Properties

Label 700.1.u.a
Level 700700
Weight 11
Character orbit 700.u
Analytic conductor 0.3490.349
Analytic rank 00
Dimension 44
Projective image D3D_{3}
CM discriminant -20
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,1,Mod(51,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.51");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 700=22527 700 = 2^{2} \cdot 5^{2} \cdot 7
Weight: k k == 1 1
Character orbit: [χ][\chi] == 700.u (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.3493455088430.349345508843
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 140)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.980.1
Artin image: S3×C12S_3\times C_{12}
Artin field: Galois closure of Q[x]/(x24)\mathbb{Q}[x]/(x^{24} - \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ12q2ζ125q3+ζ122q4q6ζ125q7ζ123q8+ζ12q12q14+ζ124q16ζ124q21ζ12q23++ζ125q98+O(q100) q - \zeta_{12} q^{2} - \zeta_{12}^{5} q^{3} + \zeta_{12}^{2} q^{4} - q^{6} - \zeta_{12}^{5} q^{7} - \zeta_{12}^{3} q^{8} + \zeta_{12} q^{12} - q^{14} + \zeta_{12}^{4} q^{16} - \zeta_{12}^{4} q^{21} - \zeta_{12} q^{23} + \cdots + \zeta_{12}^{5} q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q44q64q142q16+2q212q24+4q294q41+2q46+2q49+2q542q56+2q614q644q69+2q81+4q84+2q862q89++2q96+O(q100) 4 q + 2 q^{4} - 4 q^{6} - 4 q^{14} - 2 q^{16} + 2 q^{21} - 2 q^{24} + 4 q^{29} - 4 q^{41} + 2 q^{46} + 2 q^{49} + 2 q^{54} - 2 q^{56} + 2 q^{61} - 4 q^{64} - 4 q^{69} + 2 q^{81} + 4 q^{84} + 2 q^{86} - 2 q^{89}+ \cdots + 2 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/700Z)×\left(\mathbb{Z}/700\mathbb{Z}\right)^\times.

nn 101101 351351 477477
χ(n)\chi(n) ζ124\zeta_{12}^{4} 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
51.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
−0.866025 0.500000i 0.866025 0.500000i 0.500000 + 0.866025i 0 −1.00000 0.866025 0.500000i 1.00000i 0 0
51.2 0.866025 + 0.500000i −0.866025 + 0.500000i 0.500000 + 0.866025i 0 −1.00000 −0.866025 + 0.500000i 1.00000i 0 0
151.1 −0.866025 + 0.500000i 0.866025 + 0.500000i 0.500000 0.866025i 0 −1.00000 0.866025 + 0.500000i 1.00000i 0 0
151.2 0.866025 0.500000i −0.866025 0.500000i 0.500000 0.866025i 0 −1.00000 −0.866025 0.500000i 1.00000i 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by Q(5)\Q(\sqrt{-5})
4.b odd 2 1 inner
5.b even 2 1 inner
7.c even 3 1 inner
28.g odd 6 1 inner
35.j even 6 1 inner
140.p odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 700.1.u.a 4
4.b odd 2 1 inner 700.1.u.a 4
5.b even 2 1 inner 700.1.u.a 4
5.c odd 4 1 140.1.p.a 2
5.c odd 4 1 140.1.p.b yes 2
7.c even 3 1 inner 700.1.u.a 4
15.e even 4 1 1260.1.ci.a 2
15.e even 4 1 1260.1.ci.b 2
20.d odd 2 1 CM 700.1.u.a 4
20.e even 4 1 140.1.p.a 2
20.e even 4 1 140.1.p.b yes 2
28.g odd 6 1 inner 700.1.u.a 4
35.f even 4 1 980.1.p.a 2
35.f even 4 1 980.1.p.b 2
35.j even 6 1 inner 700.1.u.a 4
35.k even 12 1 980.1.f.a 1
35.k even 12 1 980.1.f.d 1
35.k even 12 1 980.1.p.a 2
35.k even 12 1 980.1.p.b 2
35.l odd 12 1 140.1.p.a 2
35.l odd 12 1 140.1.p.b yes 2
35.l odd 12 1 980.1.f.b 1
35.l odd 12 1 980.1.f.c 1
40.i odd 4 1 2240.1.bt.a 2
40.i odd 4 1 2240.1.bt.b 2
40.k even 4 1 2240.1.bt.a 2
40.k even 4 1 2240.1.bt.b 2
60.l odd 4 1 1260.1.ci.a 2
60.l odd 4 1 1260.1.ci.b 2
105.x even 12 1 1260.1.ci.a 2
105.x even 12 1 1260.1.ci.b 2
140.j odd 4 1 980.1.p.a 2
140.j odd 4 1 980.1.p.b 2
140.p odd 6 1 inner 700.1.u.a 4
140.w even 12 1 140.1.p.a 2
140.w even 12 1 140.1.p.b yes 2
140.w even 12 1 980.1.f.b 1
140.w even 12 1 980.1.f.c 1
140.x odd 12 1 980.1.f.a 1
140.x odd 12 1 980.1.f.d 1
140.x odd 12 1 980.1.p.a 2
140.x odd 12 1 980.1.p.b 2
280.br even 12 1 2240.1.bt.a 2
280.br even 12 1 2240.1.bt.b 2
280.bt odd 12 1 2240.1.bt.a 2
280.bt odd 12 1 2240.1.bt.b 2
420.bp odd 12 1 1260.1.ci.a 2
420.bp odd 12 1 1260.1.ci.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.1.p.a 2 5.c odd 4 1
140.1.p.a 2 20.e even 4 1
140.1.p.a 2 35.l odd 12 1
140.1.p.a 2 140.w even 12 1
140.1.p.b yes 2 5.c odd 4 1
140.1.p.b yes 2 20.e even 4 1
140.1.p.b yes 2 35.l odd 12 1
140.1.p.b yes 2 140.w even 12 1
700.1.u.a 4 1.a even 1 1 trivial
700.1.u.a 4 4.b odd 2 1 inner
700.1.u.a 4 5.b even 2 1 inner
700.1.u.a 4 7.c even 3 1 inner
700.1.u.a 4 20.d odd 2 1 CM
700.1.u.a 4 28.g odd 6 1 inner
700.1.u.a 4 35.j even 6 1 inner
700.1.u.a 4 140.p odd 6 1 inner
980.1.f.a 1 35.k even 12 1
980.1.f.a 1 140.x odd 12 1
980.1.f.b 1 35.l odd 12 1
980.1.f.b 1 140.w even 12 1
980.1.f.c 1 35.l odd 12 1
980.1.f.c 1 140.w even 12 1
980.1.f.d 1 35.k even 12 1
980.1.f.d 1 140.x odd 12 1
980.1.p.a 2 35.f even 4 1
980.1.p.a 2 35.k even 12 1
980.1.p.a 2 140.j odd 4 1
980.1.p.a 2 140.x odd 12 1
980.1.p.b 2 35.f even 4 1
980.1.p.b 2 35.k even 12 1
980.1.p.b 2 140.j odd 4 1
980.1.p.b 2 140.x odd 12 1
1260.1.ci.a 2 15.e even 4 1
1260.1.ci.a 2 60.l odd 4 1
1260.1.ci.a 2 105.x even 12 1
1260.1.ci.a 2 420.bp odd 12 1
1260.1.ci.b 2 15.e even 4 1
1260.1.ci.b 2 60.l odd 4 1
1260.1.ci.b 2 105.x even 12 1
1260.1.ci.b 2 420.bp odd 12 1
2240.1.bt.a 2 40.i odd 4 1
2240.1.bt.a 2 40.k even 4 1
2240.1.bt.a 2 280.br even 12 1
2240.1.bt.a 2 280.bt odd 12 1
2240.1.bt.b 2 40.i odd 4 1
2240.1.bt.b 2 40.k even 4 1
2240.1.bt.b 2 280.br even 12 1
2240.1.bt.b 2 280.bt odd 12 1

Hecke kernels

This newform subspace is the entire newspace S1new(700,[χ])S_{1}^{\mathrm{new}}(700, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
33 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
1111 T4 T^{4} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
2929 (T1)4 (T - 1)^{4} Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 T4 T^{4} Copy content Toggle raw display
4141 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
4343 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
4747 T44T2+16 T^{4} - 4T^{2} + 16 Copy content Toggle raw display
5353 T4 T^{4} Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
6767 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 T4 T^{4} Copy content Toggle raw display
8383 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
8989 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
9797 T4 T^{4} Copy content Toggle raw display
show more
show less