Properties

Label 70.6.a.g
Level $70$
Weight $6$
Character orbit 70.a
Self dual yes
Analytic conductor $11.227$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [70,6,Mod(1,70)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(70, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("70.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 70.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.2268673869\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3369}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 842 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{3369})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} + ( - \beta + 2) q^{3} + 16 q^{4} - 25 q^{5} + ( - 4 \beta + 8) q^{6} - 49 q^{7} + 64 q^{8} + ( - 3 \beta + 603) q^{9} - 100 q^{10} + (3 \beta + 478) q^{11} + ( - 16 \beta + 32) q^{12} + (15 \beta - 204) q^{13}+ \cdots + (366 \beta + 280656) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} + 3 q^{3} + 32 q^{4} - 50 q^{5} + 12 q^{6} - 98 q^{7} + 128 q^{8} + 1203 q^{9} - 200 q^{10} + 959 q^{11} + 48 q^{12} - 393 q^{13} - 392 q^{14} - 75 q^{15} + 512 q^{16} - 2231 q^{17} + 4812 q^{18}+ \cdots + 561678 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
29.5215
−28.5215
4.00000 −27.5215 16.0000 −25.0000 −110.086 −49.0000 64.0000 514.435 −100.000
1.2 4.00000 30.5215 16.0000 −25.0000 122.086 −49.0000 64.0000 688.565 −100.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 70.6.a.g 2
3.b odd 2 1 630.6.a.u 2
4.b odd 2 1 560.6.a.m 2
5.b even 2 1 350.6.a.q 2
5.c odd 4 2 350.6.c.j 4
7.b odd 2 1 490.6.a.v 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.6.a.g 2 1.a even 1 1 trivial
350.6.a.q 2 5.b even 2 1
350.6.c.j 4 5.c odd 4 2
490.6.a.v 2 7.b odd 2 1
560.6.a.m 2 4.b odd 2 1
630.6.a.u 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 3T_{3} - 840 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(70))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 3T - 840 \) Copy content Toggle raw display
$5$ \( (T + 25)^{2} \) Copy content Toggle raw display
$7$ \( (T + 49)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 959T + 222340 \) Copy content Toggle raw display
$13$ \( T^{2} + 393T - 150894 \) Copy content Toggle raw display
$17$ \( T^{2} + 2231 T + 1176118 \) Copy content Toggle raw display
$19$ \( T^{2} - 3342 T + 2761920 \) Copy content Toggle raw display
$23$ \( T^{2} + 450 T - 18900000 \) Copy content Toggle raw display
$29$ \( T^{2} + 4515 T - 19531926 \) Copy content Toggle raw display
$31$ \( T^{2} + 2036 T - 34014752 \) Copy content Toggle raw display
$37$ \( T^{2} + 1928 T - 5013620 \) Copy content Toggle raw display
$41$ \( T^{2} - 19318 T + 26317192 \) Copy content Toggle raw display
$43$ \( T^{2} + 14146 T + 36655768 \) Copy content Toggle raw display
$47$ \( T^{2} + 19745 T + 85936696 \) Copy content Toggle raw display
$53$ \( T^{2} - 26378 T + 75436792 \) Copy content Toggle raw display
$59$ \( T^{2} + 11104 T - 529992512 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 1197584192 \) Copy content Toggle raw display
$67$ \( T^{2} - 65208 T - 54732528 \) Copy content Toggle raw display
$71$ \( T^{2} - 17104 T - 307209920 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 3004645004 \) Copy content Toggle raw display
$79$ \( T^{2} - 72245 T + 662931856 \) Copy content Toggle raw display
$83$ \( T^{2} - 99676 T + 527636608 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 5491535720 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 4737795650 \) Copy content Toggle raw display
show more
show less