Properties

Label 70.6.a.g
Level 7070
Weight 66
Character orbit 70.a
Self dual yes
Analytic conductor 11.22711.227
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [70,6,Mod(1,70)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(70, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("70.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 70=257 70 = 2 \cdot 5 \cdot 7
Weight: k k == 6 6
Character orbit: [χ][\chi] == 70.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 11.226867386911.2268673869
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3369)\Q(\sqrt{3369})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x842 x^{2} - x - 842 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=12(1+3369)\beta = \frac{1}{2}(1 + \sqrt{3369}). We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+4q2+(β+2)q3+16q425q5+(4β+8)q649q7+64q8+(3β+603)q9100q10+(3β+478)q11+(16β+32)q12+(15β204)q13++(366β+280656)q99+O(q100) q + 4 q^{2} + ( - \beta + 2) q^{3} + 16 q^{4} - 25 q^{5} + ( - 4 \beta + 8) q^{6} - 49 q^{7} + 64 q^{8} + ( - 3 \beta + 603) q^{9} - 100 q^{10} + (3 \beta + 478) q^{11} + ( - 16 \beta + 32) q^{12} + (15 \beta - 204) q^{13}+ \cdots + (366 \beta + 280656) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+8q2+3q3+32q450q5+12q698q7+128q8+1203q9200q10+959q11+48q12393q13392q1475q15+512q162231q17+4812q18++561678q99+O(q100) 2 q + 8 q^{2} + 3 q^{3} + 32 q^{4} - 50 q^{5} + 12 q^{6} - 98 q^{7} + 128 q^{8} + 1203 q^{9} - 200 q^{10} + 959 q^{11} + 48 q^{12} - 393 q^{13} - 392 q^{14} - 75 q^{15} + 512 q^{16} - 2231 q^{17} + 4812 q^{18}+ \cdots + 561678 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
29.5215
−28.5215
4.00000 −27.5215 16.0000 −25.0000 −110.086 −49.0000 64.0000 514.435 −100.000
1.2 4.00000 30.5215 16.0000 −25.0000 122.086 −49.0000 64.0000 688.565 −100.000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 +1 +1
77 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 70.6.a.g 2
3.b odd 2 1 630.6.a.u 2
4.b odd 2 1 560.6.a.m 2
5.b even 2 1 350.6.a.q 2
5.c odd 4 2 350.6.c.j 4
7.b odd 2 1 490.6.a.v 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.6.a.g 2 1.a even 1 1 trivial
350.6.a.q 2 5.b even 2 1
350.6.c.j 4 5.c odd 4 2
490.6.a.v 2 7.b odd 2 1
560.6.a.m 2 4.b odd 2 1
630.6.a.u 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T323T3840 T_{3}^{2} - 3T_{3} - 840 acting on S6new(Γ0(70))S_{6}^{\mathrm{new}}(\Gamma_0(70)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4)2 (T - 4)^{2} Copy content Toggle raw display
33 T23T840 T^{2} - 3T - 840 Copy content Toggle raw display
55 (T+25)2 (T + 25)^{2} Copy content Toggle raw display
77 (T+49)2 (T + 49)^{2} Copy content Toggle raw display
1111 T2959T+222340 T^{2} - 959T + 222340 Copy content Toggle raw display
1313 T2+393T150894 T^{2} + 393T - 150894 Copy content Toggle raw display
1717 T2+2231T+1176118 T^{2} + 2231 T + 1176118 Copy content Toggle raw display
1919 T23342T+2761920 T^{2} - 3342 T + 2761920 Copy content Toggle raw display
2323 T2+450T18900000 T^{2} + 450 T - 18900000 Copy content Toggle raw display
2929 T2+4515T19531926 T^{2} + 4515 T - 19531926 Copy content Toggle raw display
3131 T2+2036T34014752 T^{2} + 2036 T - 34014752 Copy content Toggle raw display
3737 T2+1928T5013620 T^{2} + 1928 T - 5013620 Copy content Toggle raw display
4141 T219318T+26317192 T^{2} - 19318 T + 26317192 Copy content Toggle raw display
4343 T2+14146T+36655768 T^{2} + 14146 T + 36655768 Copy content Toggle raw display
4747 T2+19745T+85936696 T^{2} + 19745 T + 85936696 Copy content Toggle raw display
5353 T226378T+75436792 T^{2} - 26378 T + 75436792 Copy content Toggle raw display
5959 T2+11104T529992512 T^{2} + 11104 T - 529992512 Copy content Toggle raw display
6161 T2+1197584192 T^{2} + \cdots - 1197584192 Copy content Toggle raw display
6767 T265208T54732528 T^{2} - 65208 T - 54732528 Copy content Toggle raw display
7171 T217104T307209920 T^{2} - 17104 T - 307209920 Copy content Toggle raw display
7373 T2+3004645004 T^{2} + \cdots - 3004645004 Copy content Toggle raw display
7979 T272245T+662931856 T^{2} - 72245 T + 662931856 Copy content Toggle raw display
8383 T299676T+527636608 T^{2} - 99676 T + 527636608 Copy content Toggle raw display
8989 T2+5491535720 T^{2} + \cdots - 5491535720 Copy content Toggle raw display
9797 T2+4737795650 T^{2} + \cdots - 4737795650 Copy content Toggle raw display
show more
show less