Properties

Label 693.6.a.b.1.1
Level $693$
Weight $6$
Character 693.1
Self dual yes
Analytic conductor $111.146$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,6,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(111.145987130\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -28.0000 q^{4} +76.0000 q^{5} +49.0000 q^{7} -120.000 q^{8} +152.000 q^{10} -121.000 q^{11} -402.000 q^{13} +98.0000 q^{14} +656.000 q^{16} -376.000 q^{17} +2038.00 q^{19} -2128.00 q^{20} -242.000 q^{22} -2100.00 q^{23} +2651.00 q^{25} -804.000 q^{26} -1372.00 q^{28} -1478.00 q^{29} -3874.00 q^{31} +5152.00 q^{32} -752.000 q^{34} +3724.00 q^{35} -2862.00 q^{37} +4076.00 q^{38} -9120.00 q^{40} -1328.00 q^{41} -8776.00 q^{43} +3388.00 q^{44} -4200.00 q^{46} +3454.00 q^{47} +2401.00 q^{49} +5302.00 q^{50} +11256.0 q^{52} -37134.0 q^{53} -9196.00 q^{55} -5880.00 q^{56} -2956.00 q^{58} +37336.0 q^{59} -22426.0 q^{61} -7748.00 q^{62} -10688.0 q^{64} -30552.0 q^{65} +12852.0 q^{67} +10528.0 q^{68} +7448.00 q^{70} +33048.0 q^{71} +45848.0 q^{73} -5724.00 q^{74} -57064.0 q^{76} -5929.00 q^{77} -5048.00 q^{79} +49856.0 q^{80} -2656.00 q^{82} +2794.00 q^{83} -28576.0 q^{85} -17552.0 q^{86} +14520.0 q^{88} +46038.0 q^{89} -19698.0 q^{91} +58800.0 q^{92} +6908.00 q^{94} +154888. q^{95} -103558. q^{97} +4802.00 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.353553 0.176777 0.984251i \(-0.443433\pi\)
0.176777 + 0.984251i \(0.443433\pi\)
\(3\) 0 0
\(4\) −28.0000 −0.875000
\(5\) 76.0000 1.35953 0.679765 0.733430i \(-0.262082\pi\)
0.679765 + 0.733430i \(0.262082\pi\)
\(6\) 0 0
\(7\) 49.0000 0.377964
\(8\) −120.000 −0.662913
\(9\) 0 0
\(10\) 152.000 0.480666
\(11\) −121.000 −0.301511
\(12\) 0 0
\(13\) −402.000 −0.659732 −0.329866 0.944028i \(-0.607004\pi\)
−0.329866 + 0.944028i \(0.607004\pi\)
\(14\) 98.0000 0.133631
\(15\) 0 0
\(16\) 656.000 0.640625
\(17\) −376.000 −0.315548 −0.157774 0.987475i \(-0.550432\pi\)
−0.157774 + 0.987475i \(0.550432\pi\)
\(18\) 0 0
\(19\) 2038.00 1.29515 0.647575 0.762002i \(-0.275783\pi\)
0.647575 + 0.762002i \(0.275783\pi\)
\(20\) −2128.00 −1.18959
\(21\) 0 0
\(22\) −242.000 −0.106600
\(23\) −2100.00 −0.827751 −0.413875 0.910333i \(-0.635825\pi\)
−0.413875 + 0.910333i \(0.635825\pi\)
\(24\) 0 0
\(25\) 2651.00 0.848320
\(26\) −804.000 −0.233251
\(27\) 0 0
\(28\) −1372.00 −0.330719
\(29\) −1478.00 −0.326347 −0.163173 0.986597i \(-0.552173\pi\)
−0.163173 + 0.986597i \(0.552173\pi\)
\(30\) 0 0
\(31\) −3874.00 −0.724028 −0.362014 0.932173i \(-0.617911\pi\)
−0.362014 + 0.932173i \(0.617911\pi\)
\(32\) 5152.00 0.889408
\(33\) 0 0
\(34\) −752.000 −0.111563
\(35\) 3724.00 0.513854
\(36\) 0 0
\(37\) −2862.00 −0.343689 −0.171844 0.985124i \(-0.554973\pi\)
−0.171844 + 0.985124i \(0.554973\pi\)
\(38\) 4076.00 0.457905
\(39\) 0 0
\(40\) −9120.00 −0.901249
\(41\) −1328.00 −0.123378 −0.0616891 0.998095i \(-0.519649\pi\)
−0.0616891 + 0.998095i \(0.519649\pi\)
\(42\) 0 0
\(43\) −8776.00 −0.723811 −0.361906 0.932215i \(-0.617874\pi\)
−0.361906 + 0.932215i \(0.617874\pi\)
\(44\) 3388.00 0.263822
\(45\) 0 0
\(46\) −4200.00 −0.292654
\(47\) 3454.00 0.228075 0.114038 0.993476i \(-0.463622\pi\)
0.114038 + 0.993476i \(0.463622\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 5302.00 0.299926
\(51\) 0 0
\(52\) 11256.0 0.577266
\(53\) −37134.0 −1.81586 −0.907929 0.419123i \(-0.862338\pi\)
−0.907929 + 0.419123i \(0.862338\pi\)
\(54\) 0 0
\(55\) −9196.00 −0.409914
\(56\) −5880.00 −0.250557
\(57\) 0 0
\(58\) −2956.00 −0.115381
\(59\) 37336.0 1.39636 0.698181 0.715922i \(-0.253993\pi\)
0.698181 + 0.715922i \(0.253993\pi\)
\(60\) 0 0
\(61\) −22426.0 −0.771662 −0.385831 0.922569i \(-0.626085\pi\)
−0.385831 + 0.922569i \(0.626085\pi\)
\(62\) −7748.00 −0.255983
\(63\) 0 0
\(64\) −10688.0 −0.326172
\(65\) −30552.0 −0.896925
\(66\) 0 0
\(67\) 12852.0 0.349771 0.174885 0.984589i \(-0.444044\pi\)
0.174885 + 0.984589i \(0.444044\pi\)
\(68\) 10528.0 0.276105
\(69\) 0 0
\(70\) 7448.00 0.181675
\(71\) 33048.0 0.778035 0.389018 0.921230i \(-0.372815\pi\)
0.389018 + 0.921230i \(0.372815\pi\)
\(72\) 0 0
\(73\) 45848.0 1.00696 0.503481 0.864006i \(-0.332052\pi\)
0.503481 + 0.864006i \(0.332052\pi\)
\(74\) −5724.00 −0.121512
\(75\) 0 0
\(76\) −57064.0 −1.13326
\(77\) −5929.00 −0.113961
\(78\) 0 0
\(79\) −5048.00 −0.0910021 −0.0455011 0.998964i \(-0.514488\pi\)
−0.0455011 + 0.998964i \(0.514488\pi\)
\(80\) 49856.0 0.870948
\(81\) 0 0
\(82\) −2656.00 −0.0436208
\(83\) 2794.00 0.0445175 0.0222588 0.999752i \(-0.492914\pi\)
0.0222588 + 0.999752i \(0.492914\pi\)
\(84\) 0 0
\(85\) −28576.0 −0.428997
\(86\) −17552.0 −0.255906
\(87\) 0 0
\(88\) 14520.0 0.199876
\(89\) 46038.0 0.616086 0.308043 0.951372i \(-0.400326\pi\)
0.308043 + 0.951372i \(0.400326\pi\)
\(90\) 0 0
\(91\) −19698.0 −0.249355
\(92\) 58800.0 0.724282
\(93\) 0 0
\(94\) 6908.00 0.0806367
\(95\) 154888. 1.76079
\(96\) 0 0
\(97\) −103558. −1.11752 −0.558759 0.829330i \(-0.688722\pi\)
−0.558759 + 0.829330i \(0.688722\pi\)
\(98\) 4802.00 0.0505076
\(99\) 0 0
\(100\) −74228.0 −0.742280
\(101\) −136146. −1.32801 −0.664005 0.747728i \(-0.731145\pi\)
−0.664005 + 0.747728i \(0.731145\pi\)
\(102\) 0 0
\(103\) −127614. −1.18524 −0.592619 0.805483i \(-0.701906\pi\)
−0.592619 + 0.805483i \(0.701906\pi\)
\(104\) 48240.0 0.437345
\(105\) 0 0
\(106\) −74268.0 −0.642003
\(107\) −175344. −1.48058 −0.740289 0.672288i \(-0.765311\pi\)
−0.740289 + 0.672288i \(0.765311\pi\)
\(108\) 0 0
\(109\) 90322.0 0.728161 0.364080 0.931368i \(-0.381383\pi\)
0.364080 + 0.931368i \(0.381383\pi\)
\(110\) −18392.0 −0.144926
\(111\) 0 0
\(112\) 32144.0 0.242133
\(113\) 224994. 1.65758 0.828791 0.559559i \(-0.189029\pi\)
0.828791 + 0.559559i \(0.189029\pi\)
\(114\) 0 0
\(115\) −159600. −1.12535
\(116\) 41384.0 0.285554
\(117\) 0 0
\(118\) 74672.0 0.493688
\(119\) −18424.0 −0.119266
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) −44852.0 −0.272824
\(123\) 0 0
\(124\) 108472. 0.633525
\(125\) −36024.0 −0.206213
\(126\) 0 0
\(127\) −155368. −0.854776 −0.427388 0.904068i \(-0.640566\pi\)
−0.427388 + 0.904068i \(0.640566\pi\)
\(128\) −186240. −1.00473
\(129\) 0 0
\(130\) −61104.0 −0.317111
\(131\) −316562. −1.61169 −0.805843 0.592129i \(-0.798288\pi\)
−0.805843 + 0.592129i \(0.798288\pi\)
\(132\) 0 0
\(133\) 99862.0 0.489521
\(134\) 25704.0 0.123663
\(135\) 0 0
\(136\) 45120.0 0.209181
\(137\) −125670. −0.572045 −0.286023 0.958223i \(-0.592333\pi\)
−0.286023 + 0.958223i \(0.592333\pi\)
\(138\) 0 0
\(139\) −303278. −1.33139 −0.665693 0.746226i \(-0.731864\pi\)
−0.665693 + 0.746226i \(0.731864\pi\)
\(140\) −104272. −0.449622
\(141\) 0 0
\(142\) 66096.0 0.275077
\(143\) 48642.0 0.198917
\(144\) 0 0
\(145\) −112328. −0.443678
\(146\) 91696.0 0.356015
\(147\) 0 0
\(148\) 80136.0 0.300728
\(149\) 31670.0 0.116864 0.0584322 0.998291i \(-0.481390\pi\)
0.0584322 + 0.998291i \(0.481390\pi\)
\(150\) 0 0
\(151\) 333392. 1.18991 0.594953 0.803760i \(-0.297171\pi\)
0.594953 + 0.803760i \(0.297171\pi\)
\(152\) −244560. −0.858571
\(153\) 0 0
\(154\) −11858.0 −0.0402911
\(155\) −294424. −0.984337
\(156\) 0 0
\(157\) −565712. −1.83167 −0.915833 0.401559i \(-0.868468\pi\)
−0.915833 + 0.401559i \(0.868468\pi\)
\(158\) −10096.0 −0.0321741
\(159\) 0 0
\(160\) 391552. 1.20918
\(161\) −102900. −0.312860
\(162\) 0 0
\(163\) −430212. −1.26828 −0.634138 0.773220i \(-0.718645\pi\)
−0.634138 + 0.773220i \(0.718645\pi\)
\(164\) 37184.0 0.107956
\(165\) 0 0
\(166\) 5588.00 0.0157393
\(167\) −176636. −0.490104 −0.245052 0.969510i \(-0.578805\pi\)
−0.245052 + 0.969510i \(0.578805\pi\)
\(168\) 0 0
\(169\) −209689. −0.564753
\(170\) −57152.0 −0.151673
\(171\) 0 0
\(172\) 245728. 0.633335
\(173\) −416782. −1.05875 −0.529375 0.848388i \(-0.677574\pi\)
−0.529375 + 0.848388i \(0.677574\pi\)
\(174\) 0 0
\(175\) 129899. 0.320635
\(176\) −79376.0 −0.193156
\(177\) 0 0
\(178\) 92076.0 0.217819
\(179\) 89964.0 0.209863 0.104932 0.994479i \(-0.466538\pi\)
0.104932 + 0.994479i \(0.466538\pi\)
\(180\) 0 0
\(181\) −578140. −1.31171 −0.655853 0.754889i \(-0.727691\pi\)
−0.655853 + 0.754889i \(0.727691\pi\)
\(182\) −39396.0 −0.0881604
\(183\) 0 0
\(184\) 252000. 0.548727
\(185\) −217512. −0.467255
\(186\) 0 0
\(187\) 45496.0 0.0951413
\(188\) −96712.0 −0.199566
\(189\) 0 0
\(190\) 309776. 0.622535
\(191\) −283164. −0.561636 −0.280818 0.959761i \(-0.590606\pi\)
−0.280818 + 0.959761i \(0.590606\pi\)
\(192\) 0 0
\(193\) −659974. −1.27536 −0.637681 0.770300i \(-0.720106\pi\)
−0.637681 + 0.770300i \(0.720106\pi\)
\(194\) −207116. −0.395102
\(195\) 0 0
\(196\) −67228.0 −0.125000
\(197\) −452294. −0.830339 −0.415169 0.909744i \(-0.636278\pi\)
−0.415169 + 0.909744i \(0.636278\pi\)
\(198\) 0 0
\(199\) −389774. −0.697718 −0.348859 0.937175i \(-0.613431\pi\)
−0.348859 + 0.937175i \(0.613431\pi\)
\(200\) −318120. −0.562362
\(201\) 0 0
\(202\) −272292. −0.469523
\(203\) −72422.0 −0.123348
\(204\) 0 0
\(205\) −100928. −0.167736
\(206\) −255228. −0.419045
\(207\) 0 0
\(208\) −263712. −0.422641
\(209\) −246598. −0.390503
\(210\) 0 0
\(211\) 92280.0 0.142693 0.0713463 0.997452i \(-0.477270\pi\)
0.0713463 + 0.997452i \(0.477270\pi\)
\(212\) 1.03975e6 1.58888
\(213\) 0 0
\(214\) −350688. −0.523464
\(215\) −666976. −0.984043
\(216\) 0 0
\(217\) −189826. −0.273657
\(218\) 180644. 0.257444
\(219\) 0 0
\(220\) 257488. 0.358674
\(221\) 151152. 0.208177
\(222\) 0 0
\(223\) 117558. 0.158303 0.0791517 0.996863i \(-0.474779\pi\)
0.0791517 + 0.996863i \(0.474779\pi\)
\(224\) 252448. 0.336165
\(225\) 0 0
\(226\) 449988. 0.586043
\(227\) 465414. 0.599480 0.299740 0.954021i \(-0.403100\pi\)
0.299740 + 0.954021i \(0.403100\pi\)
\(228\) 0 0
\(229\) 1.48848e6 1.87567 0.937833 0.347087i \(-0.112829\pi\)
0.937833 + 0.347087i \(0.112829\pi\)
\(230\) −319200. −0.397872
\(231\) 0 0
\(232\) 177360. 0.216339
\(233\) 312026. 0.376531 0.188266 0.982118i \(-0.439713\pi\)
0.188266 + 0.982118i \(0.439713\pi\)
\(234\) 0 0
\(235\) 262504. 0.310075
\(236\) −1.04541e6 −1.22182
\(237\) 0 0
\(238\) −36848.0 −0.0421669
\(239\) 1.08720e6 1.23116 0.615580 0.788074i \(-0.288922\pi\)
0.615580 + 0.788074i \(0.288922\pi\)
\(240\) 0 0
\(241\) −131080. −0.145376 −0.0726882 0.997355i \(-0.523158\pi\)
−0.0726882 + 0.997355i \(0.523158\pi\)
\(242\) 29282.0 0.0321412
\(243\) 0 0
\(244\) 627928. 0.675204
\(245\) 182476. 0.194218
\(246\) 0 0
\(247\) −819276. −0.854452
\(248\) 464880. 0.479967
\(249\) 0 0
\(250\) −72048.0 −0.0729074
\(251\) 908712. 0.910420 0.455210 0.890384i \(-0.349564\pi\)
0.455210 + 0.890384i \(0.349564\pi\)
\(252\) 0 0
\(253\) 254100. 0.249576
\(254\) −310736. −0.302209
\(255\) 0 0
\(256\) −30464.0 −0.0290527
\(257\) −430314. −0.406399 −0.203200 0.979137i \(-0.565134\pi\)
−0.203200 + 0.979137i \(0.565134\pi\)
\(258\) 0 0
\(259\) −140238. −0.129902
\(260\) 855456. 0.784810
\(261\) 0 0
\(262\) −633124. −0.569817
\(263\) 1.84066e6 1.64090 0.820452 0.571715i \(-0.193722\pi\)
0.820452 + 0.571715i \(0.193722\pi\)
\(264\) 0 0
\(265\) −2.82218e6 −2.46871
\(266\) 199724. 0.173072
\(267\) 0 0
\(268\) −359856. −0.306050
\(269\) 672740. 0.566848 0.283424 0.958995i \(-0.408530\pi\)
0.283424 + 0.958995i \(0.408530\pi\)
\(270\) 0 0
\(271\) −466004. −0.385449 −0.192724 0.981253i \(-0.561732\pi\)
−0.192724 + 0.981253i \(0.561732\pi\)
\(272\) −246656. −0.202148
\(273\) 0 0
\(274\) −251340. −0.202248
\(275\) −320771. −0.255778
\(276\) 0 0
\(277\) 2.42209e6 1.89667 0.948333 0.317277i \(-0.102768\pi\)
0.948333 + 0.317277i \(0.102768\pi\)
\(278\) −606556. −0.470716
\(279\) 0 0
\(280\) −446880. −0.340640
\(281\) 1.36659e6 1.03246 0.516231 0.856450i \(-0.327335\pi\)
0.516231 + 0.856450i \(0.327335\pi\)
\(282\) 0 0
\(283\) −2.40264e6 −1.78329 −0.891646 0.452734i \(-0.850449\pi\)
−0.891646 + 0.452734i \(0.850449\pi\)
\(284\) −925344. −0.680781
\(285\) 0 0
\(286\) 97284.0 0.0703277
\(287\) −65072.0 −0.0466326
\(288\) 0 0
\(289\) −1.27848e6 −0.900429
\(290\) −224656. −0.156864
\(291\) 0 0
\(292\) −1.28374e6 −0.881092
\(293\) 1.94441e6 1.32318 0.661590 0.749866i \(-0.269882\pi\)
0.661590 + 0.749866i \(0.269882\pi\)
\(294\) 0 0
\(295\) 2.83754e6 1.89839
\(296\) 343440. 0.227836
\(297\) 0 0
\(298\) 63340.0 0.0413178
\(299\) 844200. 0.546094
\(300\) 0 0
\(301\) −430024. −0.273575
\(302\) 666784. 0.420695
\(303\) 0 0
\(304\) 1.33693e6 0.829706
\(305\) −1.70438e6 −1.04910
\(306\) 0 0
\(307\) −1.51973e6 −0.920279 −0.460139 0.887847i \(-0.652201\pi\)
−0.460139 + 0.887847i \(0.652201\pi\)
\(308\) 166012. 0.0997155
\(309\) 0 0
\(310\) −588848. −0.348016
\(311\) 1.69750e6 0.995195 0.497598 0.867408i \(-0.334216\pi\)
0.497598 + 0.867408i \(0.334216\pi\)
\(312\) 0 0
\(313\) −2.48311e6 −1.43263 −0.716316 0.697776i \(-0.754173\pi\)
−0.716316 + 0.697776i \(0.754173\pi\)
\(314\) −1.13142e6 −0.647592
\(315\) 0 0
\(316\) 141344. 0.0796269
\(317\) −1.31161e6 −0.733087 −0.366543 0.930401i \(-0.619459\pi\)
−0.366543 + 0.930401i \(0.619459\pi\)
\(318\) 0 0
\(319\) 178838. 0.0983973
\(320\) −812288. −0.443440
\(321\) 0 0
\(322\) −205800. −0.110613
\(323\) −766288. −0.408682
\(324\) 0 0
\(325\) −1.06570e6 −0.559664
\(326\) −860424. −0.448403
\(327\) 0 0
\(328\) 159360. 0.0817890
\(329\) 169246. 0.0862042
\(330\) 0 0
\(331\) −633596. −0.317865 −0.158932 0.987289i \(-0.550805\pi\)
−0.158932 + 0.987289i \(0.550805\pi\)
\(332\) −78232.0 −0.0389528
\(333\) 0 0
\(334\) −353272. −0.173278
\(335\) 976752. 0.475524
\(336\) 0 0
\(337\) −235282. −0.112853 −0.0564266 0.998407i \(-0.517971\pi\)
−0.0564266 + 0.998407i \(0.517971\pi\)
\(338\) −419378. −0.199670
\(339\) 0 0
\(340\) 800128. 0.375372
\(341\) 468754. 0.218303
\(342\) 0 0
\(343\) 117649. 0.0539949
\(344\) 1.05312e6 0.479824
\(345\) 0 0
\(346\) −833564. −0.374325
\(347\) −1.39186e6 −0.620545 −0.310272 0.950648i \(-0.600420\pi\)
−0.310272 + 0.950648i \(0.600420\pi\)
\(348\) 0 0
\(349\) −1.06241e6 −0.466903 −0.233452 0.972368i \(-0.575002\pi\)
−0.233452 + 0.972368i \(0.575002\pi\)
\(350\) 259798. 0.113362
\(351\) 0 0
\(352\) −623392. −0.268167
\(353\) 269846. 0.115260 0.0576301 0.998338i \(-0.481646\pi\)
0.0576301 + 0.998338i \(0.481646\pi\)
\(354\) 0 0
\(355\) 2.51165e6 1.05776
\(356\) −1.28906e6 −0.539075
\(357\) 0 0
\(358\) 179928. 0.0741978
\(359\) −1.08900e6 −0.445956 −0.222978 0.974824i \(-0.571578\pi\)
−0.222978 + 0.974824i \(0.571578\pi\)
\(360\) 0 0
\(361\) 1.67735e6 0.677414
\(362\) −1.15628e6 −0.463758
\(363\) 0 0
\(364\) 551544. 0.218186
\(365\) 3.48445e6 1.36899
\(366\) 0 0
\(367\) −1.18306e6 −0.458502 −0.229251 0.973367i \(-0.573628\pi\)
−0.229251 + 0.973367i \(0.573628\pi\)
\(368\) −1.37760e6 −0.530278
\(369\) 0 0
\(370\) −435024. −0.165200
\(371\) −1.81957e6 −0.686330
\(372\) 0 0
\(373\) −2.62457e6 −0.976756 −0.488378 0.872632i \(-0.662411\pi\)
−0.488378 + 0.872632i \(0.662411\pi\)
\(374\) 90992.0 0.0336375
\(375\) 0 0
\(376\) −414480. −0.151194
\(377\) 594156. 0.215302
\(378\) 0 0
\(379\) −1.92967e6 −0.690056 −0.345028 0.938592i \(-0.612131\pi\)
−0.345028 + 0.938592i \(0.612131\pi\)
\(380\) −4.33686e6 −1.54070
\(381\) 0 0
\(382\) −566328. −0.198568
\(383\) −3.83604e6 −1.33624 −0.668122 0.744051i \(-0.732902\pi\)
−0.668122 + 0.744051i \(0.732902\pi\)
\(384\) 0 0
\(385\) −450604. −0.154933
\(386\) −1.31995e6 −0.450909
\(387\) 0 0
\(388\) 2.89962e6 0.977828
\(389\) 1.41377e6 0.473703 0.236851 0.971546i \(-0.423885\pi\)
0.236851 + 0.971546i \(0.423885\pi\)
\(390\) 0 0
\(391\) 789600. 0.261195
\(392\) −288120. −0.0947018
\(393\) 0 0
\(394\) −904588. −0.293569
\(395\) −383648. −0.123720
\(396\) 0 0
\(397\) −2.28410e6 −0.727341 −0.363671 0.931528i \(-0.618477\pi\)
−0.363671 + 0.931528i \(0.618477\pi\)
\(398\) −779548. −0.246681
\(399\) 0 0
\(400\) 1.73906e6 0.543455
\(401\) 3.25611e6 1.01120 0.505602 0.862767i \(-0.331270\pi\)
0.505602 + 0.862767i \(0.331270\pi\)
\(402\) 0 0
\(403\) 1.55735e6 0.477665
\(404\) 3.81209e6 1.16201
\(405\) 0 0
\(406\) −144844. −0.0436099
\(407\) 346302. 0.103626
\(408\) 0 0
\(409\) 1.22338e6 0.361621 0.180810 0.983518i \(-0.442128\pi\)
0.180810 + 0.983518i \(0.442128\pi\)
\(410\) −201856. −0.0593037
\(411\) 0 0
\(412\) 3.57319e6 1.03708
\(413\) 1.82946e6 0.527775
\(414\) 0 0
\(415\) 212344. 0.0605229
\(416\) −2.07110e6 −0.586771
\(417\) 0 0
\(418\) −493196. −0.138063
\(419\) 3.12546e6 0.869719 0.434859 0.900498i \(-0.356798\pi\)
0.434859 + 0.900498i \(0.356798\pi\)
\(420\) 0 0
\(421\) 4.88641e6 1.34364 0.671822 0.740713i \(-0.265512\pi\)
0.671822 + 0.740713i \(0.265512\pi\)
\(422\) 184560. 0.0504495
\(423\) 0 0
\(424\) 4.45608e6 1.20376
\(425\) −996776. −0.267686
\(426\) 0 0
\(427\) −1.09887e6 −0.291661
\(428\) 4.90963e6 1.29551
\(429\) 0 0
\(430\) −1.33395e6 −0.347912
\(431\) −2.95178e6 −0.765405 −0.382703 0.923872i \(-0.625007\pi\)
−0.382703 + 0.923872i \(0.625007\pi\)
\(432\) 0 0
\(433\) 3.94967e6 1.01238 0.506188 0.862423i \(-0.331054\pi\)
0.506188 + 0.862423i \(0.331054\pi\)
\(434\) −379652. −0.0967523
\(435\) 0 0
\(436\) −2.52902e6 −0.637141
\(437\) −4.27980e6 −1.07206
\(438\) 0 0
\(439\) 393260. 0.0973909 0.0486955 0.998814i \(-0.484494\pi\)
0.0486955 + 0.998814i \(0.484494\pi\)
\(440\) 1.10352e6 0.271737
\(441\) 0 0
\(442\) 302304. 0.0736018
\(443\) −5.03867e6 −1.21985 −0.609925 0.792459i \(-0.708800\pi\)
−0.609925 + 0.792459i \(0.708800\pi\)
\(444\) 0 0
\(445\) 3.49889e6 0.837587
\(446\) 235116. 0.0559687
\(447\) 0 0
\(448\) −523712. −0.123281
\(449\) 4.15309e6 0.972200 0.486100 0.873903i \(-0.338419\pi\)
0.486100 + 0.873903i \(0.338419\pi\)
\(450\) 0 0
\(451\) 160688. 0.0371999
\(452\) −6.29983e6 −1.45038
\(453\) 0 0
\(454\) 930828. 0.211948
\(455\) −1.49705e6 −0.339006
\(456\) 0 0
\(457\) 1.23958e6 0.277641 0.138820 0.990318i \(-0.455669\pi\)
0.138820 + 0.990318i \(0.455669\pi\)
\(458\) 2.97697e6 0.663148
\(459\) 0 0
\(460\) 4.46880e6 0.984683
\(461\) 4.21302e6 0.923297 0.461648 0.887063i \(-0.347258\pi\)
0.461648 + 0.887063i \(0.347258\pi\)
\(462\) 0 0
\(463\) −2.85934e6 −0.619889 −0.309944 0.950755i \(-0.600310\pi\)
−0.309944 + 0.950755i \(0.600310\pi\)
\(464\) −969568. −0.209066
\(465\) 0 0
\(466\) 624052. 0.133124
\(467\) −949956. −0.201563 −0.100782 0.994909i \(-0.532134\pi\)
−0.100782 + 0.994909i \(0.532134\pi\)
\(468\) 0 0
\(469\) 629748. 0.132201
\(470\) 525008. 0.109628
\(471\) 0 0
\(472\) −4.48032e6 −0.925665
\(473\) 1.06190e6 0.218237
\(474\) 0 0
\(475\) 5.40274e6 1.09870
\(476\) 515872. 0.104358
\(477\) 0 0
\(478\) 2.17440e6 0.435281
\(479\) 2.71673e6 0.541013 0.270506 0.962718i \(-0.412809\pi\)
0.270506 + 0.962718i \(0.412809\pi\)
\(480\) 0 0
\(481\) 1.15052e6 0.226743
\(482\) −262160. −0.0513983
\(483\) 0 0
\(484\) −409948. −0.0795455
\(485\) −7.87041e6 −1.51930
\(486\) 0 0
\(487\) 8.65216e6 1.65311 0.826556 0.562854i \(-0.190297\pi\)
0.826556 + 0.562854i \(0.190297\pi\)
\(488\) 2.69112e6 0.511545
\(489\) 0 0
\(490\) 364952. 0.0686666
\(491\) −1.98423e6 −0.371439 −0.185720 0.982603i \(-0.559462\pi\)
−0.185720 + 0.982603i \(0.559462\pi\)
\(492\) 0 0
\(493\) 555728. 0.102978
\(494\) −1.63855e6 −0.302095
\(495\) 0 0
\(496\) −2.54134e6 −0.463830
\(497\) 1.61935e6 0.294070
\(498\) 0 0
\(499\) 5.02934e6 0.904190 0.452095 0.891970i \(-0.350677\pi\)
0.452095 + 0.891970i \(0.350677\pi\)
\(500\) 1.00867e6 0.180437
\(501\) 0 0
\(502\) 1.81742e6 0.321882
\(503\) −2.75478e6 −0.485475 −0.242738 0.970092i \(-0.578045\pi\)
−0.242738 + 0.970092i \(0.578045\pi\)
\(504\) 0 0
\(505\) −1.03471e7 −1.80547
\(506\) 508200. 0.0882386
\(507\) 0 0
\(508\) 4.35030e6 0.747929
\(509\) 7.42547e6 1.27037 0.635184 0.772361i \(-0.280924\pi\)
0.635184 + 0.772361i \(0.280924\pi\)
\(510\) 0 0
\(511\) 2.24655e6 0.380596
\(512\) 5.89875e6 0.994455
\(513\) 0 0
\(514\) −860628. −0.143684
\(515\) −9.69866e6 −1.61136
\(516\) 0 0
\(517\) −417934. −0.0687672
\(518\) −280476. −0.0459273
\(519\) 0 0
\(520\) 3.66624e6 0.594583
\(521\) 7.04761e6 1.13749 0.568745 0.822514i \(-0.307429\pi\)
0.568745 + 0.822514i \(0.307429\pi\)
\(522\) 0 0
\(523\) 4.89180e6 0.782014 0.391007 0.920388i \(-0.372127\pi\)
0.391007 + 0.920388i \(0.372127\pi\)
\(524\) 8.86374e6 1.41023
\(525\) 0 0
\(526\) 3.68131e6 0.580147
\(527\) 1.45662e6 0.228466
\(528\) 0 0
\(529\) −2.02634e6 −0.314828
\(530\) −5.64437e6 −0.872822
\(531\) 0 0
\(532\) −2.79614e6 −0.428331
\(533\) 533856. 0.0813966
\(534\) 0 0
\(535\) −1.33261e7 −2.01289
\(536\) −1.54224e6 −0.231868
\(537\) 0 0
\(538\) 1.34548e6 0.200411
\(539\) −290521. −0.0430730
\(540\) 0 0
\(541\) 1.04634e7 1.53703 0.768513 0.639834i \(-0.220997\pi\)
0.768513 + 0.639834i \(0.220997\pi\)
\(542\) −932008. −0.136277
\(543\) 0 0
\(544\) −1.93715e6 −0.280651
\(545\) 6.86447e6 0.989956
\(546\) 0 0
\(547\) 5.18065e6 0.740314 0.370157 0.928969i \(-0.379304\pi\)
0.370157 + 0.928969i \(0.379304\pi\)
\(548\) 3.51876e6 0.500539
\(549\) 0 0
\(550\) −641542. −0.0904312
\(551\) −3.01216e6 −0.422668
\(552\) 0 0
\(553\) −247352. −0.0343956
\(554\) 4.84418e6 0.670573
\(555\) 0 0
\(556\) 8.49178e6 1.16496
\(557\) 4.15034e6 0.566820 0.283410 0.958999i \(-0.408534\pi\)
0.283410 + 0.958999i \(0.408534\pi\)
\(558\) 0 0
\(559\) 3.52795e6 0.477522
\(560\) 2.44294e6 0.329188
\(561\) 0 0
\(562\) 2.73319e6 0.365030
\(563\) 7.30678e6 0.971528 0.485764 0.874090i \(-0.338542\pi\)
0.485764 + 0.874090i \(0.338542\pi\)
\(564\) 0 0
\(565\) 1.70995e7 2.25353
\(566\) −4.80528e6 −0.630489
\(567\) 0 0
\(568\) −3.96576e6 −0.515769
\(569\) −5.69210e6 −0.737042 −0.368521 0.929620i \(-0.620136\pi\)
−0.368521 + 0.929620i \(0.620136\pi\)
\(570\) 0 0
\(571\) 6.84144e6 0.878127 0.439064 0.898456i \(-0.355310\pi\)
0.439064 + 0.898456i \(0.355310\pi\)
\(572\) −1.36198e6 −0.174052
\(573\) 0 0
\(574\) −130144. −0.0164871
\(575\) −5.56710e6 −0.702198
\(576\) 0 0
\(577\) −5.89572e6 −0.737221 −0.368610 0.929584i \(-0.620166\pi\)
−0.368610 + 0.929584i \(0.620166\pi\)
\(578\) −2.55696e6 −0.318350
\(579\) 0 0
\(580\) 3.14518e6 0.388218
\(581\) 136906. 0.0168260
\(582\) 0 0
\(583\) 4.49321e6 0.547502
\(584\) −5.50176e6 −0.667528
\(585\) 0 0
\(586\) 3.88882e6 0.467815
\(587\) −3.35712e6 −0.402135 −0.201067 0.979577i \(-0.564441\pi\)
−0.201067 + 0.979577i \(0.564441\pi\)
\(588\) 0 0
\(589\) −7.89521e6 −0.937725
\(590\) 5.67507e6 0.671184
\(591\) 0 0
\(592\) −1.87747e6 −0.220176
\(593\) 6.76650e6 0.790183 0.395091 0.918642i \(-0.370713\pi\)
0.395091 + 0.918642i \(0.370713\pi\)
\(594\) 0 0
\(595\) −1.40022e6 −0.162146
\(596\) −886760. −0.102256
\(597\) 0 0
\(598\) 1.68840e6 0.193073
\(599\) 4.56950e6 0.520357 0.260178 0.965561i \(-0.416219\pi\)
0.260178 + 0.965561i \(0.416219\pi\)
\(600\) 0 0
\(601\) −1.62371e7 −1.83368 −0.916840 0.399255i \(-0.869269\pi\)
−0.916840 + 0.399255i \(0.869269\pi\)
\(602\) −860048. −0.0967234
\(603\) 0 0
\(604\) −9.33498e6 −1.04117
\(605\) 1.11272e6 0.123594
\(606\) 0 0
\(607\) 1.63693e7 1.80326 0.901629 0.432511i \(-0.142372\pi\)
0.901629 + 0.432511i \(0.142372\pi\)
\(608\) 1.04998e7 1.15192
\(609\) 0 0
\(610\) −3.40875e6 −0.370912
\(611\) −1.38851e6 −0.150468
\(612\) 0 0
\(613\) 8.25460e6 0.887247 0.443624 0.896213i \(-0.353693\pi\)
0.443624 + 0.896213i \(0.353693\pi\)
\(614\) −3.03945e6 −0.325368
\(615\) 0 0
\(616\) 711480. 0.0755459
\(617\) −8.71255e6 −0.921366 −0.460683 0.887565i \(-0.652395\pi\)
−0.460683 + 0.887565i \(0.652395\pi\)
\(618\) 0 0
\(619\) −1.74335e7 −1.82877 −0.914383 0.404850i \(-0.867324\pi\)
−0.914383 + 0.404850i \(0.867324\pi\)
\(620\) 8.24387e6 0.861295
\(621\) 0 0
\(622\) 3.39500e6 0.351855
\(623\) 2.25586e6 0.232859
\(624\) 0 0
\(625\) −1.10222e7 −1.12867
\(626\) −4.96621e6 −0.506512
\(627\) 0 0
\(628\) 1.58399e7 1.60271
\(629\) 1.07611e6 0.108450
\(630\) 0 0
\(631\) 1.42676e6 0.142651 0.0713257 0.997453i \(-0.477277\pi\)
0.0713257 + 0.997453i \(0.477277\pi\)
\(632\) 605760. 0.0603265
\(633\) 0 0
\(634\) −2.62321e6 −0.259185
\(635\) −1.18080e7 −1.16209
\(636\) 0 0
\(637\) −965202. −0.0942475
\(638\) 357676. 0.0347887
\(639\) 0 0
\(640\) −1.41542e7 −1.36596
\(641\) 1.24282e7 1.19471 0.597354 0.801977i \(-0.296219\pi\)
0.597354 + 0.801977i \(0.296219\pi\)
\(642\) 0 0
\(643\) −9.59562e6 −0.915262 −0.457631 0.889142i \(-0.651302\pi\)
−0.457631 + 0.889142i \(0.651302\pi\)
\(644\) 2.88120e6 0.273753
\(645\) 0 0
\(646\) −1.53258e6 −0.144491
\(647\) −3.55154e6 −0.333546 −0.166773 0.985995i \(-0.553335\pi\)
−0.166773 + 0.985995i \(0.553335\pi\)
\(648\) 0 0
\(649\) −4.51766e6 −0.421019
\(650\) −2.13140e6 −0.197871
\(651\) 0 0
\(652\) 1.20459e7 1.10974
\(653\) 1.20925e7 1.10977 0.554885 0.831927i \(-0.312762\pi\)
0.554885 + 0.831927i \(0.312762\pi\)
\(654\) 0 0
\(655\) −2.40587e7 −2.19113
\(656\) −871168. −0.0790392
\(657\) 0 0
\(658\) 338492. 0.0304778
\(659\) −1.36481e7 −1.22421 −0.612107 0.790775i \(-0.709678\pi\)
−0.612107 + 0.790775i \(0.709678\pi\)
\(660\) 0 0
\(661\) −758596. −0.0675316 −0.0337658 0.999430i \(-0.510750\pi\)
−0.0337658 + 0.999430i \(0.510750\pi\)
\(662\) −1.26719e6 −0.112382
\(663\) 0 0
\(664\) −335280. −0.0295112
\(665\) 7.58951e6 0.665518
\(666\) 0 0
\(667\) 3.10380e6 0.270134
\(668\) 4.94581e6 0.428841
\(669\) 0 0
\(670\) 1.95350e6 0.168123
\(671\) 2.71355e6 0.232665
\(672\) 0 0
\(673\) 8.87005e6 0.754898 0.377449 0.926030i \(-0.376801\pi\)
0.377449 + 0.926030i \(0.376801\pi\)
\(674\) −470564. −0.0398996
\(675\) 0 0
\(676\) 5.87129e6 0.494159
\(677\) 1.82823e7 1.53306 0.766531 0.642207i \(-0.221981\pi\)
0.766531 + 0.642207i \(0.221981\pi\)
\(678\) 0 0
\(679\) −5.07434e6 −0.422382
\(680\) 3.42912e6 0.284387
\(681\) 0 0
\(682\) 937508. 0.0771816
\(683\) −1.04250e7 −0.855112 −0.427556 0.903989i \(-0.640625\pi\)
−0.427556 + 0.903989i \(0.640625\pi\)
\(684\) 0 0
\(685\) −9.55092e6 −0.777712
\(686\) 235298. 0.0190901
\(687\) 0 0
\(688\) −5.75706e6 −0.463692
\(689\) 1.49279e7 1.19798
\(690\) 0 0
\(691\) −1.78231e7 −1.42000 −0.710001 0.704201i \(-0.751305\pi\)
−0.710001 + 0.704201i \(0.751305\pi\)
\(692\) 1.16699e7 0.926407
\(693\) 0 0
\(694\) −2.78373e6 −0.219396
\(695\) −2.30491e7 −1.81006
\(696\) 0 0
\(697\) 499328. 0.0389318
\(698\) −2.12481e6 −0.165075
\(699\) 0 0
\(700\) −3.63717e6 −0.280555
\(701\) −5.02509e6 −0.386232 −0.193116 0.981176i \(-0.561859\pi\)
−0.193116 + 0.981176i \(0.561859\pi\)
\(702\) 0 0
\(703\) −5.83276e6 −0.445129
\(704\) 1.29325e6 0.0983445
\(705\) 0 0
\(706\) 539692. 0.0407506
\(707\) −6.67115e6 −0.501941
\(708\) 0 0
\(709\) −2.14778e7 −1.60463 −0.802313 0.596903i \(-0.796398\pi\)
−0.802313 + 0.596903i \(0.796398\pi\)
\(710\) 5.02330e6 0.373975
\(711\) 0 0
\(712\) −5.52456e6 −0.408411
\(713\) 8.13540e6 0.599315
\(714\) 0 0
\(715\) 3.69679e6 0.270433
\(716\) −2.51899e6 −0.183630
\(717\) 0 0
\(718\) −2.17800e6 −0.157669
\(719\) 327962. 0.0236593 0.0118296 0.999930i \(-0.496234\pi\)
0.0118296 + 0.999930i \(0.496234\pi\)
\(720\) 0 0
\(721\) −6.25309e6 −0.447978
\(722\) 3.35469e6 0.239502
\(723\) 0 0
\(724\) 1.61879e7 1.14774
\(725\) −3.91818e6 −0.276847
\(726\) 0 0
\(727\) −1.88334e6 −0.132158 −0.0660788 0.997814i \(-0.521049\pi\)
−0.0660788 + 0.997814i \(0.521049\pi\)
\(728\) 2.36376e6 0.165301
\(729\) 0 0
\(730\) 6.96890e6 0.484013
\(731\) 3.29978e6 0.228397
\(732\) 0 0
\(733\) 4.01201e6 0.275805 0.137903 0.990446i \(-0.455964\pi\)
0.137903 + 0.990446i \(0.455964\pi\)
\(734\) −2.36612e6 −0.162105
\(735\) 0 0
\(736\) −1.08192e7 −0.736208
\(737\) −1.55509e6 −0.105460
\(738\) 0 0
\(739\) −1.16719e6 −0.0786194 −0.0393097 0.999227i \(-0.512516\pi\)
−0.0393097 + 0.999227i \(0.512516\pi\)
\(740\) 6.09034e6 0.408848
\(741\) 0 0
\(742\) −3.63913e6 −0.242654
\(743\) −6.22826e6 −0.413900 −0.206950 0.978352i \(-0.566354\pi\)
−0.206950 + 0.978352i \(0.566354\pi\)
\(744\) 0 0
\(745\) 2.40692e6 0.158881
\(746\) −5.24914e6 −0.345335
\(747\) 0 0
\(748\) −1.27389e6 −0.0832487
\(749\) −8.59186e6 −0.559606
\(750\) 0 0
\(751\) 1.22860e7 0.794895 0.397448 0.917625i \(-0.369896\pi\)
0.397448 + 0.917625i \(0.369896\pi\)
\(752\) 2.26582e6 0.146111
\(753\) 0 0
\(754\) 1.18831e6 0.0761206
\(755\) 2.53378e7 1.61771
\(756\) 0 0
\(757\) 6.22812e6 0.395018 0.197509 0.980301i \(-0.436715\pi\)
0.197509 + 0.980301i \(0.436715\pi\)
\(758\) −3.85934e6 −0.243972
\(759\) 0 0
\(760\) −1.85866e7 −1.16725
\(761\) −6.57535e6 −0.411583 −0.205791 0.978596i \(-0.565977\pi\)
−0.205791 + 0.978596i \(0.565977\pi\)
\(762\) 0 0
\(763\) 4.42578e6 0.275219
\(764\) 7.92859e6 0.491431
\(765\) 0 0
\(766\) −7.67208e6 −0.472434
\(767\) −1.50091e7 −0.921224
\(768\) 0 0
\(769\) 2.33241e7 1.42229 0.711146 0.703044i \(-0.248176\pi\)
0.711146 + 0.703044i \(0.248176\pi\)
\(770\) −901208. −0.0547770
\(771\) 0 0
\(772\) 1.84793e7 1.11594
\(773\) −1.46746e6 −0.0883317 −0.0441658 0.999024i \(-0.514063\pi\)
−0.0441658 + 0.999024i \(0.514063\pi\)
\(774\) 0 0
\(775\) −1.02700e7 −0.614207
\(776\) 1.24270e7 0.740816
\(777\) 0 0
\(778\) 2.82755e6 0.167479
\(779\) −2.70646e6 −0.159793
\(780\) 0 0
\(781\) −3.99881e6 −0.234586
\(782\) 1.57920e6 0.0923465
\(783\) 0 0
\(784\) 1.57506e6 0.0915179
\(785\) −4.29941e7 −2.49020
\(786\) 0 0
\(787\) 1.53995e7 0.886275 0.443138 0.896454i \(-0.353865\pi\)
0.443138 + 0.896454i \(0.353865\pi\)
\(788\) 1.26642e7 0.726546
\(789\) 0 0
\(790\) −767296. −0.0437417
\(791\) 1.10247e7 0.626507
\(792\) 0 0
\(793\) 9.01525e6 0.509090
\(794\) −4.56819e6 −0.257154
\(795\) 0 0
\(796\) 1.09137e7 0.610504
\(797\) −1.80152e7 −1.00460 −0.502300 0.864693i \(-0.667513\pi\)
−0.502300 + 0.864693i \(0.667513\pi\)
\(798\) 0 0
\(799\) −1.29870e6 −0.0719686
\(800\) 1.36580e7 0.754502
\(801\) 0 0
\(802\) 6.51223e6 0.357515
\(803\) −5.54761e6 −0.303611
\(804\) 0 0
\(805\) −7.82040e6 −0.425343
\(806\) 3.11470e6 0.168880
\(807\) 0 0
\(808\) 1.63375e7 0.880355
\(809\) −2.03686e7 −1.09418 −0.547091 0.837073i \(-0.684265\pi\)
−0.547091 + 0.837073i \(0.684265\pi\)
\(810\) 0 0
\(811\) −3.30384e6 −0.176387 −0.0881935 0.996103i \(-0.528109\pi\)
−0.0881935 + 0.996103i \(0.528109\pi\)
\(812\) 2.02782e6 0.107929
\(813\) 0 0
\(814\) 692604. 0.0366373
\(815\) −3.26961e7 −1.72426
\(816\) 0 0
\(817\) −1.78855e7 −0.937445
\(818\) 2.44676e6 0.127852
\(819\) 0 0
\(820\) 2.82598e6 0.146769
\(821\) −5.43182e6 −0.281247 −0.140623 0.990063i \(-0.544911\pi\)
−0.140623 + 0.990063i \(0.544911\pi\)
\(822\) 0 0
\(823\) 3.34427e7 1.72109 0.860543 0.509378i \(-0.170125\pi\)
0.860543 + 0.509378i \(0.170125\pi\)
\(824\) 1.53137e7 0.785709
\(825\) 0 0
\(826\) 3.65893e6 0.186597
\(827\) −2.02603e7 −1.03011 −0.515054 0.857158i \(-0.672228\pi\)
−0.515054 + 0.857158i \(0.672228\pi\)
\(828\) 0 0
\(829\) 2.43344e7 1.22980 0.614899 0.788606i \(-0.289197\pi\)
0.614899 + 0.788606i \(0.289197\pi\)
\(830\) 424688. 0.0213981
\(831\) 0 0
\(832\) 4.29658e6 0.215186
\(833\) −902776. −0.0450783
\(834\) 0 0
\(835\) −1.34243e7 −0.666310
\(836\) 6.90474e6 0.341690
\(837\) 0 0
\(838\) 6.25092e6 0.307492
\(839\) −8.35510e6 −0.409776 −0.204888 0.978785i \(-0.565683\pi\)
−0.204888 + 0.978785i \(0.565683\pi\)
\(840\) 0 0
\(841\) −1.83267e7 −0.893498
\(842\) 9.77281e6 0.475050
\(843\) 0 0
\(844\) −2.58384e6 −0.124856
\(845\) −1.59364e7 −0.767799
\(846\) 0 0
\(847\) 717409. 0.0343604
\(848\) −2.43599e7 −1.16328
\(849\) 0 0
\(850\) −1.99355e6 −0.0946412
\(851\) 6.01020e6 0.284489
\(852\) 0 0
\(853\) 3.86356e7 1.81809 0.909044 0.416699i \(-0.136813\pi\)
0.909044 + 0.416699i \(0.136813\pi\)
\(854\) −2.19775e6 −0.103118
\(855\) 0 0
\(856\) 2.10413e7 0.981494
\(857\) −1.18601e7 −0.551615 −0.275808 0.961213i \(-0.588945\pi\)
−0.275808 + 0.961213i \(0.588945\pi\)
\(858\) 0 0
\(859\) 2.99518e7 1.38497 0.692486 0.721432i \(-0.256516\pi\)
0.692486 + 0.721432i \(0.256516\pi\)
\(860\) 1.86753e7 0.861038
\(861\) 0 0
\(862\) −5.90357e6 −0.270612
\(863\) 3.56309e7 1.62855 0.814273 0.580482i \(-0.197136\pi\)
0.814273 + 0.580482i \(0.197136\pi\)
\(864\) 0 0
\(865\) −3.16754e7 −1.43940
\(866\) 7.89935e6 0.357929
\(867\) 0 0
\(868\) 5.31513e6 0.239450
\(869\) 610808. 0.0274382
\(870\) 0 0
\(871\) −5.16650e6 −0.230755
\(872\) −1.08386e7 −0.482707
\(873\) 0 0
\(874\) −8.55960e6 −0.379031
\(875\) −1.76518e6 −0.0779413
\(876\) 0 0
\(877\) −8.65017e6 −0.379775 −0.189887 0.981806i \(-0.560812\pi\)
−0.189887 + 0.981806i \(0.560812\pi\)
\(878\) 786520. 0.0344329
\(879\) 0 0
\(880\) −6.03258e6 −0.262601
\(881\) 4.05850e7 1.76167 0.880836 0.473421i \(-0.156981\pi\)
0.880836 + 0.473421i \(0.156981\pi\)
\(882\) 0 0
\(883\) −7.00806e6 −0.302480 −0.151240 0.988497i \(-0.548327\pi\)
−0.151240 + 0.988497i \(0.548327\pi\)
\(884\) −4.23226e6 −0.182155
\(885\) 0 0
\(886\) −1.00773e7 −0.431282
\(887\) 2.24071e7 0.956260 0.478130 0.878289i \(-0.341315\pi\)
0.478130 + 0.878289i \(0.341315\pi\)
\(888\) 0 0
\(889\) −7.61303e6 −0.323075
\(890\) 6.99778e6 0.296132
\(891\) 0 0
\(892\) −3.29162e6 −0.138515
\(893\) 7.03925e6 0.295391
\(894\) 0 0
\(895\) 6.83726e6 0.285315
\(896\) −9.12576e6 −0.379751
\(897\) 0 0
\(898\) 8.30618e6 0.343725
\(899\) 5.72577e6 0.236284
\(900\) 0 0
\(901\) 1.39624e7 0.572991
\(902\) 321376. 0.0131522
\(903\) 0 0
\(904\) −2.69993e7 −1.09883
\(905\) −4.39386e7 −1.78330
\(906\) 0 0
\(907\) 1.06793e6 0.0431048 0.0215524 0.999768i \(-0.493139\pi\)
0.0215524 + 0.999768i \(0.493139\pi\)
\(908\) −1.30316e7 −0.524545
\(909\) 0 0
\(910\) −2.99410e6 −0.119857
\(911\) −2.05308e7 −0.819617 −0.409808 0.912172i \(-0.634404\pi\)
−0.409808 + 0.912172i \(0.634404\pi\)
\(912\) 0 0
\(913\) −338074. −0.0134225
\(914\) 2.47916e6 0.0981609
\(915\) 0 0
\(916\) −4.16776e7 −1.64121
\(917\) −1.55115e7 −0.609160
\(918\) 0 0
\(919\) −4.00194e7 −1.56308 −0.781541 0.623854i \(-0.785566\pi\)
−0.781541 + 0.623854i \(0.785566\pi\)
\(920\) 1.91520e7 0.746010
\(921\) 0 0
\(922\) 8.42604e6 0.326435
\(923\) −1.32853e7 −0.513295
\(924\) 0 0
\(925\) −7.58716e6 −0.291558
\(926\) −5.71869e6 −0.219164
\(927\) 0 0
\(928\) −7.61466e6 −0.290255
\(929\) 5.13696e7 1.95284 0.976421 0.215877i \(-0.0692609\pi\)
0.976421 + 0.215877i \(0.0692609\pi\)
\(930\) 0 0
\(931\) 4.89324e6 0.185021
\(932\) −8.73673e6 −0.329465
\(933\) 0 0
\(934\) −1.89991e6 −0.0712634
\(935\) 3.45770e6 0.129347
\(936\) 0 0
\(937\) −131296. −0.00488543 −0.00244271 0.999997i \(-0.500778\pi\)
−0.00244271 + 0.999997i \(0.500778\pi\)
\(938\) 1.25950e6 0.0467401
\(939\) 0 0
\(940\) −7.35011e6 −0.271315
\(941\) −2.95063e7 −1.08628 −0.543139 0.839643i \(-0.682764\pi\)
−0.543139 + 0.839643i \(0.682764\pi\)
\(942\) 0 0
\(943\) 2.78880e6 0.102126
\(944\) 2.44924e7 0.894544
\(945\) 0 0
\(946\) 2.12379e6 0.0771586
\(947\) 4.75662e6 0.172355 0.0861774 0.996280i \(-0.472535\pi\)
0.0861774 + 0.996280i \(0.472535\pi\)
\(948\) 0 0
\(949\) −1.84309e7 −0.664325
\(950\) 1.08055e7 0.388450
\(951\) 0 0
\(952\) 2.21088e6 0.0790629
\(953\) 2.80443e7 1.00026 0.500130 0.865950i \(-0.333286\pi\)
0.500130 + 0.865950i \(0.333286\pi\)
\(954\) 0 0
\(955\) −2.15205e7 −0.763560
\(956\) −3.04416e7 −1.07727
\(957\) 0 0
\(958\) 5.43346e6 0.191277
\(959\) −6.15783e6 −0.216213
\(960\) 0 0
\(961\) −1.36213e7 −0.475783
\(962\) 2.30105e6 0.0801656
\(963\) 0 0
\(964\) 3.67024e6 0.127204
\(965\) −5.01580e7 −1.73389
\(966\) 0 0
\(967\) 1.18514e7 0.407571 0.203786 0.979016i \(-0.434675\pi\)
0.203786 + 0.979016i \(0.434675\pi\)
\(968\) −1.75692e6 −0.0602648
\(969\) 0 0
\(970\) −1.57408e7 −0.537153
\(971\) 1.46447e6 0.0498462 0.0249231 0.999689i \(-0.492066\pi\)
0.0249231 + 0.999689i \(0.492066\pi\)
\(972\) 0 0
\(973\) −1.48606e7 −0.503217
\(974\) 1.73043e7 0.584463
\(975\) 0 0
\(976\) −1.47115e7 −0.494346
\(977\) −4.44734e7 −1.49061 −0.745304 0.666725i \(-0.767696\pi\)
−0.745304 + 0.666725i \(0.767696\pi\)
\(978\) 0 0
\(979\) −5.57060e6 −0.185757
\(980\) −5.10933e6 −0.169941
\(981\) 0 0
\(982\) −3.96846e6 −0.131324
\(983\) −3.71293e7 −1.22555 −0.612777 0.790256i \(-0.709948\pi\)
−0.612777 + 0.790256i \(0.709948\pi\)
\(984\) 0 0
\(985\) −3.43743e7 −1.12887
\(986\) 1.11146e6 0.0364083
\(987\) 0 0
\(988\) 2.29397e7 0.747646
\(989\) 1.84296e7 0.599136
\(990\) 0 0
\(991\) −3.46054e7 −1.11933 −0.559667 0.828718i \(-0.689071\pi\)
−0.559667 + 0.828718i \(0.689071\pi\)
\(992\) −1.99588e7 −0.643956
\(993\) 0 0
\(994\) 3.23870e6 0.103969
\(995\) −2.96228e7 −0.948569
\(996\) 0 0
\(997\) −9.68545e6 −0.308590 −0.154295 0.988025i \(-0.549311\pi\)
−0.154295 + 0.988025i \(0.549311\pi\)
\(998\) 1.00587e7 0.319679
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.6.a.b.1.1 1
3.2 odd 2 231.6.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.6.a.a.1.1 1 3.2 odd 2
693.6.a.b.1.1 1 1.1 even 1 trivial