Properties

Label 700.2.e.c
Level 700700
Weight 22
Character orbit 700.e
Analytic conductor 5.5905.590
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,2,Mod(449,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.449");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 700=22527 700 = 2^{2} \cdot 5^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 700.e (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.589528141495.58952814149
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+iq3iq7+2q9+3q11iq13+3iq172q19+q216iq23+5iq27+9q29+8q31+3iq33+10iq37+q39+2iq43+3iq47q49++6q99+O(q100) q + i q^{3} - i q^{7} + 2 q^{9} + 3 q^{11} - i q^{13} + 3 i q^{17} - 2 q^{19} + q^{21} - 6 i q^{23} + 5 i q^{27} + 9 q^{29} + 8 q^{31} + 3 i q^{33} + 10 i q^{37} + q^{39} + 2 i q^{43} + 3 i q^{47} - q^{49} + \cdots + 6 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+4q9+6q114q19+2q21+18q29+16q31+2q392q496q5124q59+16q61+12q6910q79+2q8124q892q91+12q99+O(q100) 2 q + 4 q^{9} + 6 q^{11} - 4 q^{19} + 2 q^{21} + 18 q^{29} + 16 q^{31} + 2 q^{39} - 2 q^{49} - 6 q^{51} - 24 q^{59} + 16 q^{61} + 12 q^{69} - 10 q^{79} + 2 q^{81} - 24 q^{89} - 2 q^{91} + 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/700Z)×\left(\mathbb{Z}/700\mathbb{Z}\right)^\times.

nn 101101 351351 477477
χ(n)\chi(n) 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
449.1
1.00000i
1.00000i
0 1.00000i 0 0 0 1.00000i 0 2.00000 0
449.2 0 1.00000i 0 0 0 1.00000i 0 2.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 700.2.e.c 2
3.b odd 2 1 6300.2.k.c 2
4.b odd 2 1 2800.2.g.j 2
5.b even 2 1 inner 700.2.e.c 2
5.c odd 4 1 140.2.a.a 1
5.c odd 4 1 700.2.a.d 1
7.b odd 2 1 4900.2.e.l 2
15.d odd 2 1 6300.2.k.c 2
15.e even 4 1 1260.2.a.c 1
15.e even 4 1 6300.2.a.d 1
20.d odd 2 1 2800.2.g.j 2
20.e even 4 1 560.2.a.c 1
20.e even 4 1 2800.2.a.y 1
35.c odd 2 1 4900.2.e.l 2
35.f even 4 1 980.2.a.c 1
35.f even 4 1 4900.2.a.p 1
35.k even 12 2 980.2.i.h 2
35.l odd 12 2 980.2.i.d 2
40.i odd 4 1 2240.2.a.g 1
40.k even 4 1 2240.2.a.r 1
60.l odd 4 1 5040.2.a.h 1
105.k odd 4 1 8820.2.a.r 1
140.j odd 4 1 3920.2.a.u 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.a.a 1 5.c odd 4 1
560.2.a.c 1 20.e even 4 1
700.2.a.d 1 5.c odd 4 1
700.2.e.c 2 1.a even 1 1 trivial
700.2.e.c 2 5.b even 2 1 inner
980.2.a.c 1 35.f even 4 1
980.2.i.d 2 35.l odd 12 2
980.2.i.h 2 35.k even 12 2
1260.2.a.c 1 15.e even 4 1
2240.2.a.g 1 40.i odd 4 1
2240.2.a.r 1 40.k even 4 1
2800.2.a.y 1 20.e even 4 1
2800.2.g.j 2 4.b odd 2 1
2800.2.g.j 2 20.d odd 2 1
3920.2.a.u 1 140.j odd 4 1
4900.2.a.p 1 35.f even 4 1
4900.2.e.l 2 7.b odd 2 1
4900.2.e.l 2 35.c odd 2 1
5040.2.a.h 1 60.l odd 4 1
6300.2.a.d 1 15.e even 4 1
6300.2.k.c 2 3.b odd 2 1
6300.2.k.c 2 15.d odd 2 1
8820.2.a.r 1 105.k odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T32+1 T_{3}^{2} + 1 acting on S2new(700,[χ])S_{2}^{\mathrm{new}}(700, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+1 T^{2} + 1 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+1 T^{2} + 1 Copy content Toggle raw display
1111 (T3)2 (T - 3)^{2} Copy content Toggle raw display
1313 T2+1 T^{2} + 1 Copy content Toggle raw display
1717 T2+9 T^{2} + 9 Copy content Toggle raw display
1919 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
2323 T2+36 T^{2} + 36 Copy content Toggle raw display
2929 (T9)2 (T - 9)^{2} Copy content Toggle raw display
3131 (T8)2 (T - 8)^{2} Copy content Toggle raw display
3737 T2+100 T^{2} + 100 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2+4 T^{2} + 4 Copy content Toggle raw display
4747 T2+9 T^{2} + 9 Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
6161 (T8)2 (T - 8)^{2} Copy content Toggle raw display
6767 T2+64 T^{2} + 64 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+196 T^{2} + 196 Copy content Toggle raw display
7979 (T+5)2 (T + 5)^{2} Copy content Toggle raw display
8383 T2+144 T^{2} + 144 Copy content Toggle raw display
8989 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
9797 T2+289 T^{2} + 289 Copy content Toggle raw display
show more
show less