Properties

Label 693.2.a.i
Level $693$
Weight $2$
Character orbit 693.a
Self dual yes
Analytic conductor $5.534$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,2,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.53363286007\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{13})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + (\beta + 1) q^{4} + q^{5} - q^{7} + 3 q^{8} + \beta q^{10} + q^{11} + (2 \beta - 1) q^{13} - \beta q^{14} + (\beta - 2) q^{16} + 4 q^{17} + 3 q^{19} + (\beta + 1) q^{20} + \beta q^{22} + \cdots + \beta q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 3 q^{4} + 2 q^{5} - 2 q^{7} + 6 q^{8} + q^{10} + 2 q^{11} - q^{14} - 3 q^{16} + 8 q^{17} + 6 q^{19} + 3 q^{20} + q^{22} + 4 q^{23} - 8 q^{25} + 13 q^{26} - 3 q^{28} - 4 q^{29} - 4 q^{31}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.30278
2.30278
−1.30278 0 −0.302776 1.00000 0 −1.00000 3.00000 0 −1.30278
1.2 2.30278 0 3.30278 1.00000 0 −1.00000 3.00000 0 2.30278
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 693.2.a.i yes 2
3.b odd 2 1 693.2.a.g 2
7.b odd 2 1 4851.2.a.z 2
11.b odd 2 1 7623.2.a.bd 2
21.c even 2 1 4851.2.a.x 2
33.d even 2 1 7623.2.a.br 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
693.2.a.g 2 3.b odd 2 1
693.2.a.i yes 2 1.a even 1 1 trivial
4851.2.a.x 2 21.c even 2 1
4851.2.a.z 2 7.b odd 2 1
7623.2.a.bd 2 11.b odd 2 1
7623.2.a.br 2 33.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(693))\):

\( T_{2}^{2} - T_{2} - 3 \) Copy content Toggle raw display
\( T_{5} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T - 3 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( (T - 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 13 \) Copy content Toggle raw display
$17$ \( (T - 4)^{2} \) Copy content Toggle raw display
$19$ \( (T - 3)^{2} \) Copy content Toggle raw display
$23$ \( (T - 2)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 4T - 9 \) Copy content Toggle raw display
$31$ \( (T + 2)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 2T - 51 \) Copy content Toggle raw display
$41$ \( T^{2} - 52 \) Copy content Toggle raw display
$43$ \( T^{2} - 4T - 48 \) Copy content Toggle raw display
$47$ \( T^{2} - 12T + 23 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 8T + 3 \) Copy content Toggle raw display
$61$ \( T^{2} + 8T - 36 \) Copy content Toggle raw display
$67$ \( T^{2} + 4T - 9 \) Copy content Toggle raw display
$71$ \( T^{2} - 8T - 36 \) Copy content Toggle raw display
$73$ \( T^{2} + 4T - 113 \) Copy content Toggle raw display
$79$ \( T^{2} - 8T - 36 \) Copy content Toggle raw display
$83$ \( (T - 12)^{2} \) Copy content Toggle raw display
$89$ \( (T - 6)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 12T - 16 \) Copy content Toggle raw display
show more
show less