + 0.453990i −2.86638 + 0.453990i
309309 0 0
310310 0 0
311311 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
312312 0 0
313313 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
314314 0 0
315315 0 0
316316 3.24466 4.46589i 3.24466 4.46589i
317317 1.69480 0.550672i 1.69480 0.550672i 0.707107 0.707107i 0.250000π-0.250000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
318318 0 0
319319 −0.412215 + 0.809017i −0.412215 + 0.809017i
320320 0 0
321321 0 0
322322 −0.500000 0.363271i −0.500000 0.363271i
323323 0 0
324324 0 0
325325 0 0
326326 −2.58580 + 1.87869i −2.58580 + 1.87869i
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0.951057 + 1.30902i 0.951057 + 1.30902i 0.951057 + 0.309017i 0.100000π0.100000\pi
1.00000i 0.5π0.5\pi
338338 −1.59811 1.16110i −1.59811 1.16110i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 −0.951057 + 0.309017i −0.951057 + 0.309017i
344344 1.36495 1.87869i 1.36495 1.87869i
345345 0 0
346346 0 0
347347 0.550672 1.69480i 0.550672 1.69480i −0.156434 0.987688i 0.550000π-0.550000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
348348 0 0
349349 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
350350 1.87869 0.610425i 1.87869 0.610425i
351351 0 0
352352 −4.60793 + 2.34786i −4.60793 + 2.34786i
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 3.71113 + 1.20582i 3.71113 + 1.20582i
359359 −0.253116 + 0.183900i −0.253116 + 0.183900i −0.707107 0.707107i 0.750000π-0.750000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
360360 0 0
361361 −0.309017 0.951057i −0.309017 0.951057i
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
368368 −1.34500 0.437016i −1.34500 0.437016i
369369 0 0
370370 0 0
371371 0.734572 + 0.533698i 0.734572 + 0.533698i
372372 0 0
373373 0 0 1.00000 00
−1.00000 π\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0.363271 1.11803i 0.363271 1.11803i −0.587785 0.809017i 0.700000π-0.700000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
380380 0 0
381381 0 0
382382 −1.05425 + 1.45106i −1.05425 + 1.45106i
383383 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
384384 0 0
385385 0 0
386386 1.22085i 1.22085i
387387 0 0
388388 0 0
389389 −1.16110 1.59811i −1.16110 1.59811i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.453990 0.891007i 0.650000π-0.650000\pi
390390 0 0
391391 0 0
392392 −3.03979 + 2.20854i −3.03979 + 2.20854i
393393 0 0
394394 0.190983 + 0.587785i 0.190983 + 0.587785i
395395 0 0
396396 0 0
397397 0 0 1.00000 00
−1.00000 π\pi
398398 0 0
399399 0 0
400400 3.65688 2.65688i 3.65688 2.65688i
401401 −0.297556 0.0966818i −0.297556 0.0966818i 0.156434 0.987688i 0.450000π-0.450000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 1.79360i 1.79360i
407407 0.533698 1.04744i 0.533698 1.04744i
408408 0 0
409409 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 00
0.309017 + 0.951057i 0.400000π0.400000\pi
422422 1.87869 + 2.58580i 1.87869 + 2.58580i
423423 0 0
424424 3.24466 + 1.05425i 3.24466 + 1.05425i
425425 0 0
426426 0 0
427427 0 0
428428 −0.907981 −0.907981
429429 0 0
430430 0 0
431431 0.0966818 + 0.297556i 0.0966818 + 0.297556i 0.987688 0.156434i 0.0500000π-0.0500000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
432432 0 0
433433 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
434434 0 0
435435 0 0
436436 2.76007 + 3.79892i 2.76007 + 3.79892i
437437 0 0
438438 0 0
439439 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
440440 0 0
441441 0 0
442442 0 0
443443 1.04744 1.44168i 1.04744 1.44168i 0.156434 0.987688i 0.450000π-0.450000\pi
0.891007 0.453990i 0.150000π-0.150000\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 −3.34786 + 4.60793i −3.34786 + 4.60793i
449449 0.297556 0.0966818i 0.297556 0.0966818i −0.156434 0.987688i 0.550000π-0.550000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
450450 0 0
451451 0 0
452452 5.17160i 5.17160i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −1.53884 0.500000i −1.53884 0.500000i −0.587785 0.809017i 0.700000π-0.700000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
464464 1.26827 + 3.90333i 1.26827 + 3.90333i
465465 0 0
466466 −2.26007 + 1.64204i −2.26007 + 1.64204i
467467 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
468468 0 0
469469 0.363271 + 0.500000i 0.363271 + 0.500000i
470470 0 0
471471 0 0
472472 0 0
473473 −0.280582 0.550672i −0.280582 0.550672i
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 −1.08779 + 3.34786i −1.08779 + 3.34786i
479479 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 2.90211i 2.90211i
485485 0 0
486486 0 0
487487 1.53884 + 1.11803i 1.53884 + 1.11803i 0.951057 + 0.309017i 0.100000π0.100000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
488488 0 0
489489 0 0
490490 0 0
491491 1.14412 0.831254i 1.14412 0.831254i 0.156434 0.987688i 0.450000π-0.450000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 −0.550672 1.69480i −0.550672 1.69480i
498498 0 0
499499 1.53884 1.11803i 1.53884 1.11803i 0.587785 0.809017i 0.300000π-0.300000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
504504 0 0
505505 0 0
506506 −0.437016 + 0.437016i −0.437016 + 0.437016i
507507 0 0
508508 3.24466 1.05425i 3.24466 1.05425i
509509 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
510510 0 0
511511 0 0
512512 −1.97538 + 6.07958i −1.97538 + 6.07958i
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 2.32219i 2.32219i
519519 0 0
520520 0 0
521521 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
522522 0 0
523523 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
524524 0 0
525525 0 0
526526 −0.554254 1.70582i −0.554254 1.70582i
527527 0 0
528528 0 0
529529 0.902113 0.902113
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 1.87869 + 1.36495i 1.87869 + 1.36495i
537537 0 0
538538 0 0
539539 0.156434 + 0.987688i 0.156434 + 0.987688i
540540 0 0
541541 1.11803 0.363271i 1.11803 0.363271i 0.309017 0.951057i 0.400000π-0.400000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
548548 −5.45218 + 1.77152i −5.45218 + 1.77152i
549549 0 0
550550 −0.309017 1.95106i −0.309017 1.95106i
551551 0 0
552552 0 0
553553 −1.53884 1.11803i −1.53884 1.11803i
554554 1.36495 + 1.87869i 1.36495 + 1.87869i
555555 0 0
556556 0 0
557557 1.44168 1.04744i 1.44168 1.04744i 0.453990 0.891007i 0.350000π-0.350000\pi
0.987688 0.156434i 0.0500000π-0.0500000\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 3.52015 3.52015
563563 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 −3.93564 5.41695i −3.93564 5.41695i
569569 1.14412 + 0.831254i 1.14412 + 0.831254i 0.987688 0.156434i 0.0500000π-0.0500000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
570570 0 0
571571 1.17557i 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
572572 0 0
573573 0 0
574574 0 0
575575 0.183900 0.253116i 0.183900 0.253116i
576576 0 0
577577 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
578578 −0.610425 + 1.87869i −0.610425 + 1.87869i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0.642040 0.642040i 0.642040 0.642040i
584584 0 0
585585 0 0
586586 0 0
587587 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 −1.64204 5.05368i −1.64204 5.05368i
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0 0
596596 −1.26827 3.90333i −1.26827 3.90333i
597597 0 0
598598 0 0
599599 −1.87869 0.610425i −1.87869 0.610425i −0.987688 0.156434i 0.950000π-0.950000\pi
−0.891007 0.453990i 0.850000π-0.850000\pi
600600 0 0
601601 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
602602 −0.987688 0.717598i −0.987688 0.717598i
603603 0 0
604604 4.69572i 4.69572i
605605 0 0
606606 0 0
607607 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 −1.11803 + 1.53884i −1.11803 + 1.53884i −0.309017 + 0.951057i 0.600000π0.600000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
614614 0 0
615615 0 0
616616 1.70582 + 3.34786i 1.70582 + 3.34786i
617617 0.907981i 0.907981i −0.891007 0.453990i 0.850000π-0.850000\pi
0.891007 0.453990i 0.150000π-0.150000\pi
618618 0 0
619619 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0.309017 + 0.951057i 0.309017 + 0.951057i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i 0.600000π0.600000\pi
−1.00000 π\pi
632632 −6.79718 2.20854i −6.79718 2.20854i
633633 0 0
634634 −2.06909 2.84786i −2.06909 2.84786i
635635 0 0
636636 0 0
637637 0 0
638638 1.77152 + 0.280582i 1.77152 + 0.280582i
639639 0 0
640640 0 0
641641 −0.533698 + 0.734572i −0.533698 + 0.734572i −0.987688 0.156434i 0.950000π-0.950000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
642642 0 0
643643 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
644644 −0.280582 + 0.863541i −0.280582 + 0.863541i
645645 0 0
646646 0 0
647647 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 3.79892 + 2.76007i 3.79892 + 2.76007i
653653 0.183900 + 0.253116i 0.183900 + 0.253116i 0.891007 0.453990i 0.150000π-0.150000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 0.717598 + 2.20854i 0.717598 + 2.20854i
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0.166977 + 0.229825i 0.166977 + 0.229825i
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0.587785 0.190983i 0.587785 0.190983i 1.00000i 0.5π-0.5\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
674674 1.87869 2.58580i 1.87869 2.58580i
675675 0 0
676676 −0.896802 + 2.76007i −0.896802 + 2.76007i
677677 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 1.97538i 1.97538i 0.156434 + 0.987688i 0.450000π0.450000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
684684 0 0
685685 0 0
686686 1.16110 + 1.59811i 1.16110 + 1.59811i
687687 0 0
688688 −2.65688 0.863271i −2.65688 0.863271i
689689 0 0
690690 0 0
691691 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
692692 0 0
693693 0 0
694694 −3.52015 −3.52015
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 −1.70582 2.34786i −1.70582 2.34786i
701701 −0.253116 0.183900i −0.253116 0.183900i 0.453990 0.891007i 0.350000π-0.350000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
702702 0 0
703703 0 0
704704 4.02748 + 4.02748i 4.02748 + 4.02748i
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 −0.587785 + 1.80902i −0.587785 + 1.80902i 1.00000i 0.5π0.5\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 5.73277i 5.73277i
717717 0 0
718718 0.500000 + 0.363271i 0.500000 + 0.363271i
719719 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
720720 0 0
721721 0 0
722722 −1.59811 + 1.16110i −1.59811 + 1.16110i
723723 0 0
724724 0 0
725725 −0.907981 −0.907981
726726 0 0
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
734734 0 0
735735 0 0
736736 1.61803i 1.61803i
737737 0.550672 0.280582i 0.550672 0.280582i
738738 0 0
739739 1.80902 0.587785i 1.80902 0.587785i 0.809017 0.587785i 0.200000π-0.200000\pi
1.00000 00
740740 0 0
741741 0 0
742742 0.554254 1.70582i 0.554254 1.70582i
743743 −0.280582 + 0.863541i −0.280582 + 0.863541i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0.312869i 0.312869i
750750 0 0
751751 −0.951057 0.690983i −0.951057 0.690983i 1.00000i 0.5π-0.5\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0.587785 + 1.80902i 0.587785 + 1.80902i 0.587785 + 0.809017i 0.300000π0.300000\pi
1.00000i 0.5π0.5\pi
758758 −2.32219 −2.32219
759759 0 0
760760 0 0
761761 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
762762 0 0
763763 1.30902 0.951057i 1.30902 0.951057i
764764 2.50609 + 0.814279i 2.50609 + 0.814279i
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
770770 0 0
771771 0 0
772772 1.70582 0.554254i 1.70582 0.554254i
773773 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 −2.29360 + 3.15688i −2.29360 + 3.15688i
779779 0 0
780780 0 0
781781 −1.76007 + 0.278768i −1.76007 + 0.278768i
782782 0 0
783783 0 0
784784 3.65688 + 2.65688i 3.65688 + 2.65688i
785785 0 0
786786 0 0
787787 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
788788 0.734572 0.533698i 0.734572 0.533698i
789789 0 0
790790 0 0
791791 −1.78201 −1.78201
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
798798 0 0
799799 0 0
800800 −4.18391 3.03979i −4.18391 3.03979i
801801 0 0
802802 0.618034i 0.618034i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 −0.0966818 + 0.297556i −0.0966818 + 0.297556i −0.987688 0.156434i 0.950000π-0.950000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
810810 0 0
811811 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
812812 2.50609 0.814279i 2.50609 0.814279i
813813 0 0
814814 −2.29360 0.363271i −2.29360 0.363271i
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 −1.14412 + 0.831254i −1.14412 + 0.831254i −0.987688 0.156434i 0.950000π-0.950000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
822822 0 0
823823 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 00
−0.809017 + 0.587785i 0.800000π0.800000\pi
824824 0 0
825825 0 0
826826 0 0
827827 0.437016 + 1.34500i 0.437016 + 1.34500i 0.891007 + 0.453990i 0.150000π0.150000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
828828 0 0
829829 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
840840 0 0
841841 −0.0542543 + 0.166977i −0.0542543 + 0.166977i
842842 0.987688 3.03979i 0.987688 3.03979i
843843 0 0
844844 2.76007 3.79892i 2.76007 3.79892i
845845 0 0
846846 0 0
847847 1.00000 1.00000
848848 4.10421i 4.10421i
849849 0 0
850850 0 0
851851 −0.216187 0.297556i −0.216187 0.297556i
852852 0 0
853853 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
854854 0 0
855855 0 0
856856 0.363271 + 1.11803i 0.363271 + 1.11803i
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 0 0
861861 0 0
862862 0.500000 0.363271i 0.500000 0.363271i
863863 −1.34500 0.437016i −1.34500 0.437016i −0.453990 0.891007i 0.650000π-0.650000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 −1.34500 + 1.34500i −1.34500 + 1.34500i
870870 0 0
871871 0 0
872872 3.57349 4.91849i 3.57349 4.91849i
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 1.11803 1.53884i 1.11803 1.53884i 0.309017 0.951057i 0.400000π-0.400000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
882882 0 0
883883 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
884884 0 0
885885 0 0
886886 −3.34786 1.08779i −3.34786 1.08779i
887887 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
888888 0 0
889889 −0.363271 1.11803i −0.363271 1.11803i
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 5.78203 + 1.87869i 5.78203 + 1.87869i
897897 0 0
898898 −0.363271 0.500000i −0.363271 0.500000i
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 −6.36801 + 2.06909i −6.36801 + 2.06909i
905905 0 0
906906 0 0
907907 0.587785 1.80902i 0.587785 1.80902i 1.00000i 0.5π-0.5\pi
0.587785 0.809017i 0.300000π-0.300000\pi
908908 0 0
909909 0 0
910910 0 0
911911 1.34500 0.437016i 1.34500 0.437016i 0.453990 0.891007i 0.350000π-0.350000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
912912 0 0
913913 0 0
914914 3.19623i 3.19623i
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0.587785 + 0.190983i 0.587785 + 0.190983i 0.587785 0.809017i 0.300000π-0.300000\pi
1.00000i 0.5π0.5\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 1.17557 1.17557
926926 0.377263 + 1.16110i 0.377263 + 1.16110i
927927 0 0
928928 3.79892 2.76007i 3.79892 2.76007i
929929 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
930930 0 0
931931 0 0
932932 3.32037 + 2.41239i 3.32037 + 2.41239i
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
938938 0.717598 0.987688i 0.717598 0.987688i
939939 0 0
940940 0 0
941941 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 −0.863271 + 0.863271i −0.863271 + 0.863271i
947947 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 1.59811 1.16110i 1.59811 1.16110i 0.707107 0.707107i 0.250000π-0.250000\pi
0.891007 0.453990i 0.150000π-0.150000\pi
954954 0 0
955955 0 0
956956 5.17160 5.17160
957957 0 0
958958 0 0
959959 0.610425 + 1.87869i 0.610425 + 1.87869i
960960 0 0
961961 −0.809017 + 0.587785i −0.809017 + 0.587785i
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
968968 3.57349 1.16110i 3.57349 1.16110i
969969 0 0
970970 0 0
971971 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
972972 0 0
973973 0 0
974974 1.16110 3.57349i 1.16110 3.57349i
975975 0 0
976976 0 0
977977 −1.87869 + 0.610425i −1.87869 + 0.610425i −0.891007 + 0.453990i 0.850000π0.850000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 −2.26007 1.64204i −2.26007 1.64204i
983983 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 −0.193364 −0.193364
990990 0 0
991991 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
992992 0 0
993993 0 0
994994 −2.84786 + 2.06909i −2.84786 + 2.06909i
995995 0 0
996996 0 0
997997 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
998998 −3.03979 2.20854i −3.03979 2.20854i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.1.bp.a.314.1 16
3.2 odd 2 inner 693.1.bp.a.314.4 yes 16
7.6 odd 2 CM 693.1.bp.a.314.1 16
11.2 odd 10 inner 693.1.bp.a.629.4 yes 16
21.20 even 2 inner 693.1.bp.a.314.4 yes 16
33.2 even 10 inner 693.1.bp.a.629.1 yes 16
77.13 even 10 inner 693.1.bp.a.629.4 yes 16
231.167 odd 10 inner 693.1.bp.a.629.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
693.1.bp.a.314.1 16 1.1 even 1 trivial
693.1.bp.a.314.1 16 7.6 odd 2 CM
693.1.bp.a.314.4 yes 16 3.2 odd 2 inner
693.1.bp.a.314.4 yes 16 21.20 even 2 inner
693.1.bp.a.629.1 yes 16 33.2 even 10 inner
693.1.bp.a.629.1 yes 16 231.167 odd 10 inner
693.1.bp.a.629.4 yes 16 11.2 odd 10 inner
693.1.bp.a.629.4 yes 16 77.13 even 10 inner