Properties

Label 693.4.a.c
Level 693693
Weight 44
Character orbit 693.a
Self dual yes
Analytic conductor 40.88840.888
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 693=32711 693 = 3^{2} \cdot 7 \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 40.888323634040.8883236340
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 231)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q3q2+q4+14q57q7+21q842q10+11q11+2q13+21q1471q16+74q17+14q2033q22+148q23+71q256q267q2826q29+147q98+O(q100) q - 3 q^{2} + q^{4} + 14 q^{5} - 7 q^{7} + 21 q^{8} - 42 q^{10} + 11 q^{11} + 2 q^{13} + 21 q^{14} - 71 q^{16} + 74 q^{17} + 14 q^{20} - 33 q^{22} + 148 q^{23} + 71 q^{25} - 6 q^{26} - 7 q^{28} - 26 q^{29}+ \cdots - 147 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−3.00000 0 1.00000 14.0000 0 −7.00000 21.0000 0 −42.0000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
77 +1 +1
1111 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 693.4.a.c 1
3.b odd 2 1 231.4.a.d 1
21.c even 2 1 1617.4.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
231.4.a.d 1 3.b odd 2 1
693.4.a.c 1 1.a even 1 1 trivial
1617.4.a.f 1 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(693))S_{4}^{\mathrm{new}}(\Gamma_0(693)):

T2+3 T_{2} + 3 Copy content Toggle raw display
T514 T_{5} - 14 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+3 T + 3 Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T14 T - 14 Copy content Toggle raw display
77 T+7 T + 7 Copy content Toggle raw display
1111 T11 T - 11 Copy content Toggle raw display
1313 T2 T - 2 Copy content Toggle raw display
1717 T74 T - 74 Copy content Toggle raw display
1919 T T Copy content Toggle raw display
2323 T148 T - 148 Copy content Toggle raw display
2929 T+26 T + 26 Copy content Toggle raw display
3131 T112 T - 112 Copy content Toggle raw display
3737 T+98 T + 98 Copy content Toggle raw display
4141 T10 T - 10 Copy content Toggle raw display
4343 T208 T - 208 Copy content Toggle raw display
4747 T+460 T + 460 Copy content Toggle raw display
5353 T+258 T + 258 Copy content Toggle raw display
5959 T204 T - 204 Copy content Toggle raw display
6161 T178 T - 178 Copy content Toggle raw display
6767 T+924 T + 924 Copy content Toggle raw display
7171 T748 T - 748 Copy content Toggle raw display
7373 T+230 T + 230 Copy content Toggle raw display
7979 T+456 T + 456 Copy content Toggle raw display
8383 T228 T - 228 Copy content Toggle raw display
8989 T198 T - 198 Copy content Toggle raw display
9797 T562 T - 562 Copy content Toggle raw display
show more
show less