Properties

Label 700.2.c.k.699.14
Level $700$
Weight $2$
Character 700.699
Analytic conductor $5.590$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,2,Mod(699,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.699");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.29960650073923649536.7
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7x^{12} + 40x^{8} - 112x^{4} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 699.14
Root \(-0.481610 - 1.32968i\) of defining polynomial
Character \(\chi\) \(=\) 700.699
Dual form 700.2.c.k.699.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.39897 - 0.207107i) q^{2} +1.47363i q^{3} +(1.91421 - 0.579471i) q^{4} +(0.305198 + 2.06155i) q^{6} +(-0.819496 + 2.51564i) q^{7} +(2.55791 - 1.20711i) q^{8} +0.828427 q^{9} +2.79793i q^{11} +(0.853923 + 2.82083i) q^{12} -5.83095 q^{13} +(-0.625441 + 3.68901i) q^{14} +(3.32843 - 2.21846i) q^{16} +4.12311 q^{17} +(1.15894 - 0.171573i) q^{18} +5.64167 q^{19} +(-3.70711 - 1.20763i) q^{21} +(0.579471 + 3.91421i) q^{22} -3.95687 q^{23} +(1.77882 + 3.76940i) q^{24} +(-8.15731 + 1.20763i) q^{26} +5.64167i q^{27} +(-0.110951 + 5.29034i) q^{28} +0.242641 q^{29} -2.08402 q^{31} +(4.19690 - 3.79289i) q^{32} -4.12311 q^{33} +(5.76809 - 0.853923i) q^{34} +(1.58579 - 0.480049i) q^{36} -6.24264i q^{37} +(7.89250 - 1.16843i) q^{38} -8.59264i q^{39} -4.12311i q^{41} +(-5.43623 - 0.921666i) q^{42} +5.59587 q^{43} +(1.62132 + 5.35584i) q^{44} +(-5.53553 + 0.819496i) q^{46} -6.25206i q^{47} +(3.26918 + 4.90486i) q^{48} +(-5.65685 - 4.12311i) q^{49} +6.07591i q^{51} +(-11.1617 + 3.37887i) q^{52} +12.2426i q^{53} +(1.16843 + 7.89250i) q^{54} +(0.940448 + 7.42399i) q^{56} +8.31371i q^{57} +(0.339446 - 0.0502525i) q^{58} +2.94725 q^{59} -11.6619i q^{61} +(-2.91548 + 0.431615i) q^{62} +(-0.678892 + 2.08402i) q^{63} +(5.08579 - 6.17534i) q^{64} +(-5.76809 + 0.853923i) q^{66} +7.43370 q^{67} +(7.89250 - 2.38922i) q^{68} -5.83095i q^{69} -7.23486i q^{71} +(2.11904 - 1.00000i) q^{72} -12.3693 q^{73} +(-1.29289 - 8.73324i) q^{74} +(10.7994 - 3.26918i) q^{76} +(-7.03858 - 2.29289i) q^{77} +(-1.77959 - 12.0208i) q^{78} +7.91375i q^{79} -5.82843 q^{81} +(-0.853923 - 5.76809i) q^{82} +1.47363i q^{83} +(-7.79598 - 0.163501i) q^{84} +(7.82843 - 1.15894i) q^{86} +0.357562i q^{87} +(3.37740 + 7.15685i) q^{88} -12.3693i q^{89} +(4.77844 - 14.6686i) q^{91} +(-7.57430 + 2.29289i) q^{92} -3.07107i q^{93} +(-1.29484 - 8.74643i) q^{94} +(5.58931 + 6.18466i) q^{96} +8.24621 q^{97} +(-8.76767 - 4.59651i) q^{98} +2.31788i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 32 q^{9} - 24 q^{14} + 8 q^{16} - 48 q^{21} - 64 q^{29} + 48 q^{36} - 8 q^{44} - 32 q^{46} + 40 q^{56} + 104 q^{64} - 32 q^{74} - 48 q^{81} - 40 q^{84} + 80 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.39897 0.207107i 0.989219 0.146447i
\(3\) 1.47363i 0.850798i 0.905006 + 0.425399i \(0.139866\pi\)
−0.905006 + 0.425399i \(0.860134\pi\)
\(4\) 1.91421 0.579471i 0.957107 0.289735i
\(5\) 0 0
\(6\) 0.305198 + 2.06155i 0.124597 + 0.841625i
\(7\) −0.819496 + 2.51564i −0.309740 + 0.950821i
\(8\) 2.55791 1.20711i 0.904357 0.426777i
\(9\) 0.828427 0.276142
\(10\) 0 0
\(11\) 2.79793i 0.843608i 0.906687 + 0.421804i \(0.138603\pi\)
−0.906687 + 0.421804i \(0.861397\pi\)
\(12\) 0.853923 + 2.82083i 0.246506 + 0.814305i
\(13\) −5.83095 −1.61722 −0.808608 0.588348i \(-0.799778\pi\)
−0.808608 + 0.588348i \(0.799778\pi\)
\(14\) −0.625441 + 3.68901i −0.167156 + 0.985930i
\(15\) 0 0
\(16\) 3.32843 2.21846i 0.832107 0.554615i
\(17\) 4.12311 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(18\) 1.15894 0.171573i 0.273165 0.0404401i
\(19\) 5.64167 1.29429 0.647144 0.762368i \(-0.275963\pi\)
0.647144 + 0.762368i \(0.275963\pi\)
\(20\) 0 0
\(21\) −3.70711 1.20763i −0.808957 0.263526i
\(22\) 0.579471 + 3.91421i 0.123544 + 0.834513i
\(23\) −3.95687 −0.825065 −0.412533 0.910943i \(-0.635356\pi\)
−0.412533 + 0.910943i \(0.635356\pi\)
\(24\) 1.77882 + 3.76940i 0.363101 + 0.769425i
\(25\) 0 0
\(26\) −8.15731 + 1.20763i −1.59978 + 0.236836i
\(27\) 5.64167i 1.08574i
\(28\) −0.110951 + 5.29034i −0.0209678 + 0.999780i
\(29\) 0.242641 0.0450572 0.0225286 0.999746i \(-0.492828\pi\)
0.0225286 + 0.999746i \(0.492828\pi\)
\(30\) 0 0
\(31\) −2.08402 −0.374301 −0.187151 0.982331i \(-0.559925\pi\)
−0.187151 + 0.982331i \(0.559925\pi\)
\(32\) 4.19690 3.79289i 0.741914 0.670495i
\(33\) −4.12311 −0.717741
\(34\) 5.76809 0.853923i 0.989219 0.146447i
\(35\) 0 0
\(36\) 1.58579 0.480049i 0.264298 0.0800082i
\(37\) 6.24264i 1.02628i −0.858304 0.513142i \(-0.828481\pi\)
0.858304 0.513142i \(-0.171519\pi\)
\(38\) 7.89250 1.16843i 1.28033 0.189544i
\(39\) 8.59264i 1.37592i
\(40\) 0 0
\(41\) 4.12311i 0.643921i −0.946753 0.321960i \(-0.895658\pi\)
0.946753 0.321960i \(-0.104342\pi\)
\(42\) −5.43623 0.921666i −0.838828 0.142216i
\(43\) 5.59587 0.853361 0.426681 0.904402i \(-0.359683\pi\)
0.426681 + 0.904402i \(0.359683\pi\)
\(44\) 1.62132 + 5.35584i 0.244423 + 0.807423i
\(45\) 0 0
\(46\) −5.53553 + 0.819496i −0.816170 + 0.120828i
\(47\) 6.25206i 0.911957i −0.889991 0.455979i \(-0.849289\pi\)
0.889991 0.455979i \(-0.150711\pi\)
\(48\) 3.26918 + 4.90486i 0.471866 + 0.707955i
\(49\) −5.65685 4.12311i −0.808122 0.589015i
\(50\) 0 0
\(51\) 6.07591i 0.850798i
\(52\) −11.1617 + 3.37887i −1.54785 + 0.468564i
\(53\) 12.2426i 1.68166i 0.541302 + 0.840828i \(0.317931\pi\)
−0.541302 + 0.840828i \(0.682069\pi\)
\(54\) 1.16843 + 7.89250i 0.159003 + 1.07403i
\(55\) 0 0
\(56\) 0.940448 + 7.42399i 0.125673 + 0.992072i
\(57\) 8.31371i 1.10118i
\(58\) 0.339446 0.0502525i 0.0445715 0.00659848i
\(59\) 2.94725 0.383699 0.191850 0.981424i \(-0.438551\pi\)
0.191850 + 0.981424i \(0.438551\pi\)
\(60\) 0 0
\(61\) 11.6619i 1.49315i −0.665299 0.746577i \(-0.731696\pi\)
0.665299 0.746577i \(-0.268304\pi\)
\(62\) −2.91548 + 0.431615i −0.370266 + 0.0548152i
\(63\) −0.678892 + 2.08402i −0.0855324 + 0.262562i
\(64\) 5.08579 6.17534i 0.635723 0.771917i
\(65\) 0 0
\(66\) −5.76809 + 0.853923i −0.710002 + 0.105111i
\(67\) 7.43370 0.908171 0.454085 0.890958i \(-0.349966\pi\)
0.454085 + 0.890958i \(0.349966\pi\)
\(68\) 7.89250 2.38922i 0.957107 0.289735i
\(69\) 5.83095i 0.701964i
\(70\) 0 0
\(71\) 7.23486i 0.858619i −0.903157 0.429310i \(-0.858757\pi\)
0.903157 0.429310i \(-0.141243\pi\)
\(72\) 2.11904 1.00000i 0.249731 0.117851i
\(73\) −12.3693 −1.44772 −0.723860 0.689947i \(-0.757634\pi\)
−0.723860 + 0.689947i \(0.757634\pi\)
\(74\) −1.29289 8.73324i −0.150296 1.01522i
\(75\) 0 0
\(76\) 10.7994 3.26918i 1.23877 0.375001i
\(77\) −7.03858 2.29289i −0.802121 0.261299i
\(78\) −1.77959 12.0208i −0.201499 1.36109i
\(79\) 7.91375i 0.890366i 0.895440 + 0.445183i \(0.146861\pi\)
−0.895440 + 0.445183i \(0.853139\pi\)
\(80\) 0 0
\(81\) −5.82843 −0.647603
\(82\) −0.853923 5.76809i −0.0943000 0.636979i
\(83\) 1.47363i 0.161751i 0.996724 + 0.0808757i \(0.0257717\pi\)
−0.996724 + 0.0808757i \(0.974228\pi\)
\(84\) −7.79598 0.163501i −0.850611 0.0178394i
\(85\) 0 0
\(86\) 7.82843 1.15894i 0.844161 0.124972i
\(87\) 0.357562i 0.0383346i
\(88\) 3.37740 + 7.15685i 0.360032 + 0.762923i
\(89\) 12.3693i 1.31114i −0.755132 0.655572i \(-0.772427\pi\)
0.755132 0.655572i \(-0.227573\pi\)
\(90\) 0 0
\(91\) 4.77844 14.6686i 0.500916 1.53768i
\(92\) −7.57430 + 2.29289i −0.789676 + 0.239051i
\(93\) 3.07107i 0.318455i
\(94\) −1.29484 8.74643i −0.133553 0.902125i
\(95\) 0 0
\(96\) 5.58931 + 6.18466i 0.570456 + 0.631219i
\(97\) 8.24621 0.837276 0.418638 0.908153i \(-0.362508\pi\)
0.418638 + 0.908153i \(0.362508\pi\)
\(98\) −8.76767 4.59651i −0.885669 0.464318i
\(99\) 2.31788i 0.232956i
\(100\) 0 0
\(101\) 2.41526i 0.240327i 0.992754 + 0.120164i \(0.0383419\pi\)
−0.992754 + 0.120164i \(0.961658\pi\)
\(102\) 1.25836 + 8.50000i 0.124597 + 0.841625i
\(103\) 7.11529i 0.701091i −0.936546 0.350545i \(-0.885996\pi\)
0.936546 0.350545i \(-0.114004\pi\)
\(104\) −14.9150 + 7.03858i −1.46254 + 0.690190i
\(105\) 0 0
\(106\) 2.53553 + 17.1270i 0.246273 + 1.66353i
\(107\) −13.0296 −1.25962 −0.629808 0.776751i \(-0.716866\pi\)
−0.629808 + 0.776751i \(0.716866\pi\)
\(108\) 3.26918 + 10.7994i 0.314577 + 1.03917i
\(109\) −2.82843 −0.270914 −0.135457 0.990783i \(-0.543250\pi\)
−0.135457 + 0.990783i \(0.543250\pi\)
\(110\) 0 0
\(111\) 9.19932 0.873160
\(112\) 2.85321 + 10.1911i 0.269603 + 0.962971i
\(113\) 18.3137i 1.72281i −0.507920 0.861404i \(-0.669585\pi\)
0.507920 0.861404i \(-0.330415\pi\)
\(114\) 1.72183 + 11.6306i 0.161264 + 1.08931i
\(115\) 0 0
\(116\) 0.464466 0.140603i 0.0431246 0.0130547i
\(117\) −4.83052 −0.446582
\(118\) 4.12311 0.610396i 0.379563 0.0561915i
\(119\) −3.37887 + 10.3722i −0.309740 + 0.950821i
\(120\) 0 0
\(121\) 3.17157 0.288325
\(122\) −2.41526 16.3146i −0.218667 1.47706i
\(123\) 6.07591 0.547847
\(124\) −3.98926 + 1.20763i −0.358246 + 0.108448i
\(125\) 0 0
\(126\) −0.518132 + 3.05608i −0.0461589 + 0.272257i
\(127\) 5.59587 0.496553 0.248276 0.968689i \(-0.420136\pi\)
0.248276 + 0.968689i \(0.420136\pi\)
\(128\) 5.83589 9.69239i 0.515825 0.856694i
\(129\) 8.24621i 0.726038i
\(130\) 0 0
\(131\) −13.0098 −1.13667 −0.568336 0.822797i \(-0.692412\pi\)
−0.568336 + 0.822797i \(0.692412\pi\)
\(132\) −7.89250 + 2.38922i −0.686954 + 0.207955i
\(133\) −4.62332 + 14.1924i −0.400893 + 1.23064i
\(134\) 10.3995 1.53957i 0.898380 0.132999i
\(135\) 0 0
\(136\) 10.5465 4.97703i 0.904357 0.426777i
\(137\) 3.48528i 0.297768i −0.988855 0.148884i \(-0.952432\pi\)
0.988855 0.148884i \(-0.0475681\pi\)
\(138\) −1.20763 8.15731i −0.102800 0.694396i
\(139\) −2.69442 −0.228537 −0.114269 0.993450i \(-0.536452\pi\)
−0.114269 + 0.993450i \(0.536452\pi\)
\(140\) 0 0
\(141\) 9.21320 0.775892
\(142\) −1.49839 10.1213i −0.125742 0.849362i
\(143\) 16.3146i 1.36430i
\(144\) 2.75736 1.83783i 0.229780 0.153153i
\(145\) 0 0
\(146\) −17.3043 + 2.56177i −1.43211 + 0.212014i
\(147\) 6.07591 8.33609i 0.501133 0.687549i
\(148\) −3.61743 11.9497i −0.297351 0.982263i
\(149\) −2.00000 −0.163846 −0.0819232 0.996639i \(-0.526106\pi\)
−0.0819232 + 0.996639i \(0.526106\pi\)
\(150\) 0 0
\(151\) 1.63899i 0.133379i 0.997774 + 0.0666896i \(0.0212437\pi\)
−0.997774 + 0.0666896i \(0.978756\pi\)
\(152\) 14.4309 6.81010i 1.17050 0.552372i
\(153\) 3.41569 0.276142
\(154\) −10.3216 1.74994i −0.831739 0.141014i
\(155\) 0 0
\(156\) −4.97918 16.4481i −0.398654 1.31691i
\(157\) 22.3234 1.78160 0.890800 0.454396i \(-0.150145\pi\)
0.890800 + 0.454396i \(0.150145\pi\)
\(158\) 1.63899 + 11.0711i 0.130391 + 0.880767i
\(159\) −18.0411 −1.43075
\(160\) 0 0
\(161\) 3.24264 9.95406i 0.255556 0.784490i
\(162\) −8.15377 + 1.20711i −0.640621 + 0.0948393i
\(163\) −21.9034 −1.71561 −0.857804 0.513977i \(-0.828172\pi\)
−0.857804 + 0.513977i \(0.828172\pi\)
\(164\) −2.38922 7.89250i −0.186567 0.616301i
\(165\) 0 0
\(166\) 0.305198 + 2.06155i 0.0236880 + 0.160008i
\(167\) 17.1778i 1.32926i −0.747172 0.664631i \(-0.768589\pi\)
0.747172 0.664631i \(-0.231411\pi\)
\(168\) −10.9402 + 1.38587i −0.844053 + 0.106922i
\(169\) 21.0000 1.61538
\(170\) 0 0
\(171\) 4.67371 0.357408
\(172\) 10.7117 3.24264i 0.816758 0.247249i
\(173\) 14.0772 1.07027 0.535133 0.844768i \(-0.320261\pi\)
0.535133 + 0.844768i \(0.320261\pi\)
\(174\) 0.0740534 + 0.500217i 0.00561398 + 0.0379213i
\(175\) 0 0
\(176\) 6.20711 + 9.31271i 0.467878 + 0.701972i
\(177\) 4.34315i 0.326451i
\(178\) −2.56177 17.3043i −0.192013 1.29701i
\(179\) 10.7117i 0.800629i −0.916378 0.400314i \(-0.868901\pi\)
0.916378 0.400314i \(-0.131099\pi\)
\(180\) 0 0
\(181\) 19.9081i 1.47976i 0.672740 + 0.739879i \(0.265117\pi\)
−0.672740 + 0.739879i \(0.734883\pi\)
\(182\) 3.64692 21.5105i 0.270328 1.59446i
\(183\) 17.1853 1.27037
\(184\) −10.1213 + 4.77637i −0.746154 + 0.352119i
\(185\) 0 0
\(186\) −0.636039 4.29632i −0.0466366 0.315021i
\(187\) 11.5362i 0.843608i
\(188\) −3.62289 11.9678i −0.264226 0.872841i
\(189\) −14.1924 4.62332i −1.03234 0.336297i
\(190\) 0 0
\(191\) 24.7013i 1.78733i 0.448738 + 0.893663i \(0.351874\pi\)
−0.448738 + 0.893663i \(0.648126\pi\)
\(192\) 9.10013 + 7.49455i 0.656746 + 0.540872i
\(193\) 8.31371i 0.598434i 0.954185 + 0.299217i \(0.0967254\pi\)
−0.954185 + 0.299217i \(0.903275\pi\)
\(194\) 11.5362 1.70785i 0.828249 0.122616i
\(195\) 0 0
\(196\) −13.2176 4.61452i −0.944118 0.329609i
\(197\) 2.48528i 0.177069i −0.996073 0.0885345i \(-0.971782\pi\)
0.996073 0.0885345i \(-0.0282183\pi\)
\(198\) 0.480049 + 3.24264i 0.0341156 + 0.230444i
\(199\) −17.5354 −1.24305 −0.621526 0.783394i \(-0.713487\pi\)
−0.621526 + 0.783394i \(0.713487\pi\)
\(200\) 0 0
\(201\) 10.9545i 0.772670i
\(202\) 0.500217 + 3.37887i 0.0351951 + 0.237736i
\(203\) −0.198843 + 0.610396i −0.0139560 + 0.0428414i
\(204\) 3.52082 + 11.6306i 0.246506 + 0.814305i
\(205\) 0 0
\(206\) −1.47363 9.95406i −0.102672 0.693532i
\(207\) −3.27798 −0.227835
\(208\) −19.4079 + 12.9357i −1.34570 + 0.896932i
\(209\) 15.7850i 1.09187i
\(210\) 0 0
\(211\) 1.44015i 0.0991439i −0.998771 0.0495719i \(-0.984214\pi\)
0.998771 0.0495719i \(-0.0157857\pi\)
\(212\) 7.09425 + 23.4350i 0.487235 + 1.60952i
\(213\) 10.6615 0.730512
\(214\) −18.2279 + 2.69851i −1.24604 + 0.184466i
\(215\) 0 0
\(216\) 6.81010 + 14.4309i 0.463368 + 0.981896i
\(217\) 1.70785 5.24264i 0.115936 0.355894i
\(218\) −3.95687 + 0.585786i −0.267993 + 0.0396745i
\(219\) 18.2277i 1.23172i
\(220\) 0 0
\(221\) −24.0416 −1.61722
\(222\) 12.8695 1.90524i 0.863747 0.127871i
\(223\) 0.863230i 0.0578062i −0.999582 0.0289031i \(-0.990799\pi\)
0.999582 0.0289031i \(-0.00920142\pi\)
\(224\) 6.10220 + 13.6661i 0.407720 + 0.913107i
\(225\) 0 0
\(226\) −3.79289 25.6203i −0.252300 1.70423i
\(227\) 7.11529i 0.472259i 0.971722 + 0.236129i \(0.0758789\pi\)
−0.971722 + 0.236129i \(0.924121\pi\)
\(228\) 4.81755 + 15.9142i 0.319050 + 1.05394i
\(229\) 14.0772i 0.930245i 0.885246 + 0.465123i \(0.153990\pi\)
−0.885246 + 0.465123i \(0.846010\pi\)
\(230\) 0 0
\(231\) 3.37887 10.3722i 0.222313 0.682443i
\(232\) 0.620653 0.292893i 0.0407478 0.0192294i
\(233\) 15.7990i 1.03503i −0.855675 0.517513i \(-0.826858\pi\)
0.855675 0.517513i \(-0.173142\pi\)
\(234\) −6.75773 + 1.00043i −0.441767 + 0.0654004i
\(235\) 0 0
\(236\) 5.64167 1.70785i 0.367241 0.111171i
\(237\) −11.6619 −0.757522
\(238\) −2.57876 + 15.2102i −0.167156 + 0.985930i
\(239\) 16.7876i 1.08590i 0.839765 + 0.542950i \(0.182693\pi\)
−0.839765 + 0.542950i \(0.817307\pi\)
\(240\) 0 0
\(241\) 15.7850i 1.01680i 0.861120 + 0.508401i \(0.169763\pi\)
−0.861120 + 0.508401i \(0.830237\pi\)
\(242\) 4.43692 0.656854i 0.285216 0.0422242i
\(243\) 8.33609i 0.534760i
\(244\) −6.75773 22.3234i −0.432620 1.42911i
\(245\) 0 0
\(246\) 8.50000 1.25836i 0.541940 0.0802303i
\(247\) −32.8963 −2.09314
\(248\) −5.33074 + 2.51564i −0.338502 + 0.159743i
\(249\) −2.17157 −0.137618
\(250\) 0 0
\(251\) −13.9778 −0.882268 −0.441134 0.897441i \(-0.645424\pi\)
−0.441134 + 0.897441i \(0.645424\pi\)
\(252\) −0.0919152 + 4.38266i −0.00579011 + 0.276082i
\(253\) 11.0711i 0.696032i
\(254\) 7.82843 1.15894i 0.491199 0.0727185i
\(255\) 0 0
\(256\) 6.15685 14.7680i 0.384803 0.922999i
\(257\) −23.3238 −1.45490 −0.727450 0.686161i \(-0.759294\pi\)
−0.727450 + 0.686161i \(0.759294\pi\)
\(258\) 1.70785 + 11.5362i 0.106326 + 0.718211i
\(259\) 15.7042 + 5.11582i 0.975812 + 0.317881i
\(260\) 0 0
\(261\) 0.201010 0.0124422
\(262\) −18.2003 + 2.69442i −1.12442 + 0.166462i
\(263\) −27.9793 −1.72528 −0.862640 0.505819i \(-0.831190\pi\)
−0.862640 + 0.505819i \(0.831190\pi\)
\(264\) −10.5465 + 4.97703i −0.649094 + 0.306315i
\(265\) 0 0
\(266\) −3.52853 + 20.8122i −0.216348 + 1.27608i
\(267\) 18.2277 1.11552
\(268\) 14.2297 4.30761i 0.869217 0.263129i
\(269\) 2.41526i 0.147261i 0.997286 + 0.0736305i \(0.0234585\pi\)
−0.997286 + 0.0736305i \(0.976541\pi\)
\(270\) 0 0
\(271\) 27.2404 1.65474 0.827368 0.561660i \(-0.189837\pi\)
0.827368 + 0.561660i \(0.189837\pi\)
\(272\) 13.7235 9.14695i 0.832107 0.554615i
\(273\) 21.6160 + 7.04163i 1.30826 + 0.426179i
\(274\) −0.721825 4.87579i −0.0436071 0.294557i
\(275\) 0 0
\(276\) −3.37887 11.1617i −0.203384 0.671855i
\(277\) 6.10051i 0.366544i −0.983062 0.183272i \(-0.941331\pi\)
0.983062 0.183272i \(-0.0586689\pi\)
\(278\) −3.76940 + 0.558032i −0.226074 + 0.0334685i
\(279\) −1.72646 −0.103360
\(280\) 0 0
\(281\) 32.9706 1.96686 0.983429 0.181291i \(-0.0580277\pi\)
0.983429 + 0.181291i \(0.0580277\pi\)
\(282\) 12.8890 1.90812i 0.767526 0.113627i
\(283\) 31.6613i 1.88207i 0.338314 + 0.941033i \(0.390144\pi\)
−0.338314 + 0.941033i \(0.609856\pi\)
\(284\) −4.19239 13.8491i −0.248772 0.821791i
\(285\) 0 0
\(286\) −3.37887 22.8236i −0.199797 1.34959i
\(287\) 10.3722 + 3.37887i 0.612254 + 0.199448i
\(288\) 3.47682 3.14214i 0.204874 0.185152i
\(289\) 0 0
\(290\) 0 0
\(291\) 12.1518i 0.712353i
\(292\) −23.6775 + 7.16766i −1.38562 + 0.419455i
\(293\) 16.4924 0.963498 0.481749 0.876309i \(-0.340002\pi\)
0.481749 + 0.876309i \(0.340002\pi\)
\(294\) 6.77354 12.9203i 0.395041 0.753525i
\(295\) 0 0
\(296\) −7.53553 15.9681i −0.437994 0.928127i
\(297\) −15.7850 −0.915939
\(298\) −2.79793 + 0.414214i −0.162080 + 0.0239947i
\(299\) 23.0723 1.33431
\(300\) 0 0
\(301\) −4.58579 + 14.0772i −0.264320 + 0.811394i
\(302\) 0.339446 + 2.29289i 0.0195329 + 0.131941i
\(303\) −3.55919 −0.204470
\(304\) 18.7779 12.5158i 1.07699 0.717832i
\(305\) 0 0
\(306\) 4.77844 0.707413i 0.273165 0.0404401i
\(307\) 18.6515i 1.06450i 0.846589 + 0.532248i \(0.178652\pi\)
−0.846589 + 0.532248i \(0.821348\pi\)
\(308\) −14.8020 0.310435i −0.843423 0.0176887i
\(309\) 10.4853 0.596487
\(310\) 0 0
\(311\) −11.7890 −0.668493 −0.334247 0.942486i \(-0.608482\pi\)
−0.334247 + 0.942486i \(0.608482\pi\)
\(312\) −10.3722 21.9792i −0.587212 1.24433i
\(313\) 4.83052 0.273037 0.136519 0.990638i \(-0.456409\pi\)
0.136519 + 0.990638i \(0.456409\pi\)
\(314\) 31.2296 4.62332i 1.76239 0.260909i
\(315\) 0 0
\(316\) 4.58579 + 15.1486i 0.257971 + 0.852176i
\(317\) 25.6569i 1.44103i 0.693438 + 0.720516i \(0.256095\pi\)
−0.693438 + 0.720516i \(0.743905\pi\)
\(318\) −25.2389 + 3.73643i −1.41532 + 0.209528i
\(319\) 0.678892i 0.0380107i
\(320\) 0 0
\(321\) 19.2007i 1.07168i
\(322\) 2.47479 14.5970i 0.137915 0.813457i
\(323\) 23.2612 1.29429
\(324\) −11.1569 + 3.37740i −0.619825 + 0.187634i
\(325\) 0 0
\(326\) −30.6421 + 4.53635i −1.69711 + 0.251245i
\(327\) 4.16804i 0.230493i
\(328\) −4.97703 10.5465i −0.274810 0.582334i
\(329\) 15.7279 + 5.12354i 0.867108 + 0.282470i
\(330\) 0 0
\(331\) 28.8571i 1.58613i 0.609139 + 0.793064i \(0.291515\pi\)
−0.609139 + 0.793064i \(0.708485\pi\)
\(332\) 0.853923 + 2.82083i 0.0468651 + 0.154813i
\(333\) 5.17157i 0.283400i
\(334\) −3.55765 24.0312i −0.194666 1.31493i
\(335\) 0 0
\(336\) −15.0179 + 4.20457i −0.819294 + 0.229378i
\(337\) 14.7990i 0.806152i 0.915166 + 0.403076i \(0.132059\pi\)
−0.915166 + 0.403076i \(0.867941\pi\)
\(338\) 29.3783 4.34924i 1.59797 0.236568i
\(339\) 26.9876 1.46576
\(340\) 0 0
\(341\) 5.83095i 0.315764i
\(342\) 6.53836 0.967957i 0.353554 0.0523411i
\(343\) 15.0080 10.8517i 0.810356 0.585938i
\(344\) 14.3137 6.75481i 0.771743 0.364195i
\(345\) 0 0
\(346\) 19.6935 2.91548i 1.05873 0.156737i
\(347\) −19.9832 −1.07276 −0.536378 0.843978i \(-0.680208\pi\)
−0.536378 + 0.843978i \(0.680208\pi\)
\(348\) 0.207196 + 0.684449i 0.0111069 + 0.0366903i
\(349\) 14.0772i 0.753533i 0.926308 + 0.376767i \(0.122964\pi\)
−0.926308 + 0.376767i \(0.877036\pi\)
\(350\) 0 0
\(351\) 32.8963i 1.75587i
\(352\) 10.6123 + 11.7426i 0.565635 + 0.625885i
\(353\) 11.6619 0.620701 0.310350 0.950622i \(-0.399554\pi\)
0.310350 + 0.950622i \(0.399554\pi\)
\(354\) 0.899495 + 6.07591i 0.0478076 + 0.322931i
\(355\) 0 0
\(356\) −7.16766 23.6775i −0.379885 1.25491i
\(357\) −15.2848 4.97918i −0.808957 0.263526i
\(358\) −2.21846 14.9853i −0.117249 0.791997i
\(359\) 20.4633i 1.08001i −0.841662 0.540005i \(-0.818422\pi\)
0.841662 0.540005i \(-0.181578\pi\)
\(360\) 0 0
\(361\) 12.8284 0.675180
\(362\) 4.12311 + 27.8508i 0.216706 + 1.46380i
\(363\) 4.67371i 0.245306i
\(364\) 0.646952 30.8477i 0.0339095 1.61686i
\(365\) 0 0
\(366\) 24.0416 3.55919i 1.25668 0.186042i
\(367\) 15.9570i 0.832951i −0.909147 0.416476i \(-0.863265\pi\)
0.909147 0.416476i \(-0.136735\pi\)
\(368\) −13.1702 + 8.77817i −0.686542 + 0.457594i
\(369\) 3.41569i 0.177814i
\(370\) 0 0
\(371\) −30.7980 10.0328i −1.59895 0.520876i
\(372\) −1.77959 5.87868i −0.0922677 0.304795i
\(373\) 13.4142i 0.694562i −0.937761 0.347281i \(-0.887105\pi\)
0.937761 0.347281i \(-0.112895\pi\)
\(374\) 2.38922 + 16.1387i 0.123544 + 0.834513i
\(375\) 0 0
\(376\) −7.54691 15.9922i −0.389202 0.824735i
\(377\) −1.41483 −0.0728673
\(378\) −20.8122 3.52853i −1.07046 0.181488i
\(379\) 4.15572i 0.213465i 0.994288 + 0.106732i \(0.0340388\pi\)
−0.994288 + 0.106732i \(0.965961\pi\)
\(380\) 0 0
\(381\) 8.24621i 0.422466i
\(382\) 5.11582 + 34.5563i 0.261748 + 1.76806i
\(383\) 18.3986i 0.940126i 0.882633 + 0.470063i \(0.155769\pi\)
−0.882633 + 0.470063i \(0.844231\pi\)
\(384\) 14.2830 + 8.59992i 0.728874 + 0.438863i
\(385\) 0 0
\(386\) 1.72183 + 11.6306i 0.0876386 + 0.591982i
\(387\) 4.63577 0.235649
\(388\) 15.7850 4.77844i 0.801362 0.242588i
\(389\) −15.5563 −0.788738 −0.394369 0.918952i \(-0.629037\pi\)
−0.394369 + 0.918952i \(0.629037\pi\)
\(390\) 0 0
\(391\) −16.3146 −0.825065
\(392\) −19.4467 3.71810i −0.982209 0.187792i
\(393\) 19.1716i 0.967078i
\(394\) −0.514719 3.47682i −0.0259311 0.175160i
\(395\) 0 0
\(396\) 1.34315 + 4.43692i 0.0674956 + 0.222964i
\(397\) 18.9077 0.948949 0.474475 0.880269i \(-0.342638\pi\)
0.474475 + 0.880269i \(0.342638\pi\)
\(398\) −24.5314 + 3.63170i −1.22965 + 0.182041i
\(399\) −20.9143 6.81305i −1.04702 0.341079i
\(400\) 0 0
\(401\) −22.4558 −1.12139 −0.560696 0.828022i \(-0.689466\pi\)
−0.560696 + 0.828022i \(0.689466\pi\)
\(402\) 2.26875 + 15.3250i 0.113155 + 0.764340i
\(403\) 12.1518 0.605326
\(404\) 1.39957 + 4.62332i 0.0696313 + 0.230019i
\(405\) 0 0
\(406\) −0.151757 + 0.895105i −0.00753160 + 0.0444233i
\(407\) 17.4665 0.865782
\(408\) 7.33428 + 15.5416i 0.363101 + 0.769425i
\(409\) 15.7850i 0.780518i 0.920705 + 0.390259i \(0.127615\pi\)
−0.920705 + 0.390259i \(0.872385\pi\)
\(410\) 0 0
\(411\) 5.13600 0.253340
\(412\) −4.12311 13.6202i −0.203131 0.671019i
\(413\) −2.41526 + 7.41421i −0.118847 + 0.364830i
\(414\) −4.58579 + 0.678892i −0.225379 + 0.0333657i
\(415\) 0 0
\(416\) −24.4719 + 22.1162i −1.19983 + 1.08433i
\(417\) 3.97056i 0.194439i
\(418\) 3.26918 + 22.0827i 0.159901 + 1.08010i
\(419\) 24.5460 1.19915 0.599575 0.800319i \(-0.295336\pi\)
0.599575 + 0.800319i \(0.295336\pi\)
\(420\) 0 0
\(421\) −0.686292 −0.0334478 −0.0167239 0.999860i \(-0.505324\pi\)
−0.0167239 + 0.999860i \(0.505324\pi\)
\(422\) −0.298264 2.01472i −0.0145193 0.0980750i
\(423\) 5.17938i 0.251830i
\(424\) 14.7782 + 31.3155i 0.717692 + 1.52082i
\(425\) 0 0
\(426\) 14.9150 2.20806i 0.722636 0.106981i
\(427\) 29.3371 + 9.55688i 1.41972 + 0.462490i
\(428\) −24.9414 + 7.55025i −1.20559 + 0.364955i
\(429\) 24.0416 1.16074
\(430\) 0 0
\(431\) 8.19496i 0.394737i −0.980329 0.197369i \(-0.936760\pi\)
0.980329 0.197369i \(-0.0632396\pi\)
\(432\) 12.5158 + 18.7779i 0.602168 + 0.903451i
\(433\) 4.12311 0.198144 0.0990719 0.995080i \(-0.468413\pi\)
0.0990719 + 0.995080i \(0.468413\pi\)
\(434\) 1.30343 7.68798i 0.0625668 0.369035i
\(435\) 0 0
\(436\) −5.41421 + 1.63899i −0.259294 + 0.0784934i
\(437\) −22.3234 −1.06787
\(438\) −3.77509 25.5000i −0.180381 1.21844i
\(439\) −2.94725 −0.140665 −0.0703323 0.997524i \(-0.522406\pi\)
−0.0703323 + 0.997524i \(0.522406\pi\)
\(440\) 0 0
\(441\) −4.68629 3.41569i −0.223157 0.162652i
\(442\) −33.6334 + 4.97918i −1.59978 + 0.236836i
\(443\) 1.83783 0.0873181 0.0436591 0.999046i \(-0.486098\pi\)
0.0436591 + 0.999046i \(0.486098\pi\)
\(444\) 17.6095 5.33074i 0.835708 0.252986i
\(445\) 0 0
\(446\) −0.178781 1.20763i −0.00846552 0.0571829i
\(447\) 2.94725i 0.139400i
\(448\) 11.3671 + 17.8547i 0.537046 + 0.843553i
\(449\) −10.6569 −0.502928 −0.251464 0.967867i \(-0.580912\pi\)
−0.251464 + 0.967867i \(0.580912\pi\)
\(450\) 0 0
\(451\) 11.5362 0.543217
\(452\) −10.6123 35.0563i −0.499159 1.64891i
\(453\) −2.41526 −0.113479
\(454\) 1.47363 + 9.95406i 0.0691607 + 0.467167i
\(455\) 0 0
\(456\) 10.0355 + 21.2657i 0.469957 + 0.995858i
\(457\) 29.4853i 1.37926i −0.724160 0.689632i \(-0.757772\pi\)
0.724160 0.689632i \(-0.242228\pi\)
\(458\) 2.91548 + 19.6935i 0.136231 + 0.920216i
\(459\) 23.2612i 1.08574i
\(460\) 0 0
\(461\) 2.41526i 0.112490i 0.998417 + 0.0562449i \(0.0179128\pi\)
−0.998417 + 0.0562449i \(0.982087\pi\)
\(462\) 2.57876 15.2102i 0.119975 0.707642i
\(463\) −1.35778 −0.0631016 −0.0315508 0.999502i \(-0.510045\pi\)
−0.0315508 + 0.999502i \(0.510045\pi\)
\(464\) 0.807612 0.538289i 0.0374924 0.0249894i
\(465\) 0 0
\(466\) −3.27208 22.1023i −0.151576 1.02387i
\(467\) 7.62096i 0.352656i −0.984331 0.176328i \(-0.943578\pi\)
0.984331 0.176328i \(-0.0564220\pi\)
\(468\) −9.24664 + 2.79914i −0.427426 + 0.129391i
\(469\) −6.09188 + 18.7005i −0.281297 + 0.863508i
\(470\) 0 0
\(471\) 32.8963i 1.51578i
\(472\) 7.53880 3.55765i 0.347001 0.163754i
\(473\) 15.6569i 0.719903i
\(474\) −16.3146 + 2.41526i −0.749355 + 0.110937i
\(475\) 0 0
\(476\) −0.457464 + 21.8126i −0.0209678 + 0.999780i
\(477\) 10.1421i 0.464376i
\(478\) 3.47682 + 23.4853i 0.159026 + 1.07419i
\(479\) −8.84175 −0.403990 −0.201995 0.979387i \(-0.564742\pi\)
−0.201995 + 0.979387i \(0.564742\pi\)
\(480\) 0 0
\(481\) 36.4005i 1.65972i
\(482\) 3.26918 + 22.0827i 0.148907 + 1.00584i
\(483\) 14.6686 + 4.77844i 0.667442 + 0.217426i
\(484\) 6.07107 1.83783i 0.275958 0.0835379i
\(485\) 0 0
\(486\) 1.72646 + 11.6619i 0.0783138 + 0.528995i
\(487\) 3.67567 0.166560 0.0832802 0.996526i \(-0.473460\pi\)
0.0832802 + 0.996526i \(0.473460\pi\)
\(488\) −14.0772 29.8301i −0.637243 1.35034i
\(489\) 32.2774i 1.45964i
\(490\) 0 0
\(491\) 29.3371i 1.32397i −0.749519 0.661983i \(-0.769715\pi\)
0.749519 0.661983i \(-0.230285\pi\)
\(492\) 11.6306 3.52082i 0.524348 0.158731i
\(493\) 1.00043 0.0450572
\(494\) −46.0208 + 6.81305i −2.07057 + 0.306533i
\(495\) 0 0
\(496\) −6.93651 + 4.62332i −0.311459 + 0.207593i
\(497\) 18.2003 + 5.92893i 0.816394 + 0.265949i
\(498\) −3.03796 + 0.449747i −0.136134 + 0.0201537i
\(499\) 16.7876i 0.751516i −0.926718 0.375758i \(-0.877382\pi\)
0.926718 0.375758i \(-0.122618\pi\)
\(500\) 0 0
\(501\) 25.3137 1.13093
\(502\) −19.5544 + 2.89489i −0.872756 + 0.129205i
\(503\) 31.0509i 1.38449i −0.721663 0.692245i \(-0.756622\pi\)
0.721663 0.692245i \(-0.243378\pi\)
\(504\) 0.779092 + 6.15023i 0.0347035 + 0.273953i
\(505\) 0 0
\(506\) −2.29289 15.4881i −0.101932 0.688528i
\(507\) 30.9461i 1.37437i
\(508\) 10.7117 3.24264i 0.475254 0.143869i
\(509\) 8.24621i 0.365507i 0.983159 + 0.182753i \(0.0585010\pi\)
−0.983159 + 0.182753i \(0.941499\pi\)
\(510\) 0 0
\(511\) 10.1366 31.1167i 0.448417 1.37652i
\(512\) 5.55468 21.9350i 0.245485 0.969400i
\(513\) 31.8284i 1.40526i
\(514\) −32.6292 + 4.83052i −1.43921 + 0.213065i
\(515\) 0 0
\(516\) 4.77844 + 15.7850i 0.210359 + 0.694896i
\(517\) 17.4929 0.769335
\(518\) 23.0292 + 3.90440i 1.01184 + 0.171550i
\(519\) 20.7445i 0.910581i
\(520\) 0 0
\(521\) 28.8617i 1.26446i −0.774782 0.632228i \(-0.782141\pi\)
0.774782 0.632228i \(-0.217859\pi\)
\(522\) 0.281206 0.0416306i 0.0123081 0.00182212i
\(523\) 4.42088i 0.193311i 0.995318 + 0.0966557i \(0.0308146\pi\)
−0.995318 + 0.0966557i \(0.969185\pi\)
\(524\) −24.9035 + 7.53880i −1.08792 + 0.329334i
\(525\) 0 0
\(526\) −39.1421 + 5.79471i −1.70668 + 0.252661i
\(527\) −8.59264 −0.374301
\(528\) −13.7235 + 9.14695i −0.597237 + 0.398070i
\(529\) −7.34315 −0.319267
\(530\) 0 0
\(531\) 2.44158 0.105956
\(532\) −0.625951 + 29.8463i −0.0271384 + 1.29400i
\(533\) 24.0416i 1.04136i
\(534\) 25.5000 3.77509i 1.10349 0.163364i
\(535\) 0 0
\(536\) 19.0147 8.97327i 0.821311 0.387586i
\(537\) 15.7850 0.681173
\(538\) 0.500217 + 3.37887i 0.0215659 + 0.145673i
\(539\) 11.5362 15.8275i 0.496898 0.681739i
\(540\) 0 0
\(541\) 10.2426 0.440366 0.220183 0.975459i \(-0.429335\pi\)
0.220183 + 0.975459i \(0.429335\pi\)
\(542\) 38.1084 5.64167i 1.63690 0.242330i
\(543\) −29.3371 −1.25898
\(544\) 17.3043 15.6385i 0.741914 0.670495i
\(545\) 0 0
\(546\) 31.6984 + 5.37419i 1.35657 + 0.229994i
\(547\) −13.0296 −0.557104 −0.278552 0.960421i \(-0.589854\pi\)
−0.278552 + 0.960421i \(0.589854\pi\)
\(548\) −2.01962 6.67157i −0.0862738 0.284995i
\(549\) 9.66104i 0.412323i
\(550\) 0 0
\(551\) 1.36890 0.0583170
\(552\) −7.03858 14.9150i −0.299582 0.634826i
\(553\) −19.9081 6.48528i −0.846579 0.275782i
\(554\) −1.26346 8.53440i −0.0536791 0.362592i
\(555\) 0 0
\(556\) −5.15769 + 1.56134i −0.218735 + 0.0662154i
\(557\) 10.6863i 0.452793i 0.974035 + 0.226396i \(0.0726945\pi\)
−0.974035 + 0.226396i \(0.927306\pi\)
\(558\) −2.41526 + 0.357562i −0.102246 + 0.0151368i
\(559\) −32.6292 −1.38007
\(560\) 0 0
\(561\) −17.0000 −0.717741
\(562\) 46.1247 6.82843i 1.94565 0.288040i
\(563\) 13.7249i 0.578436i −0.957263 0.289218i \(-0.906605\pi\)
0.957263 0.289218i \(-0.0933953\pi\)
\(564\) 17.6360 5.33878i 0.742611 0.224803i
\(565\) 0 0
\(566\) 6.55726 + 44.2930i 0.275622 + 1.86178i
\(567\) 4.77637 14.6622i 0.200589 0.615755i
\(568\) −8.73324 18.5061i −0.366439 0.776499i
\(569\) −3.68629 −0.154537 −0.0772687 0.997010i \(-0.524620\pi\)
−0.0772687 + 0.997010i \(0.524620\pi\)
\(570\) 0 0
\(571\) 1.35778i 0.0568215i −0.999596 0.0284108i \(-0.990955\pi\)
0.999596 0.0284108i \(-0.00904464\pi\)
\(572\) −9.45384 31.2296i −0.395285 1.30578i
\(573\) −36.4005 −1.52065
\(574\) 15.2102 + 2.57876i 0.634861 + 0.107635i
\(575\) 0 0
\(576\) 4.21320 5.11582i 0.175550 0.213159i
\(577\) 7.53880 0.313844 0.156922 0.987611i \(-0.449843\pi\)
0.156922 + 0.987611i \(0.449843\pi\)
\(578\) 0 0
\(579\) −12.2513 −0.509146
\(580\) 0 0
\(581\) −3.70711 1.20763i −0.153797 0.0501009i
\(582\) 2.51673 + 17.0000i 0.104322 + 0.704673i
\(583\) −34.2541 −1.41866
\(584\) −31.6396 + 14.9311i −1.30925 + 0.617853i
\(585\) 0 0
\(586\) 23.0723 3.41569i 0.953110 0.141101i
\(587\) 0.967957i 0.0399519i −0.999800 0.0199759i \(-0.993641\pi\)
0.999800 0.0199759i \(-0.00635896\pi\)
\(588\) 6.80008 19.4779i 0.280431 0.803254i
\(589\) −11.7574 −0.484454
\(590\) 0 0
\(591\) 3.66237 0.150650
\(592\) −13.8491 20.7782i −0.569193 0.853978i
\(593\) −24.0312 −0.986844 −0.493422 0.869790i \(-0.664254\pi\)
−0.493422 + 0.869790i \(0.664254\pi\)
\(594\) −22.0827 + 3.26918i −0.906064 + 0.134136i
\(595\) 0 0
\(596\) −3.82843 + 1.15894i −0.156818 + 0.0474721i
\(597\) 25.8406i 1.05759i
\(598\) 32.2774 4.77844i 1.31992 0.195405i
\(599\) 20.7445i 0.847596i 0.905757 + 0.423798i \(0.139303\pi\)
−0.905757 + 0.423798i \(0.860697\pi\)
\(600\) 0 0
\(601\) 15.7850i 0.643884i 0.946759 + 0.321942i \(0.104336\pi\)
−0.946759 + 0.321942i \(0.895664\pi\)
\(602\) −3.49988 + 20.6432i −0.142645 + 0.841355i
\(603\) 6.15828 0.250784
\(604\) 0.949747 + 3.13738i 0.0386447 + 0.127658i
\(605\) 0 0
\(606\) −4.97918 + 0.737132i −0.202266 + 0.0299439i
\(607\) 16.6722i 0.676703i 0.941020 + 0.338351i \(0.109869\pi\)
−0.941020 + 0.338351i \(0.890131\pi\)
\(608\) 23.6775 21.3982i 0.960250 0.867814i
\(609\) −0.899495 0.293020i −0.0364494 0.0118738i
\(610\) 0 0
\(611\) 36.4555i 1.47483i
\(612\) 6.53836 1.97929i 0.264298 0.0800082i
\(613\) 17.1127i 0.691175i −0.938386 0.345588i \(-0.887680\pi\)
0.938386 0.345588i \(-0.112320\pi\)
\(614\) 3.86285 + 26.0928i 0.155892 + 1.05302i
\(615\) 0 0
\(616\) −20.7718 + 2.63131i −0.836920 + 0.106018i
\(617\) 22.0000i 0.885687i −0.896599 0.442843i \(-0.853970\pi\)
0.896599 0.442843i \(-0.146030\pi\)
\(618\) 14.6686 2.17157i 0.590056 0.0873535i
\(619\) −18.9043 −0.759828 −0.379914 0.925022i \(-0.624046\pi\)
−0.379914 + 0.925022i \(0.624046\pi\)
\(620\) 0 0
\(621\) 22.3234i 0.895806i
\(622\) −16.4924 + 2.44158i −0.661286 + 0.0978986i
\(623\) 31.1167 + 10.1366i 1.24666 + 0.406114i
\(624\) −19.0624 28.6000i −0.763109 1.14492i
\(625\) 0 0
\(626\) 6.75773 1.00043i 0.270093 0.0399854i
\(627\) −23.2612 −0.928963
\(628\) 42.7317 12.9357i 1.70518 0.516192i
\(629\) 25.7391i 1.02628i
\(630\) 0 0
\(631\) 11.8706i 0.472562i 0.971685 + 0.236281i \(0.0759286\pi\)
−0.971685 + 0.236281i \(0.924071\pi\)
\(632\) 9.55274 + 20.2426i 0.379988 + 0.805209i
\(633\) 2.12224 0.0843514
\(634\) 5.31371 + 35.8931i 0.211034 + 1.42550i
\(635\) 0 0
\(636\) −34.5345 + 10.4543i −1.36938 + 0.414539i
\(637\) 32.9848 + 24.0416i 1.30691 + 0.952564i
\(638\) 0.140603 + 0.949747i 0.00556653 + 0.0376009i
\(639\) 5.99355i 0.237101i
\(640\) 0 0
\(641\) −21.1716 −0.836227 −0.418113 0.908395i \(-0.637309\pi\)
−0.418113 + 0.908395i \(0.637309\pi\)
\(642\) −3.97660 26.8611i −0.156944 1.06012i
\(643\) 25.5139i 1.00617i 0.864237 + 0.503086i \(0.167802\pi\)
−0.864237 + 0.503086i \(0.832198\pi\)
\(644\) 0.439021 20.9332i 0.0172998 0.824884i
\(645\) 0 0
\(646\) 32.5416 4.81755i 1.28033 0.189544i
\(647\) 46.8598i 1.84225i −0.389268 0.921125i \(-0.627272\pi\)
0.389268 0.921125i \(-0.372728\pi\)
\(648\) −14.9086 + 7.03553i −0.585664 + 0.276382i
\(649\) 8.24621i 0.323692i
\(650\) 0 0
\(651\) 7.72569 + 2.51673i 0.302794 + 0.0986383i
\(652\) −41.9278 + 12.6924i −1.64202 + 0.497072i
\(653\) 29.5563i 1.15663i −0.815814 0.578315i \(-0.803711\pi\)
0.815814 0.578315i \(-0.196289\pi\)
\(654\) −0.863230 5.83095i −0.0337550 0.228008i
\(655\) 0 0
\(656\) −9.14695 13.7235i −0.357128 0.535811i
\(657\) −10.2471 −0.399777
\(658\) 23.0640 + 3.91030i 0.899126 + 0.152439i
\(659\) 6.47360i 0.252176i 0.992019 + 0.126088i \(0.0402421\pi\)
−0.992019 + 0.126088i \(0.959758\pi\)
\(660\) 0 0
\(661\) 27.1539i 1.05616i −0.849193 0.528082i \(-0.822911\pi\)
0.849193 0.528082i \(-0.177089\pi\)
\(662\) 5.97649 + 40.3701i 0.232283 + 1.56903i
\(663\) 35.4284i 1.37592i
\(664\) 1.77882 + 3.76940i 0.0690317 + 0.146281i
\(665\) 0 0
\(666\) −1.07107 7.23486i −0.0415030 0.280345i
\(667\) −0.960099 −0.0371752
\(668\) −9.95406 32.8821i −0.385134 1.27224i
\(669\) 1.27208 0.0491814
\(670\) 0 0
\(671\) 32.6292 1.25964
\(672\) −20.1388 + 8.99236i −0.776870 + 0.346888i
\(673\) 4.00000i 0.154189i 0.997024 + 0.0770943i \(0.0245643\pi\)
−0.997024 + 0.0770943i \(0.975436\pi\)
\(674\) 3.06497 + 20.7033i 0.118058 + 0.797461i
\(675\) 0 0
\(676\) 40.1985 12.1689i 1.54610 0.468034i
\(677\) 11.6619 0.448203 0.224102 0.974566i \(-0.428055\pi\)
0.224102 + 0.974566i \(0.428055\pi\)
\(678\) 37.7547 5.58931i 1.44996 0.214656i
\(679\) −6.75773 + 20.7445i −0.259338 + 0.796100i
\(680\) 0 0
\(681\) −10.4853 −0.401797
\(682\) −1.20763 8.15731i −0.0462425 0.312359i
\(683\) −26.5392 −1.01549 −0.507747 0.861506i \(-0.669521\pi\)
−0.507747 + 0.861506i \(0.669521\pi\)
\(684\) 8.94648 2.70828i 0.342077 0.103554i
\(685\) 0 0
\(686\) 18.7482 18.2895i 0.715811 0.698295i
\(687\) −20.7445 −0.791451
\(688\) 18.6254 12.4142i 0.710088 0.473287i
\(689\) 71.3862i 2.71960i
\(690\) 0 0
\(691\) −48.3334 −1.83869 −0.919345 0.393452i \(-0.871281\pi\)
−0.919345 + 0.393452i \(0.871281\pi\)
\(692\) 26.9467 8.15731i 1.02436 0.310094i
\(693\) −5.83095 1.89949i −0.221500 0.0721558i
\(694\) −27.9558 + 4.13866i −1.06119 + 0.157101i
\(695\) 0 0
\(696\) 0.431615 + 0.914610i 0.0163603 + 0.0346682i
\(697\) 17.0000i 0.643921i
\(698\) 2.91548 + 19.6935i 0.110352 + 0.745409i
\(699\) 23.2818 0.880598
\(700\) 0 0
\(701\) −16.8284 −0.635601 −0.317800 0.948158i \(-0.602944\pi\)
−0.317800 + 0.948158i \(0.602944\pi\)
\(702\) −6.81305 46.0208i −0.257142 1.73694i
\(703\) 35.2189i 1.32831i
\(704\) 17.2782 + 14.2297i 0.651196 + 0.536302i
\(705\) 0 0
\(706\) 16.3146 2.41526i 0.614008 0.0908995i
\(707\) −6.07591 1.97929i −0.228508 0.0744390i
\(708\) 2.51673 + 8.31371i 0.0945844 + 0.312448i
\(709\) 28.0000 1.05156 0.525781 0.850620i \(-0.323773\pi\)
0.525781 + 0.850620i \(0.323773\pi\)
\(710\) 0 0
\(711\) 6.55596i 0.245868i
\(712\) −14.9311 31.6396i −0.559566 1.18574i
\(713\) 8.24621 0.308823
\(714\) −22.4141 3.80013i −0.838828 0.142216i
\(715\) 0 0
\(716\) −6.20711 20.5044i −0.231970 0.766287i
\(717\) −24.7386 −0.923881
\(718\) −4.23808 28.6274i −0.158164 1.06837i
\(719\) −36.9454 −1.37783 −0.688915 0.724842i \(-0.741913\pi\)
−0.688915 + 0.724842i \(0.741913\pi\)
\(720\) 0 0
\(721\) 17.8995 + 5.83095i 0.666612 + 0.217156i
\(722\) 17.9465 2.65685i 0.667901 0.0988779i
\(723\) −23.2612 −0.865093
\(724\) 11.5362 + 38.1084i 0.428738 + 1.41629i
\(725\) 0 0
\(726\) 0.967957 + 6.53836i 0.0359243 + 0.242661i
\(727\) 32.2717i 1.19689i −0.801164 0.598445i \(-0.795786\pi\)
0.801164 0.598445i \(-0.204214\pi\)
\(728\) −5.48371 43.2889i −0.203240 1.60439i
\(729\) −29.7696 −1.10258
\(730\) 0 0
\(731\) 23.0723 0.853361
\(732\) 32.8963 9.95837i 1.21588 0.368072i
\(733\) −24.7386 −0.913742 −0.456871 0.889533i \(-0.651030\pi\)
−0.456871 + 0.889533i \(0.651030\pi\)
\(734\) −3.30481 22.3234i −0.121983 0.823971i
\(735\) 0 0
\(736\) −16.6066 + 15.0080i −0.612127 + 0.553202i
\(737\) 20.7990i 0.766141i
\(738\) −0.707413 4.77844i −0.0260402 0.175897i
\(739\) 18.7078i 0.688177i −0.938937 0.344089i \(-0.888188\pi\)
0.938937 0.344089i \(-0.111812\pi\)
\(740\) 0 0
\(741\) 48.4768i 1.78084i
\(742\) −45.1633 7.65705i −1.65800 0.281099i
\(743\) −16.5064 −0.605561 −0.302780 0.953060i \(-0.597915\pi\)
−0.302780 + 0.953060i \(0.597915\pi\)
\(744\) −3.70711 7.85551i −0.135909 0.287997i
\(745\) 0 0
\(746\) −2.77817 18.7660i −0.101716 0.687073i
\(747\) 1.22079i 0.0446664i
\(748\) 6.68488 + 22.0827i 0.244423 + 0.807423i
\(749\) 10.6777 32.7776i 0.390154 1.19767i
\(750\) 0 0
\(751\) 21.1422i 0.771488i 0.922606 + 0.385744i \(0.126055\pi\)
−0.922606 + 0.385744i \(0.873945\pi\)
\(752\) −13.8700 20.8095i −0.505786 0.758846i
\(753\) 20.5980i 0.750632i
\(754\) −1.97929 + 0.293020i −0.0720816 + 0.0106712i
\(755\) 0 0
\(756\) −29.8463 0.625951i −1.08550 0.0227656i
\(757\) 12.5858i 0.457438i −0.973492 0.228719i \(-0.926546\pi\)
0.973492 0.228719i \(-0.0734537\pi\)
\(758\) 0.860677 + 5.81371i 0.0312612 + 0.211163i
\(759\) 16.3146 0.592183
\(760\) 0 0
\(761\) 39.1088i 1.41769i −0.705363 0.708847i \(-0.749216\pi\)
0.705363 0.708847i \(-0.250784\pi\)
\(762\) 1.70785 + 11.5362i 0.0618687 + 0.417911i
\(763\) 2.31788 7.11529i 0.0839130 0.257591i
\(764\) 14.3137 + 47.2836i 0.517852 + 1.71066i
\(765\) 0 0
\(766\) 3.81048 + 25.7391i 0.137678 + 0.929990i
\(767\) −17.1853 −0.620525
\(768\) 21.7625 + 9.07290i 0.785286 + 0.327390i
\(769\) 40.5236i 1.46132i 0.682742 + 0.730660i \(0.260788\pi\)
−0.682742 + 0.730660i \(0.739212\pi\)
\(770\) 0 0
\(771\) 34.3706i 1.23783i
\(772\) 4.81755 + 15.9142i 0.173387 + 0.572765i
\(773\) −36.4005 −1.30924 −0.654618 0.755960i \(-0.727171\pi\)
−0.654618 + 0.755960i \(0.727171\pi\)
\(774\) 6.48528 0.960099i 0.233109 0.0345100i
\(775\) 0 0
\(776\) 21.0930 9.95406i 0.757196 0.357330i
\(777\) −7.53880 + 23.1421i −0.270453 + 0.830219i
\(778\) −21.7628 + 3.22183i −0.780234 + 0.115508i
\(779\) 23.2612i 0.833419i
\(780\) 0 0
\(781\) 20.2426 0.724339
\(782\) −22.8236 + 3.37887i −0.816170 + 0.120828i
\(783\) 1.36890i 0.0489204i
\(784\) −27.9754 1.17394i −0.999121 0.0419265i
\(785\) 0 0
\(786\) −3.97056 26.8204i −0.141625 0.956651i
\(787\) 20.6308i 0.735407i 0.929943 + 0.367704i \(0.119856\pi\)
−0.929943 + 0.367704i \(0.880144\pi\)
\(788\) −1.44015 4.75736i −0.0513032 0.169474i
\(789\) 41.2311i 1.46786i
\(790\) 0 0
\(791\) 46.0706 + 15.0080i 1.63808 + 0.533623i
\(792\) 2.79793 + 5.92893i 0.0994202 + 0.210675i
\(793\) 68.0000i 2.41475i
\(794\) 26.4512 3.91591i 0.938718 0.138970i
\(795\) 0 0
\(796\) −33.5665 + 10.1613i −1.18973 + 0.360156i
\(797\) −26.7395 −0.947162 −0.473581 0.880750i \(-0.657039\pi\)
−0.473581 + 0.880750i \(0.657039\pi\)
\(798\) −30.6694 5.19974i −1.08568 0.184069i
\(799\) 25.7779i 0.911957i
\(800\) 0 0
\(801\) 10.2471i 0.362063i
\(802\) −31.4150 + 4.65076i −1.10930 + 0.164224i
\(803\) 34.6085i 1.22131i
\(804\) 6.34781 + 20.9692i 0.223870 + 0.739528i
\(805\) 0 0
\(806\) 17.0000 2.51673i 0.598799 0.0886479i
\(807\) −3.55919 −0.125289
\(808\) 2.91548 + 6.17801i 0.102566 + 0.217342i
\(809\) 1.17157 0.0411903 0.0205952 0.999788i \(-0.493444\pi\)
0.0205952 + 0.999788i \(0.493444\pi\)
\(810\) 0 0
\(811\) 36.0821 1.26702 0.633508 0.773736i \(-0.281615\pi\)
0.633508 + 0.773736i \(0.281615\pi\)
\(812\) −0.0269213 + 1.28365i −0.000944753 + 0.0450473i
\(813\) 40.1421i 1.40785i
\(814\) 24.4350 3.61743i 0.856447 0.126791i
\(815\) 0 0
\(816\) 13.4792 + 20.2232i 0.471866 + 0.707955i
\(817\) 31.5700 1.10450
\(818\) 3.26918 + 22.0827i 0.114304 + 0.772103i
\(819\) 3.95859 12.1518i 0.138324 0.424619i
\(820\) 0 0
\(821\) 14.5858 0.509047 0.254524 0.967067i \(-0.418081\pi\)
0.254524 + 0.967067i \(0.418081\pi\)
\(822\) 7.18509 1.06370i 0.250609 0.0371008i
\(823\) 49.1215 1.71227 0.856134 0.516755i \(-0.172860\pi\)
0.856134 + 0.516755i \(0.172860\pi\)
\(824\) −8.58892 18.2003i −0.299209 0.634036i
\(825\) 0 0
\(826\) −1.84333 + 10.8725i −0.0641377 + 0.378301i
\(827\) 47.0024 1.63444 0.817218 0.576329i \(-0.195515\pi\)
0.817218 + 0.576329i \(0.195515\pi\)
\(828\) −6.27476 + 1.89949i −0.218063 + 0.0660120i
\(829\) 26.7395i 0.928701i −0.885651 0.464351i \(-0.846288\pi\)
0.885651 0.464351i \(-0.153712\pi\)
\(830\) 0 0
\(831\) 8.98986 0.311855
\(832\) −29.6550 + 36.0081i −1.02810 + 1.24836i
\(833\) −23.3238 17.0000i −0.808122 0.589015i
\(834\) −0.822330 5.55468i −0.0284750 0.192343i
\(835\) 0 0
\(836\) 9.14695 + 30.2159i 0.316354 + 1.04504i
\(837\) 11.7574i 0.406394i
\(838\) 34.3390 5.08364i 1.18622 0.175611i
\(839\) −37.6605 −1.30018 −0.650092 0.759855i \(-0.725270\pi\)
−0.650092 + 0.759855i \(0.725270\pi\)
\(840\) 0 0
\(841\) −28.9411 −0.997970
\(842\) −0.960099 + 0.142136i −0.0330872 + 0.00489832i
\(843\) 48.5863i 1.67340i
\(844\) −0.834524 2.75675i −0.0287255 0.0948913i
\(845\) 0 0
\(846\) −1.07268 7.24578i −0.0368797 0.249115i
\(847\) −2.59909 + 7.97852i −0.0893058 + 0.274145i
\(848\) 27.1598 + 40.7487i 0.932672 + 1.39932i
\(849\) −46.6569 −1.60126
\(850\) 0 0
\(851\) 24.7013i 0.846751i
\(852\) 20.4083 6.17801i 0.699178 0.211655i
\(853\) 15.0776 0.516247 0.258124 0.966112i \(-0.416896\pi\)
0.258124 + 0.966112i \(0.416896\pi\)
\(854\) 43.0209 + 7.29384i 1.47215 + 0.249590i
\(855\) 0 0
\(856\) −33.3284 + 15.7281i −1.13914 + 0.537575i
\(857\) −5.53793 −0.189172 −0.0945861 0.995517i \(-0.530153\pi\)
−0.0945861 + 0.995517i \(0.530153\pi\)
\(858\) 33.6334 4.97918i 1.14823 0.169987i
\(859\) 36.3350 1.23973 0.619867 0.784707i \(-0.287187\pi\)
0.619867 + 0.784707i \(0.287187\pi\)
\(860\) 0 0
\(861\) −4.97918 + 15.2848i −0.169690 + 0.520904i
\(862\) −1.69723 11.4645i −0.0578079 0.390481i
\(863\) 12.1518 0.413653 0.206827 0.978378i \(-0.433686\pi\)
0.206827 + 0.978378i \(0.433686\pi\)
\(864\) 21.3982 + 23.6775i 0.727983 + 0.805525i
\(865\) 0 0
\(866\) 5.76809 0.853923i 0.196008 0.0290175i
\(867\) 0 0
\(868\) 0.231225 11.0252i 0.00784829 0.374219i
\(869\) −22.1421 −0.751121
\(870\) 0 0
\(871\) −43.3455 −1.46871
\(872\) −7.23486 + 3.41421i −0.245003 + 0.115620i
\(873\) 6.83139 0.231207
\(874\) −31.2296 + 4.62332i −1.05636 + 0.156386i
\(875\) 0 0
\(876\) −10.5624 34.8918i −0.356872 1.17888i
\(877\) 4.97056i 0.167844i −0.996472 0.0839220i \(-0.973255\pi\)
0.996472 0.0839220i \(-0.0267447\pi\)
\(878\) −4.12311 + 0.610396i −0.139148 + 0.0205999i
\(879\) 24.3037i 0.819742i
\(880\) 0 0
\(881\) 11.6619i 0.392900i 0.980514 + 0.196450i \(0.0629413\pi\)
−0.980514 + 0.196450i \(0.937059\pi\)
\(882\) −7.26338 3.80788i −0.244571 0.128218i
\(883\) 7.99611 0.269091 0.134545 0.990907i \(-0.457043\pi\)
0.134545 + 0.990907i \(0.457043\pi\)
\(884\) −46.0208 + 13.9314i −1.54785 + 0.468564i
\(885\) 0 0
\(886\) 2.57107 0.380628i 0.0863767 0.0127874i
\(887\) 10.9258i 0.366852i 0.983034 + 0.183426i \(0.0587187\pi\)
−0.983034 + 0.183426i \(0.941281\pi\)
\(888\) 23.5310 11.1046i 0.789649 0.372645i
\(889\) −4.58579 + 14.0772i −0.153802 + 0.472133i
\(890\) 0 0
\(891\) 16.3075i 0.546323i
\(892\) −0.500217 1.65241i −0.0167485 0.0553267i
\(893\) 35.2721i 1.18034i
\(894\) −0.610396 4.12311i −0.0204147 0.137897i
\(895\) 0 0
\(896\) 19.6000 + 22.6238i 0.654791 + 0.755810i
\(897\) 34.0000i 1.13523i
\(898\) −14.9086 + 2.20711i −0.497506 + 0.0736521i
\(899\) −0.505668 −0.0168650
\(900\) 0 0
\(901\) 50.4777i 1.68166i
\(902\) 16.1387 2.38922i 0.537360 0.0795523i
\(903\) −20.7445 6.75773i −0.690333 0.224883i
\(904\) −22.1066 46.8448i −0.735255 1.55803i
\(905\) 0 0
\(906\) −3.37887 + 0.500217i −0.112255 + 0.0166186i
\(907\) 39.5687 1.31386 0.656929 0.753952i \(-0.271855\pi\)
0.656929 + 0.753952i \(0.271855\pi\)
\(908\) 4.12311 + 13.6202i 0.136830 + 0.452002i
\(909\) 2.00087i 0.0663645i
\(910\) 0 0
\(911\) 30.2972i 1.00379i −0.864928 0.501896i \(-0.832636\pi\)
0.864928 0.501896i \(-0.167364\pi\)
\(912\) 18.4436 + 27.6716i 0.610730 + 0.916297i
\(913\) −4.12311 −0.136455
\(914\) −6.10660 41.2489i −0.201988 1.36439i
\(915\) 0 0
\(916\) 8.15731 + 26.9467i 0.269525 + 0.890344i
\(917\) 10.6615 32.7279i 0.352073 1.08077i
\(918\) 4.81755 + 32.5416i 0.159003 + 1.07403i
\(919\) 22.7811i 0.751481i 0.926725 + 0.375740i \(0.122612\pi\)
−0.926725 + 0.375740i \(0.877388\pi\)
\(920\) 0 0
\(921\) −27.4853 −0.905671
\(922\) 0.500217 + 3.37887i 0.0164738 + 0.111277i
\(923\) 42.1861i 1.38857i
\(924\) 0.457464 21.8126i 0.0150495 0.717583i
\(925\) 0 0
\(926\) −1.89949 + 0.281206i −0.0624213 + 0.00924102i
\(927\) 5.89450i 0.193601i
\(928\) 1.01834 0.920310i 0.0334286 0.0302107i
\(929\) 39.8162i 1.30633i 0.757216 + 0.653164i \(0.226559\pi\)
−0.757216 + 0.653164i \(0.773441\pi\)
\(930\) 0 0
\(931\) −31.9141 23.2612i −1.04594 0.762355i
\(932\) −9.15505 30.2426i −0.299884 0.990631i
\(933\) 17.3726i 0.568753i
\(934\) −1.57835 10.6615i −0.0516453 0.348854i
\(935\) 0 0
\(936\) −12.3560 + 5.83095i −0.403869 + 0.190591i
\(937\) 10.9545 0.357868 0.178934 0.983861i \(-0.442735\pi\)
0.178934 + 0.983861i \(0.442735\pi\)
\(938\) −4.64934 + 27.4230i −0.151806 + 0.895393i
\(939\) 7.11838i 0.232299i
\(940\) 0 0
\(941\) 24.7386i 0.806456i −0.915099 0.403228i \(-0.867888\pi\)
0.915099 0.403228i \(-0.132112\pi\)
\(942\) 6.81305 + 46.0208i 0.221981 + 1.49944i
\(943\) 16.3146i 0.531277i
\(944\) 9.80971 6.53836i 0.319279 0.212806i
\(945\) 0 0
\(946\) 3.24264 + 21.9034i 0.105427 + 0.712141i
\(947\) −19.5032 −0.633768 −0.316884 0.948464i \(-0.602637\pi\)
−0.316884 + 0.948464i \(0.602637\pi\)
\(948\) −22.3234 + 6.75773i −0.725029 + 0.219481i
\(949\) 72.1249 2.34127
\(950\) 0 0
\(951\) −37.8086 −1.22603
\(952\) 3.87757 + 30.6099i 0.125673 + 0.992072i
\(953\) 53.7696i 1.74177i 0.491490 + 0.870883i \(0.336453\pi\)
−0.491490 + 0.870883i \(0.663547\pi\)
\(954\) 2.10051 + 14.1885i 0.0680064 + 0.459370i
\(955\) 0 0
\(956\) 9.72792 + 32.1350i 0.314623 + 1.03932i
\(957\) −1.00043 −0.0323394
\(958\) −12.3693 + 1.83119i −0.399634 + 0.0591630i
\(959\) 8.76770 + 2.85617i 0.283124 + 0.0922306i
\(960\) 0 0
\(961\) −26.6569 −0.859899
\(962\) 7.53880 + 50.9231i 0.243061 + 1.64183i
\(963\) −10.7940 −0.347833
\(964\) 9.14695 + 30.2159i 0.294604 + 0.973188i
\(965\) 0 0
\(966\) 21.5105 + 3.64692i 0.692088 + 0.117338i
\(967\) 9.55274 0.307195 0.153598 0.988133i \(-0.450914\pi\)
0.153598 + 0.988133i \(0.450914\pi\)
\(968\) 8.11259 3.82843i 0.260749 0.123050i
\(969\) 34.2783i 1.10118i
\(970\) 0 0
\(971\) −4.92655 −0.158100 −0.0790502 0.996871i \(-0.525189\pi\)
−0.0790502 + 0.996871i \(0.525189\pi\)
\(972\) 4.83052 + 15.9570i 0.154939 + 0.511823i
\(973\) 2.20806 6.77817i 0.0707872 0.217298i
\(974\) 5.14214 0.761256i 0.164765 0.0243922i
\(975\) 0 0
\(976\) −25.8715 38.8158i −0.828126 1.24246i
\(977\) 7.28427i 0.233044i 0.993188 + 0.116522i \(0.0371746\pi\)
−0.993188 + 0.116522i \(0.962825\pi\)
\(978\) −6.68488 45.1550i −0.213759 1.44390i
\(979\) 34.6085 1.10609
\(980\) 0 0
\(981\) −2.34315 −0.0748109
\(982\) −6.07591 41.0416i −0.193890 1.30969i
\(983\) 11.6409i 0.371287i 0.982617 + 0.185644i \(0.0594370\pi\)
−0.982617 + 0.185644i \(0.940563\pi\)
\(984\) 15.5416 7.33428i 0.495449 0.233808i
\(985\) 0 0
\(986\) 1.39957 0.207196i 0.0445715 0.00659848i
\(987\) −7.55018 + 23.1771i −0.240325 + 0.737734i
\(988\) −62.9705 + 19.0624i −2.00336 + 0.606457i
\(989\) −22.1421 −0.704079
\(990\) 0 0
\(991\) 6.27476i 0.199324i −0.995021 0.0996621i \(-0.968224\pi\)
0.995021 0.0996621i \(-0.0317762\pi\)
\(992\) −8.74643 + 7.90447i −0.277699 + 0.250967i
\(993\) −42.5245 −1.34947
\(994\) 26.6895 + 4.52498i 0.846539 + 0.143524i
\(995\) 0 0
\(996\) −4.15685 + 1.25836i −0.131715 + 0.0398728i
\(997\) −2.41526 −0.0764920 −0.0382460 0.999268i \(-0.512177\pi\)
−0.0382460 + 0.999268i \(0.512177\pi\)
\(998\) −3.47682 23.4853i −0.110057 0.743414i
\(999\) 35.2189 1.11428
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.c.k.699.14 16
4.3 odd 2 inner 700.2.c.k.699.1 16
5.2 odd 4 700.2.g.i.251.8 yes 8
5.3 odd 4 700.2.g.k.251.1 yes 8
5.4 even 2 inner 700.2.c.k.699.3 16
7.6 odd 2 inner 700.2.c.k.699.13 16
20.3 even 4 700.2.g.k.251.4 yes 8
20.7 even 4 700.2.g.i.251.5 8
20.19 odd 2 inner 700.2.c.k.699.16 16
28.27 even 2 inner 700.2.c.k.699.2 16
35.13 even 4 700.2.g.k.251.2 yes 8
35.27 even 4 700.2.g.i.251.7 yes 8
35.34 odd 2 inner 700.2.c.k.699.4 16
140.27 odd 4 700.2.g.i.251.6 yes 8
140.83 odd 4 700.2.g.k.251.3 yes 8
140.139 even 2 inner 700.2.c.k.699.15 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
700.2.c.k.699.1 16 4.3 odd 2 inner
700.2.c.k.699.2 16 28.27 even 2 inner
700.2.c.k.699.3 16 5.4 even 2 inner
700.2.c.k.699.4 16 35.34 odd 2 inner
700.2.c.k.699.13 16 7.6 odd 2 inner
700.2.c.k.699.14 16 1.1 even 1 trivial
700.2.c.k.699.15 16 140.139 even 2 inner
700.2.c.k.699.16 16 20.19 odd 2 inner
700.2.g.i.251.5 8 20.7 even 4
700.2.g.i.251.6 yes 8 140.27 odd 4
700.2.g.i.251.7 yes 8 35.27 even 4
700.2.g.i.251.8 yes 8 5.2 odd 4
700.2.g.k.251.1 yes 8 5.3 odd 4
700.2.g.k.251.2 yes 8 35.13 even 4
700.2.g.k.251.3 yes 8 140.83 odd 4
700.2.g.k.251.4 yes 8 20.3 even 4