Properties

Label 700.2.p.e.551.4
Level $700$
Weight $2$
Character 700.551
Analytic conductor $5.590$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,2,Mod(451,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.451");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.p (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 551.4
Character \(\chi\) \(=\) 700.551
Dual form 700.2.p.e.451.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00031 + 0.999687i) q^{2} +(0.739583 + 1.28100i) q^{3} +(0.00125109 - 2.00000i) q^{4} +(-2.02041 - 0.542044i) q^{6} +(-2.56107 + 0.664037i) q^{7} +(1.99812 + 2.00188i) q^{8} +(0.406034 - 0.703271i) q^{9} +(5.32875 - 3.07655i) q^{11} +(2.56292 - 1.47756i) q^{12} -3.33366i q^{13} +(1.89804 - 3.22451i) q^{14} +(-4.00000 - 0.00500436i) q^{16} +(2.21000 - 1.27594i) q^{17} +(0.296890 + 1.10940i) q^{18} +(0.352781 - 0.611035i) q^{19} +(-2.74475 - 2.78960i) q^{21} +(-2.25482 + 8.40459i) q^{22} +(1.70332 + 0.983411i) q^{23} +(-1.08662 + 4.04014i) q^{24} +(3.33262 + 3.33470i) q^{26} +5.63868 q^{27} +(1.32487 + 5.12296i) q^{28} -5.17926 q^{29} +(3.40156 + 5.89167i) q^{31} +(4.00625 - 3.99374i) q^{32} +(7.88210 + 4.55073i) q^{33} +(-0.935146 + 3.48565i) q^{34} +(-1.40603 - 0.812947i) q^{36} +(3.40886 - 5.90431i) q^{37} +(0.257952 + 0.963897i) q^{38} +(4.27040 - 2.46552i) q^{39} -2.53373i q^{41} +(5.53434 + 0.0465848i) q^{42} +4.59892i q^{43} +(-6.14644 - 10.6613i) q^{44} +(-2.68695 + 0.719067i) q^{46} +(-2.18463 + 3.78388i) q^{47} +(-2.95192 - 5.12768i) q^{48} +(6.11811 - 3.40128i) q^{49} +(3.26896 + 1.88733i) q^{51} +(-6.66732 - 0.00417071i) q^{52} +(-2.77664 - 4.80929i) q^{53} +(-5.64044 + 5.63692i) q^{54} +(-6.44664 - 3.80011i) q^{56} +1.04364 q^{57} +(5.18088 - 5.17764i) q^{58} +(3.40156 + 5.89167i) q^{59} +(3.07800 + 1.77708i) q^{61} +(-9.29244 - 2.49302i) q^{62} +(-0.572881 + 2.07074i) q^{63} +(-0.0150131 + 7.99999i) q^{64} +(-12.4339 + 3.32748i) q^{66} +(2.51253 - 1.45061i) q^{67} +(-2.54912 - 4.42159i) q^{68} +2.90926i q^{69} -3.37084i q^{71} +(2.21917 - 0.592393i) q^{72} +(2.21000 - 1.27594i) q^{73} +(2.49254 + 9.31395i) q^{74} +(-1.22163 - 0.706327i) q^{76} +(-11.6043 + 11.4177i) q^{77} +(-1.80699 + 6.73536i) q^{78} +(5.38564 + 3.10940i) q^{79} +(2.95217 + 5.11331i) q^{81} +(2.53294 + 2.53452i) q^{82} -4.70266 q^{83} +(-5.58264 + 5.48601i) q^{84} +(-4.59748 - 4.60036i) q^{86} +(-3.83049 - 6.63461i) q^{87} +(16.8064 + 4.52016i) q^{88} +(5.19692 + 3.00044i) q^{89} +(2.21367 + 8.53772i) q^{91} +(1.96895 - 3.40541i) q^{92} +(-5.03147 + 8.71475i) q^{93} +(-1.59739 - 5.96901i) q^{94} +(8.07892 + 2.17829i) q^{96} +9.46331i q^{97} +(-2.71980 + 9.51854i) q^{98} -4.99674i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 6 q^{4} - 4 q^{9} - 22 q^{14} + 18 q^{16} - 52 q^{21} + 48 q^{24} - 18 q^{26} - 28 q^{36} + 26 q^{44} - 22 q^{46} - 48 q^{54} - 16 q^{56} + 36 q^{61} - 36 q^{64} - 24 q^{66} - 14 q^{74} + 72 q^{81}+ \cdots + 60 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00031 + 0.999687i −0.707328 + 0.706886i
\(3\) 0.739583 + 1.28100i 0.426999 + 0.739583i 0.996605 0.0823346i \(-0.0262376\pi\)
−0.569606 + 0.821918i \(0.692904\pi\)
\(4\) 0.00125109 2.00000i 0.000625545 1.00000i
\(5\) 0 0
\(6\) −2.02041 0.542044i −0.824829 0.221289i
\(7\) −2.56107 + 0.664037i −0.967992 + 0.250982i
\(8\) 1.99812 + 2.00188i 0.706443 + 0.707770i
\(9\) 0.406034 0.703271i 0.135345 0.234424i
\(10\) 0 0
\(11\) 5.32875 3.07655i 1.60668 0.927616i 0.616570 0.787300i \(-0.288522\pi\)
0.990107 0.140316i \(-0.0448118\pi\)
\(12\) 2.56292 1.47756i 0.739850 0.426536i
\(13\) 3.33366i 0.924591i −0.886726 0.462295i \(-0.847026\pi\)
0.886726 0.462295i \(-0.152974\pi\)
\(14\) 1.89804 3.22451i 0.507272 0.861786i
\(15\) 0 0
\(16\) −4.00000 0.00500436i −0.999999 0.00125109i
\(17\) 2.21000 1.27594i 0.536004 0.309462i −0.207454 0.978245i \(-0.566518\pi\)
0.743458 + 0.668783i \(0.233184\pi\)
\(18\) 0.296890 + 1.10940i 0.0699777 + 0.261488i
\(19\) 0.352781 0.611035i 0.0809335 0.140181i −0.822718 0.568450i \(-0.807543\pi\)
0.903651 + 0.428269i \(0.140877\pi\)
\(20\) 0 0
\(21\) −2.74475 2.78960i −0.598953 0.608741i
\(22\) −2.25482 + 8.40459i −0.480730 + 1.79187i
\(23\) 1.70332 + 0.983411i 0.355166 + 0.205055i 0.666958 0.745095i \(-0.267596\pi\)
−0.311792 + 0.950150i \(0.600929\pi\)
\(24\) −1.08662 + 4.04014i −0.221805 + 0.824690i
\(25\) 0 0
\(26\) 3.33262 + 3.33470i 0.653580 + 0.653989i
\(27\) 5.63868 1.08516
\(28\) 1.32487 + 5.12296i 0.250377 + 0.968148i
\(29\) −5.17926 −0.961765 −0.480882 0.876785i \(-0.659684\pi\)
−0.480882 + 0.876785i \(0.659684\pi\)
\(30\) 0 0
\(31\) 3.40156 + 5.89167i 0.610937 + 1.05817i 0.991083 + 0.133248i \(0.0425406\pi\)
−0.380145 + 0.924927i \(0.624126\pi\)
\(32\) 4.00625 3.99374i 0.708212 0.706000i
\(33\) 7.88210 + 4.55073i 1.37210 + 0.792181i
\(34\) −0.935146 + 3.48565i −0.160376 + 0.597784i
\(35\) 0 0
\(36\) −1.40603 0.812947i −0.234339 0.135491i
\(37\) 3.40886 5.90431i 0.560412 0.970663i −0.437048 0.899438i \(-0.643976\pi\)
0.997460 0.0712245i \(-0.0226907\pi\)
\(38\) 0.257952 + 0.963897i 0.0418454 + 0.156365i
\(39\) 4.27040 2.46552i 0.683812 0.394799i
\(40\) 0 0
\(41\) 2.53373i 0.395702i −0.980232 0.197851i \(-0.936604\pi\)
0.980232 0.197851i \(-0.0633962\pi\)
\(42\) 5.53434 + 0.0465848i 0.853967 + 0.00718819i
\(43\) 4.59892i 0.701329i 0.936501 + 0.350664i \(0.114044\pi\)
−0.936501 + 0.350664i \(0.885956\pi\)
\(44\) −6.14644 10.6613i −0.926610 1.60726i
\(45\) 0 0
\(46\) −2.68695 + 0.719067i −0.396170 + 0.106021i
\(47\) −2.18463 + 3.78388i −0.318660 + 0.551936i −0.980209 0.197966i \(-0.936566\pi\)
0.661548 + 0.749903i \(0.269900\pi\)
\(48\) −2.95192 5.12768i −0.426073 0.740117i
\(49\) 6.11811 3.40128i 0.874016 0.485898i
\(50\) 0 0
\(51\) 3.26896 + 1.88733i 0.457746 + 0.264280i
\(52\) −6.66732 0.00417071i −0.924590 0.000578373i
\(53\) −2.77664 4.80929i −0.381401 0.660606i 0.609861 0.792508i \(-0.291225\pi\)
−0.991263 + 0.131902i \(0.957892\pi\)
\(54\) −5.64044 + 5.63692i −0.767567 + 0.767087i
\(55\) 0 0
\(56\) −6.44664 3.80011i −0.861469 0.507811i
\(57\) 1.04364 0.138234
\(58\) 5.18088 5.17764i 0.680283 0.679858i
\(59\) 3.40156 + 5.89167i 0.442845 + 0.767030i 0.997899 0.0647843i \(-0.0206359\pi\)
−0.555055 + 0.831814i \(0.687303\pi\)
\(60\) 0 0
\(61\) 3.07800 + 1.77708i 0.394097 + 0.227532i 0.683934 0.729544i \(-0.260268\pi\)
−0.289837 + 0.957076i \(0.593601\pi\)
\(62\) −9.29244 2.49302i −1.18014 0.316614i
\(63\) −0.572881 + 2.07074i −0.0721762 + 0.260889i
\(64\) −0.0150131 + 7.99999i −0.00187664 + 0.999998i
\(65\) 0 0
\(66\) −12.4339 + 3.32748i −1.53050 + 0.409584i
\(67\) 2.51253 1.45061i 0.306954 0.177220i −0.338609 0.940927i \(-0.609956\pi\)
0.645563 + 0.763707i \(0.276623\pi\)
\(68\) −2.54912 4.42159i −0.309127 0.536197i
\(69\) 2.90926i 0.350233i
\(70\) 0 0
\(71\) 3.37084i 0.400045i −0.979791 0.200023i \(-0.935898\pi\)
0.979791 0.200023i \(-0.0641016\pi\)
\(72\) 2.21917 0.592393i 0.261531 0.0698141i
\(73\) 2.21000 1.27594i 0.258661 0.149338i −0.365063 0.930983i \(-0.618952\pi\)
0.623724 + 0.781645i \(0.285619\pi\)
\(74\) 2.49254 + 9.31395i 0.289752 + 1.08272i
\(75\) 0 0
\(76\) −1.22163 0.706327i −0.140130 0.0810212i
\(77\) −11.6043 + 11.4177i −1.32244 + 1.30117i
\(78\) −1.80699 + 6.73536i −0.204601 + 0.762629i
\(79\) 5.38564 + 3.10940i 0.605932 + 0.349835i 0.771372 0.636385i \(-0.219571\pi\)
−0.165440 + 0.986220i \(0.552904\pi\)
\(80\) 0 0
\(81\) 2.95217 + 5.11331i 0.328019 + 0.568146i
\(82\) 2.53294 + 2.53452i 0.279716 + 0.279891i
\(83\) −4.70266 −0.516184 −0.258092 0.966120i \(-0.583094\pi\)
−0.258092 + 0.966120i \(0.583094\pi\)
\(84\) −5.58264 + 5.48601i −0.609116 + 0.598572i
\(85\) 0 0
\(86\) −4.59748 4.60036i −0.495759 0.496069i
\(87\) −3.83049 6.63461i −0.410672 0.711305i
\(88\) 16.8064 + 4.52016i 1.79156 + 0.481850i
\(89\) 5.19692 + 3.00044i 0.550873 + 0.318046i 0.749474 0.662034i \(-0.230307\pi\)
−0.198601 + 0.980080i \(0.563640\pi\)
\(90\) 0 0
\(91\) 2.21367 + 8.53772i 0.232056 + 0.894996i
\(92\) 1.96895 3.40541i 0.205278 0.355038i
\(93\) −5.03147 + 8.71475i −0.521739 + 0.903678i
\(94\) −1.59739 5.96901i −0.164758 0.615656i
\(95\) 0 0
\(96\) 8.07892 + 2.17829i 0.824551 + 0.222320i
\(97\) 9.46331i 0.960853i 0.877035 + 0.480427i \(0.159518\pi\)
−0.877035 + 0.480427i \(0.840482\pi\)
\(98\) −2.71980 + 9.51854i −0.274742 + 0.961518i
\(99\) 4.99674i 0.502191i
\(100\) 0 0
\(101\) −7.67045 + 4.42854i −0.763238 + 0.440656i −0.830457 0.557082i \(-0.811921\pi\)
0.0672190 + 0.997738i \(0.478587\pi\)
\(102\) −5.15672 + 1.38001i −0.510592 + 0.136641i
\(103\) 4.24106 7.34573i 0.417884 0.723796i −0.577843 0.816148i \(-0.696105\pi\)
0.995726 + 0.0923523i \(0.0294386\pi\)
\(104\) 6.67357 6.66106i 0.654397 0.653171i
\(105\) 0 0
\(106\) 7.58530 + 2.03502i 0.736749 + 0.197658i
\(107\) 0.613887 + 0.354428i 0.0593467 + 0.0342638i 0.529380 0.848385i \(-0.322425\pi\)
−0.470033 + 0.882649i \(0.655758\pi\)
\(108\) 0.00705450 11.2774i 0.000678820 1.08516i
\(109\) −1.54614 2.67799i −0.148093 0.256505i 0.782429 0.622739i \(-0.213980\pi\)
−0.930523 + 0.366234i \(0.880647\pi\)
\(110\) 0 0
\(111\) 10.0845 0.957181
\(112\) 10.2476 2.64333i 0.968305 0.249771i
\(113\) −14.7206 −1.38479 −0.692397 0.721517i \(-0.743445\pi\)
−0.692397 + 0.721517i \(0.743445\pi\)
\(114\) −1.04397 + 1.04332i −0.0977768 + 0.0977156i
\(115\) 0 0
\(116\) −0.00647973 + 10.3585i −0.000601627 + 0.961765i
\(117\) −2.34447 1.35358i −0.216746 0.125138i
\(118\) −9.29244 2.49302i −0.855439 0.229501i
\(119\) −4.81268 + 4.73530i −0.441178 + 0.434084i
\(120\) 0 0
\(121\) 13.4304 23.2621i 1.22094 2.11473i
\(122\) −4.85548 + 1.29940i −0.439595 + 0.117642i
\(123\) 3.24570 1.87390i 0.292655 0.168964i
\(124\) 11.7876 6.79574i 1.05856 0.610275i
\(125\) 0 0
\(126\) −1.49704 2.64409i −0.133367 0.235555i
\(127\) 4.48071i 0.397599i 0.980040 + 0.198800i \(0.0637043\pi\)
−0.980040 + 0.198800i \(0.936296\pi\)
\(128\) −7.98247 8.01750i −0.705557 0.708653i
\(129\) −5.89120 + 3.40128i −0.518691 + 0.299466i
\(130\) 0 0
\(131\) 8.09104 14.0141i 0.706917 1.22442i −0.259078 0.965856i \(-0.583419\pi\)
0.965995 0.258560i \(-0.0832480\pi\)
\(132\) 9.11132 15.7585i 0.793039 1.37160i
\(133\) −0.497746 + 1.79916i −0.0431600 + 0.156007i
\(134\) −1.06316 + 3.96280i −0.0918429 + 0.342334i
\(135\) 0 0
\(136\) 6.97013 + 1.87465i 0.597684 + 0.160750i
\(137\) −5.35325 9.27211i −0.457359 0.792170i 0.541461 0.840726i \(-0.317871\pi\)
−0.998820 + 0.0485562i \(0.984538\pi\)
\(138\) −2.90835 2.91017i −0.247575 0.247730i
\(139\) −16.1633 −1.37095 −0.685475 0.728096i \(-0.740406\pi\)
−0.685475 + 0.728096i \(0.740406\pi\)
\(140\) 0 0
\(141\) −6.46285 −0.544270
\(142\) 3.36979 + 3.37190i 0.282786 + 0.282963i
\(143\) −10.2562 17.7642i −0.857665 1.48552i
\(144\) −1.62765 + 2.81105i −0.135638 + 0.234254i
\(145\) 0 0
\(146\) −0.935146 + 3.48565i −0.0773932 + 0.288475i
\(147\) 8.88188 + 5.32174i 0.732565 + 0.438930i
\(148\) −11.8044 6.82510i −0.970312 0.561019i
\(149\) 3.79441 6.57211i 0.310850 0.538408i −0.667697 0.744434i \(-0.732720\pi\)
0.978547 + 0.206025i \(0.0660530\pi\)
\(150\) 0 0
\(151\) −1.80399 + 1.04154i −0.146807 + 0.0847590i −0.571604 0.820530i \(-0.693679\pi\)
0.424797 + 0.905288i \(0.360345\pi\)
\(152\) 1.92812 0.514698i 0.156391 0.0417476i
\(153\) 2.07230i 0.167536i
\(154\) 0.193786 23.0220i 0.0156157 1.85517i
\(155\) 0 0
\(156\) −4.92569 8.54389i −0.394371 0.684058i
\(157\) 11.2939 6.52053i 0.901351 0.520395i 0.0237128 0.999719i \(-0.492451\pi\)
0.877638 + 0.479324i \(0.159118\pi\)
\(158\) −8.49576 + 2.27358i −0.675886 + 0.180877i
\(159\) 4.10712 7.11374i 0.325716 0.564156i
\(160\) 0 0
\(161\) −5.01533 1.38751i −0.395263 0.109351i
\(162\) −8.06481 2.16366i −0.633631 0.169993i
\(163\) −1.30717 0.754695i −0.102386 0.0591123i 0.447933 0.894067i \(-0.352160\pi\)
−0.550318 + 0.834955i \(0.685494\pi\)
\(164\) −5.06746 0.00316993i −0.395702 0.000247530i
\(165\) 0 0
\(166\) 4.70413 4.70119i 0.365111 0.364883i
\(167\) −20.2522 −1.56716 −0.783581 0.621290i \(-0.786609\pi\)
−0.783581 + 0.621290i \(0.786609\pi\)
\(168\) 0.100093 11.0686i 0.00772238 0.853962i
\(169\) 1.88672 0.145132
\(170\) 0 0
\(171\) −0.286482 0.496201i −0.0219078 0.0379455i
\(172\) 9.19784 + 0.00575367i 0.701329 + 0.000438713i
\(173\) 8.43190 + 4.86816i 0.641065 + 0.370119i 0.785025 0.619464i \(-0.212650\pi\)
−0.143960 + 0.989584i \(0.545984\pi\)
\(174\) 10.4642 + 2.80739i 0.793291 + 0.212828i
\(175\) 0 0
\(176\) −21.3304 + 12.2795i −1.60784 + 0.925605i
\(177\) −5.03147 + 8.71475i −0.378188 + 0.655041i
\(178\) −8.19805 + 2.19391i −0.614470 + 0.164441i
\(179\) 5.99116 3.45900i 0.447800 0.258538i −0.259100 0.965850i \(-0.583426\pi\)
0.706901 + 0.707313i \(0.250093\pi\)
\(180\) 0 0
\(181\) 23.5933i 1.75367i 0.480789 + 0.876836i \(0.340350\pi\)
−0.480789 + 0.876836i \(0.659650\pi\)
\(182\) −10.7494 6.32741i −0.796799 0.469019i
\(183\) 5.25720i 0.388623i
\(184\) 1.43477 + 5.37481i 0.105773 + 0.396236i
\(185\) 0 0
\(186\) −3.67899 13.7474i −0.269757 1.00801i
\(187\) 7.85102 13.5984i 0.574123 0.994411i
\(188\) 7.56503 + 4.37399i 0.551737 + 0.319006i
\(189\) −14.4410 + 3.74429i −1.05043 + 0.272357i
\(190\) 0 0
\(191\) −9.40212 5.42832i −0.680313 0.392779i 0.119660 0.992815i \(-0.461820\pi\)
−0.799973 + 0.600036i \(0.795153\pi\)
\(192\) −10.2590 + 5.89742i −0.740383 + 0.425610i
\(193\) −3.79621 6.57523i −0.273257 0.473295i 0.696437 0.717618i \(-0.254768\pi\)
−0.969694 + 0.244323i \(0.921434\pi\)
\(194\) −9.46035 9.46627i −0.679213 0.679638i
\(195\) 0 0
\(196\) −6.79491 12.2405i −0.485351 0.874320i
\(197\) 13.5289 0.963896 0.481948 0.876200i \(-0.339929\pi\)
0.481948 + 0.876200i \(0.339929\pi\)
\(198\) 4.99517 + 4.99830i 0.354991 + 0.355214i
\(199\) 2.27997 + 3.94903i 0.161623 + 0.279939i 0.935451 0.353457i \(-0.114994\pi\)
−0.773828 + 0.633396i \(0.781661\pi\)
\(200\) 0 0
\(201\) 3.71644 + 2.14569i 0.262138 + 0.151345i
\(202\) 3.24570 12.0980i 0.228366 0.851210i
\(203\) 13.2644 3.43922i 0.930980 0.241386i
\(204\) 3.77876 6.53555i 0.264566 0.457580i
\(205\) 0 0
\(206\) 3.10104 + 11.5878i 0.216060 + 0.807357i
\(207\) 1.38321 0.798596i 0.0961397 0.0555063i
\(208\) −0.0166828 + 13.3346i −0.00115675 + 0.924590i
\(209\) 4.34140i 0.300301i
\(210\) 0 0
\(211\) 10.6803i 0.735263i 0.929971 + 0.367632i \(0.119831\pi\)
−0.929971 + 0.367632i \(0.880169\pi\)
\(212\) −9.62205 + 5.54727i −0.660845 + 0.380988i
\(213\) 4.31803 2.49302i 0.295867 0.170819i
\(214\) −0.968395 + 0.259156i −0.0661981 + 0.0177155i
\(215\) 0 0
\(216\) 11.2668 + 11.2879i 0.766607 + 0.768047i
\(217\) −12.6239 12.8302i −0.856965 0.870970i
\(218\) 4.22377 + 1.13317i 0.286070 + 0.0767482i
\(219\) 3.26896 + 1.88733i 0.220896 + 0.127534i
\(220\) 0 0
\(221\) −4.25356 7.36739i −0.286126 0.495584i
\(222\) −10.0877 + 10.0814i −0.677041 + 0.676617i
\(223\) −10.9683 −0.734492 −0.367246 0.930124i \(-0.619699\pi\)
−0.367246 + 0.930124i \(0.619699\pi\)
\(224\) −7.60828 + 12.8885i −0.508349 + 0.861151i
\(225\) 0 0
\(226\) 14.7252 14.7160i 0.979503 0.978891i
\(227\) −5.62977 9.75105i −0.373661 0.647200i 0.616465 0.787383i \(-0.288564\pi\)
−0.990126 + 0.140183i \(0.955231\pi\)
\(228\) 0.00130569 2.08729i 8.64716e−5 0.138234i
\(229\) 6.16780 + 3.56098i 0.407580 + 0.235316i 0.689749 0.724048i \(-0.257721\pi\)
−0.282169 + 0.959365i \(0.591054\pi\)
\(230\) 0 0
\(231\) −23.2084 6.42072i −1.52700 0.422452i
\(232\) −10.3488 10.3682i −0.679432 0.680708i
\(233\) 2.81304 4.87233i 0.184289 0.319197i −0.759048 0.651035i \(-0.774335\pi\)
0.943337 + 0.331838i \(0.107669\pi\)
\(234\) 3.69835 0.989731i 0.241769 0.0647007i
\(235\) 0 0
\(236\) 11.7876 6.79574i 0.767306 0.442365i
\(237\) 9.19865i 0.597516i
\(238\) 0.0803690 9.54795i 0.00520955 0.618902i
\(239\) 18.9288i 1.22440i −0.790701 0.612202i \(-0.790284\pi\)
0.790701 0.612202i \(-0.209716\pi\)
\(240\) 0 0
\(241\) −4.08233 + 2.35694i −0.262966 + 0.151824i −0.625687 0.780074i \(-0.715181\pi\)
0.362721 + 0.931898i \(0.381848\pi\)
\(242\) 9.82022 + 36.6955i 0.631268 + 2.35887i
\(243\) 4.09127 7.08628i 0.262455 0.454585i
\(244\) 3.55801 6.15377i 0.227779 0.393955i
\(245\) 0 0
\(246\) −1.37339 + 5.11917i −0.0875644 + 0.326386i
\(247\) −2.03698 1.17605i −0.129610 0.0748304i
\(248\) −4.99766 + 18.5818i −0.317352 + 1.17994i
\(249\) −3.47801 6.02408i −0.220410 0.381761i
\(250\) 0 0
\(251\) −23.7582 −1.49961 −0.749803 0.661661i \(-0.769852\pi\)
−0.749803 + 0.661661i \(0.769852\pi\)
\(252\) 4.14077 + 1.14835i 0.260844 + 0.0723394i
\(253\) 12.1021 0.760850
\(254\) −4.47931 4.48211i −0.281057 0.281233i
\(255\) 0 0
\(256\) 15.9999 + 0.0400349i 0.999997 + 0.00250218i
\(257\) 13.1978 + 7.61973i 0.823254 + 0.475306i 0.851537 0.524294i \(-0.175671\pi\)
−0.0282835 + 0.999600i \(0.509004\pi\)
\(258\) 2.49282 9.29170i 0.155196 0.578476i
\(259\) −4.80962 + 17.3849i −0.298855 + 1.08025i
\(260\) 0 0
\(261\) −2.10295 + 3.64242i −0.130170 + 0.225460i
\(262\) 5.91614 + 22.1070i 0.365500 + 1.36577i
\(263\) −14.6556 + 8.46144i −0.903705 + 0.521755i −0.878401 0.477925i \(-0.841389\pi\)
−0.0253049 + 0.999680i \(0.508056\pi\)
\(264\) 6.63940 + 24.8719i 0.408627 + 1.53076i
\(265\) 0 0
\(266\) −1.30070 2.29731i −0.0797508 0.140857i
\(267\) 8.87631i 0.543221i
\(268\) −2.89807 5.02687i −0.177028 0.307065i
\(269\) 0.516112 0.297978i 0.0314679 0.0181680i −0.484184 0.874966i \(-0.660883\pi\)
0.515651 + 0.856798i \(0.327550\pi\)
\(270\) 0 0
\(271\) −7.12334 + 12.3380i −0.432712 + 0.749479i −0.997106 0.0760266i \(-0.975777\pi\)
0.564394 + 0.825506i \(0.309110\pi\)
\(272\) −8.84638 + 5.09271i −0.536390 + 0.308791i
\(273\) −9.29958 + 9.15006i −0.562836 + 0.553787i
\(274\) 14.6241 + 3.92343i 0.883476 + 0.237023i
\(275\) 0 0
\(276\) 5.81851 + 0.00363974i 0.350233 + 0.000219087i
\(277\) −11.5802 20.0576i −0.695789 1.20514i −0.969914 0.243448i \(-0.921721\pi\)
0.274124 0.961694i \(-0.411612\pi\)
\(278\) 16.1683 16.1582i 0.969712 0.969105i
\(279\) 5.52458 0.330748
\(280\) 0 0
\(281\) −6.58882 −0.393056 −0.196528 0.980498i \(-0.562967\pi\)
−0.196528 + 0.980498i \(0.562967\pi\)
\(282\) 6.46487 6.46083i 0.384977 0.384737i
\(283\) 13.4034 + 23.2154i 0.796751 + 1.38001i 0.921722 + 0.387852i \(0.126783\pi\)
−0.124971 + 0.992160i \(0.539884\pi\)
\(284\) −6.74168 0.00421723i −0.400045 0.000250246i
\(285\) 0 0
\(286\) 28.0180 + 7.51681i 1.65674 + 0.444478i
\(287\) 1.68249 + 6.48905i 0.0993143 + 0.383036i
\(288\) −1.18201 4.43907i −0.0696505 0.261575i
\(289\) −5.24393 + 9.08276i −0.308467 + 0.534280i
\(290\) 0 0
\(291\) −12.1225 + 6.99890i −0.710631 + 0.410283i
\(292\) −2.54912 4.42159i −0.149176 0.258754i
\(293\) 14.2428i 0.832071i 0.909348 + 0.416036i \(0.136581\pi\)
−0.909348 + 0.416036i \(0.863419\pi\)
\(294\) −14.2047 + 3.55570i −0.828437 + 0.207372i
\(295\) 0 0
\(296\) 18.6310 4.97343i 1.08291 0.289075i
\(297\) 30.0471 17.3477i 1.74351 1.00662i
\(298\) 2.77446 + 10.3674i 0.160720 + 0.600566i
\(299\) 3.27836 5.67828i 0.189592 0.328384i
\(300\) 0 0
\(301\) −3.05385 11.7781i −0.176021 0.678880i
\(302\) 0.763347 2.84529i 0.0439257 0.163728i
\(303\) −11.3459 6.55054i −0.651803 0.376319i
\(304\) −1.41418 + 2.44237i −0.0811089 + 0.140080i
\(305\) 0 0
\(306\) 2.07166 + 2.07295i 0.118429 + 0.118503i
\(307\) 26.0778 1.48834 0.744169 0.667991i \(-0.232846\pi\)
0.744169 + 0.667991i \(0.232846\pi\)
\(308\) 22.8209 + 23.2229i 1.30034 + 1.32325i
\(309\) 12.5465 0.713743
\(310\) 0 0
\(311\) 1.47742 + 2.55897i 0.0837770 + 0.145106i 0.904869 0.425689i \(-0.139968\pi\)
−0.821092 + 0.570795i \(0.806635\pi\)
\(312\) 13.4684 + 3.62241i 0.762501 + 0.205078i
\(313\) −20.3259 11.7352i −1.14889 0.663311i −0.200272 0.979740i \(-0.564182\pi\)
−0.948616 + 0.316430i \(0.897516\pi\)
\(314\) −4.77893 + 17.8129i −0.269691 + 1.00524i
\(315\) 0 0
\(316\) 6.22554 10.7674i 0.350214 0.605713i
\(317\) −6.64685 + 11.5127i −0.373324 + 0.646616i −0.990075 0.140542i \(-0.955115\pi\)
0.616751 + 0.787159i \(0.288449\pi\)
\(318\) 3.00311 + 11.2218i 0.168406 + 0.629287i
\(319\) −27.5990 + 15.9343i −1.54525 + 0.892148i
\(320\) 0 0
\(321\) 1.04851i 0.0585224i
\(322\) 6.40398 3.62581i 0.356880 0.202059i
\(323\) 1.80052i 0.100183i
\(324\) 10.2303 5.89795i 0.568351 0.327664i
\(325\) 0 0
\(326\) 2.06204 0.551830i 0.114206 0.0305631i
\(327\) 2.28700 3.96119i 0.126471 0.219054i
\(328\) 5.07221 5.06270i 0.280066 0.279541i
\(329\) 3.08233 11.1414i 0.169934 0.614248i
\(330\) 0 0
\(331\) −26.5406 15.3232i −1.45880 0.842241i −0.459852 0.887996i \(-0.652098\pi\)
−0.998953 + 0.0457544i \(0.985431\pi\)
\(332\) −0.00588345 + 9.40531i −0.000322896 + 0.516184i
\(333\) −2.76822 4.79470i −0.151698 0.262748i
\(334\) 20.2585 20.2459i 1.10850 1.10780i
\(335\) 0 0
\(336\) 10.9650 + 11.1721i 0.598191 + 0.609490i
\(337\) −16.1059 −0.877346 −0.438673 0.898647i \(-0.644551\pi\)
−0.438673 + 0.898647i \(0.644551\pi\)
\(338\) −1.88731 + 1.88613i −0.102656 + 0.102592i
\(339\) −10.8871 18.8570i −0.591305 1.02417i
\(340\) 0 0
\(341\) 36.2520 + 20.9301i 1.96316 + 1.13343i
\(342\) 0.782618 + 0.209964i 0.0423191 + 0.0113536i
\(343\) −13.4103 + 12.7736i −0.724088 + 0.689707i
\(344\) −9.20647 + 9.18921i −0.496379 + 0.495449i
\(345\) 0 0
\(346\) −13.3012 + 3.55958i −0.715075 + 0.191364i
\(347\) −30.3763 + 17.5378i −1.63069 + 0.941477i −0.646803 + 0.762657i \(0.723895\pi\)
−0.983882 + 0.178820i \(0.942772\pi\)
\(348\) −13.2740 + 7.65269i −0.711562 + 0.410227i
\(349\) 20.3154i 1.08746i 0.839261 + 0.543729i \(0.182988\pi\)
−0.839261 + 0.543729i \(0.817012\pi\)
\(350\) 0 0
\(351\) 18.7974i 1.00333i
\(352\) 9.06134 33.6071i 0.482971 1.79126i
\(353\) 25.0845 14.4826i 1.33511 0.770829i 0.349036 0.937109i \(-0.386509\pi\)
0.986079 + 0.166280i \(0.0531757\pi\)
\(354\) −3.67899 13.7474i −0.195536 0.730664i
\(355\) 0 0
\(356\) 6.00739 10.3901i 0.318391 0.550673i
\(357\) −9.62527 2.66288i −0.509423 0.140934i
\(358\) −2.53512 + 9.44937i −0.133985 + 0.499415i
\(359\) −8.85350 5.11157i −0.467270 0.269778i 0.247826 0.968804i \(-0.420284\pi\)
−0.715096 + 0.699026i \(0.753617\pi\)
\(360\) 0 0
\(361\) 9.25109 + 16.0234i 0.486900 + 0.843335i
\(362\) −23.5859 23.6006i −1.23965 1.24042i
\(363\) 39.7314 2.08536
\(364\) 17.0782 4.41666i 0.895141 0.231496i
\(365\) 0 0
\(366\) −5.25555 5.25884i −0.274712 0.274884i
\(367\) 14.1114 + 24.4416i 0.736608 + 1.27584i 0.954014 + 0.299761i \(0.0969070\pi\)
−0.217406 + 0.976081i \(0.569760\pi\)
\(368\) −6.80835 3.94217i −0.354910 0.205500i
\(369\) −1.78190 1.02878i −0.0927620 0.0535561i
\(370\) 0 0
\(371\) 10.3047 + 10.4731i 0.534994 + 0.543737i
\(372\) 17.4232 + 10.0738i 0.903351 + 0.522304i
\(373\) 6.41470 11.1106i 0.332141 0.575285i −0.650791 0.759257i \(-0.725562\pi\)
0.982931 + 0.183973i \(0.0588958\pi\)
\(374\) 5.74063 + 21.4512i 0.296841 + 1.10921i
\(375\) 0 0
\(376\) −11.9400 + 3.18731i −0.615759 + 0.164373i
\(377\) 17.2659i 0.889239i
\(378\) 10.7024 18.1820i 0.550473 0.935180i
\(379\) 18.2296i 0.936394i 0.883624 + 0.468197i \(0.155096\pi\)
−0.883624 + 0.468197i \(0.844904\pi\)
\(380\) 0 0
\(381\) −5.73977 + 3.31386i −0.294058 + 0.169774i
\(382\) 14.8317 3.96916i 0.758854 0.203080i
\(383\) −16.8600 + 29.2023i −0.861504 + 1.49217i 0.00897238 + 0.999960i \(0.497144\pi\)
−0.870477 + 0.492210i \(0.836189\pi\)
\(384\) 4.36668 16.1551i 0.222836 0.824412i
\(385\) 0 0
\(386\) 10.3706 + 2.78226i 0.527848 + 0.141613i
\(387\) 3.23429 + 1.86732i 0.164408 + 0.0949210i
\(388\) 18.9266 + 0.0118395i 0.960853 + 0.000601057i
\(389\) 17.3437 + 30.0401i 0.879360 + 1.52310i 0.852045 + 0.523469i \(0.175362\pi\)
0.0273150 + 0.999627i \(0.491304\pi\)
\(390\) 0 0
\(391\) 5.01911 0.253827
\(392\) 19.0337 + 5.45152i 0.961346 + 0.275343i
\(393\) 23.9360 1.20741
\(394\) −13.5332 + 13.5247i −0.681791 + 0.681364i
\(395\) 0 0
\(396\) −9.99347 0.00625137i −0.502191 0.000314143i
\(397\) 24.7314 + 14.2787i 1.24124 + 0.716627i 0.969346 0.245701i \(-0.0790181\pi\)
0.271890 + 0.962328i \(0.412351\pi\)
\(398\) −6.22848 1.67100i −0.312205 0.0837598i
\(399\) −2.67284 + 0.693018i −0.133809 + 0.0346943i
\(400\) 0 0
\(401\) −1.67926 + 2.90857i −0.0838583 + 0.145247i −0.904904 0.425615i \(-0.860058\pi\)
0.821046 + 0.570862i \(0.193391\pi\)
\(402\) −5.86263 + 1.56892i −0.292401 + 0.0782507i
\(403\) 19.6408 11.3396i 0.978378 0.564867i
\(404\) 8.84747 + 15.3464i 0.440178 + 0.763514i
\(405\) 0 0
\(406\) −9.83043 + 16.7006i −0.487876 + 0.828836i
\(407\) 41.9501i 2.07939i
\(408\) 2.75357 + 10.3152i 0.136322 + 0.510677i
\(409\) 6.05900 3.49816i 0.299598 0.172973i −0.342664 0.939458i \(-0.611329\pi\)
0.642262 + 0.766485i \(0.277996\pi\)
\(410\) 0 0
\(411\) 7.91835 13.7150i 0.390583 0.676510i
\(412\) −14.6861 8.49130i −0.723534 0.418336i
\(413\) −12.6239 12.8302i −0.621181 0.631332i
\(414\) −0.585295 + 2.18162i −0.0287657 + 0.107221i
\(415\) 0 0
\(416\) −13.3138 13.3555i −0.652761 0.654806i
\(417\) −11.9541 20.7051i −0.585394 1.01393i
\(418\) 4.34004 + 4.34276i 0.212278 + 0.212411i
\(419\) 10.0657 0.491743 0.245871 0.969302i \(-0.420926\pi\)
0.245871 + 0.969302i \(0.420926\pi\)
\(420\) 0 0
\(421\) −8.08361 −0.393971 −0.196985 0.980406i \(-0.563115\pi\)
−0.196985 + 0.980406i \(0.563115\pi\)
\(422\) −10.6770 10.6837i −0.519747 0.520072i
\(423\) 1.77406 + 3.07277i 0.0862579 + 0.149403i
\(424\) 4.07952 15.1680i 0.198119 0.736625i
\(425\) 0 0
\(426\) −1.82715 + 6.81048i −0.0885255 + 0.329969i
\(427\) −9.06300 2.50732i −0.438589 0.121338i
\(428\) 0.709623 1.22733i 0.0343009 0.0593252i
\(429\) 15.1706 26.2762i 0.732443 1.26863i
\(430\) 0 0
\(431\) 1.70089 0.982009i 0.0819290 0.0473017i −0.458476 0.888707i \(-0.651604\pi\)
0.540405 + 0.841405i \(0.318271\pi\)
\(432\) −22.5547 0.0282180i −1.08516 0.00135764i
\(433\) 32.6523i 1.56917i 0.620022 + 0.784584i \(0.287123\pi\)
−0.620022 + 0.784584i \(0.712877\pi\)
\(434\) 25.4540 + 0.214257i 1.22183 + 0.0102847i
\(435\) 0 0
\(436\) −5.35791 + 3.08893i −0.256598 + 0.147933i
\(437\) 1.20180 0.693858i 0.0574898 0.0331917i
\(438\) −5.15672 + 1.38001i −0.246398 + 0.0659395i
\(439\) −12.2319 + 21.1863i −0.583797 + 1.01117i 0.411228 + 0.911533i \(0.365100\pi\)
−0.995024 + 0.0996329i \(0.968233\pi\)
\(440\) 0 0
\(441\) 0.0921348 5.68372i 0.00438737 0.270654i
\(442\) 11.6200 + 3.11746i 0.552706 + 0.148282i
\(443\) 32.5609 + 18.7990i 1.54701 + 0.893169i 0.998368 + 0.0571150i \(0.0181902\pi\)
0.548647 + 0.836054i \(0.315143\pi\)
\(444\) 0.0126167 20.1690i 0.000598760 0.957181i
\(445\) 0 0
\(446\) 10.9717 10.9649i 0.519527 0.519202i
\(447\) 11.2251 0.530930
\(448\) −5.27384 20.4985i −0.249165 0.968461i
\(449\) −30.2759 −1.42881 −0.714404 0.699733i \(-0.753302\pi\)
−0.714404 + 0.699733i \(0.753302\pi\)
\(450\) 0 0
\(451\) −7.79515 13.5016i −0.367059 0.635766i
\(452\) −0.0184168 + 29.4411i −0.000866251 + 1.38479i
\(453\) −2.66841 1.54060i −0.125373 0.0723839i
\(454\) 15.3795 + 4.12609i 0.721797 + 0.193647i
\(455\) 0 0
\(456\) 2.08533 + 2.08925i 0.0976544 + 0.0978379i
\(457\) −13.2874 + 23.0145i −0.621559 + 1.07657i 0.367637 + 0.929969i \(0.380167\pi\)
−0.989196 + 0.146602i \(0.953166\pi\)
\(458\) −9.72960 + 2.60378i −0.454634 + 0.121667i
\(459\) 12.4615 7.19464i 0.581652 0.335817i
\(460\) 0 0
\(461\) 26.3218i 1.22593i −0.790110 0.612965i \(-0.789977\pi\)
0.790110 0.612965i \(-0.210023\pi\)
\(462\) 29.6344 16.7784i 1.37872 0.780604i
\(463\) 33.8611i 1.57366i −0.617169 0.786830i \(-0.711721\pi\)
0.617169 0.786830i \(-0.288279\pi\)
\(464\) 20.7170 + 0.0259189i 0.961764 + 0.00120325i
\(465\) 0 0
\(466\) 2.05689 + 7.68602i 0.0952834 + 0.356048i
\(467\) −10.4121 + 18.0343i −0.481814 + 0.834526i −0.999782 0.0208739i \(-0.993355\pi\)
0.517968 + 0.855400i \(0.326688\pi\)
\(468\) −2.71009 + 4.68724i −0.125274 + 0.216668i
\(469\) −5.47149 + 5.38351i −0.252650 + 0.248588i
\(470\) 0 0
\(471\) 16.7056 + 9.64495i 0.769751 + 0.444416i
\(472\) −4.99766 + 18.5818i −0.230036 + 0.855295i
\(473\) 14.1488 + 24.5065i 0.650563 + 1.12681i
\(474\) −9.19577 9.20152i −0.422376 0.422640i
\(475\) 0 0
\(476\) 9.46457 + 9.63128i 0.433808 + 0.441449i
\(477\) −4.50964 −0.206482
\(478\) 18.9229 + 18.9348i 0.865514 + 0.866056i
\(479\) −2.62335 4.54378i −0.119864 0.207611i 0.799850 0.600200i \(-0.204913\pi\)
−0.919714 + 0.392590i \(0.871579\pi\)
\(480\) 0 0
\(481\) −19.6830 11.3640i −0.897466 0.518152i
\(482\) 1.72741 6.43873i 0.0786814 0.293276i
\(483\) −1.93185 7.45080i −0.0879024 0.339023i
\(484\) −46.5073 26.8898i −2.11397 1.22226i
\(485\) 0 0
\(486\) 2.99152 + 11.1785i 0.135698 + 0.507067i
\(487\) −10.3791 + 5.99236i −0.470321 + 0.271540i −0.716374 0.697716i \(-0.754200\pi\)
0.246053 + 0.969256i \(0.420866\pi\)
\(488\) 2.59272 + 9.71259i 0.117367 + 0.439668i
\(489\) 2.23264i 0.100963i
\(490\) 0 0
\(491\) 22.8018i 1.02903i 0.857481 + 0.514515i \(0.172028\pi\)
−0.857481 + 0.514515i \(0.827972\pi\)
\(492\) −3.74375 6.49374i −0.168781 0.292760i
\(493\) −11.4462 + 6.60845i −0.515509 + 0.297630i
\(494\) 3.21330 0.859925i 0.144573 0.0386898i
\(495\) 0 0
\(496\) −13.5767 23.5837i −0.609613 1.05894i
\(497\) 2.23836 + 8.63295i 0.100404 + 0.387241i
\(498\) 9.50129 + 2.54905i 0.425763 + 0.114226i
\(499\) −18.0567 10.4251i −0.808330 0.466689i 0.0380458 0.999276i \(-0.487887\pi\)
−0.846376 + 0.532587i \(0.821220\pi\)
\(500\) 0 0
\(501\) −14.9782 25.9430i −0.669176 1.15905i
\(502\) 23.7657 23.7508i 1.06071 1.06005i
\(503\) −18.5545 −0.827305 −0.413653 0.910435i \(-0.635747\pi\)
−0.413653 + 0.910435i \(0.635747\pi\)
\(504\) −5.29006 + 2.99076i −0.235638 + 0.133219i
\(505\) 0 0
\(506\) −12.1059 + 12.0983i −0.538171 + 0.537834i
\(507\) 1.39538 + 2.41688i 0.0619712 + 0.107337i
\(508\) 8.96143 + 0.00560578i 0.397599 + 0.000248716i
\(509\) −29.7157 17.1564i −1.31713 0.760443i −0.333860 0.942623i \(-0.608351\pi\)
−0.983265 + 0.182180i \(0.941685\pi\)
\(510\) 0 0
\(511\) −4.81268 + 4.73530i −0.212900 + 0.209477i
\(512\) −16.0450 + 15.9549i −0.709094 + 0.705114i
\(513\) 1.98922 3.44543i 0.0878262 0.152119i
\(514\) −20.8192 + 5.57152i −0.918297 + 0.245749i
\(515\) 0 0
\(516\) 6.79520 + 11.7866i 0.299142 + 0.518878i
\(517\) 26.8845i 1.18238i
\(518\) −12.5684 22.1985i −0.552222 0.975345i
\(519\) 14.4016i 0.632161i
\(520\) 0 0
\(521\) −18.3115 + 10.5722i −0.802242 + 0.463175i −0.844254 0.535943i \(-0.819956\pi\)
0.0420126 + 0.999117i \(0.486623\pi\)
\(522\) −1.53767 5.74586i −0.0673021 0.251489i
\(523\) −1.98681 + 3.44125i −0.0868769 + 0.150475i −0.906189 0.422872i \(-0.861022\pi\)
0.819313 + 0.573347i \(0.194355\pi\)
\(524\) −28.0180 16.1996i −1.22397 0.707683i
\(525\) 0 0
\(526\) 6.20143 23.1151i 0.270395 1.00787i
\(527\) 15.0349 + 8.68039i 0.654929 + 0.378124i
\(528\) −31.5056 18.2424i −1.37111 0.793897i
\(529\) −9.56580 16.5685i −0.415905 0.720368i
\(530\) 0 0
\(531\) 5.52458 0.239747
\(532\) 3.59770 + 0.997742i 0.155980 + 0.0432576i
\(533\) −8.44659 −0.365863
\(534\) −8.87353 8.87909i −0.383995 0.384236i
\(535\) 0 0
\(536\) 7.92427 + 2.13127i 0.342276 + 0.0920570i
\(537\) 8.86192 + 5.11643i 0.382420 + 0.220790i
\(538\) −0.218389 + 0.814022i −0.00941543 + 0.0350950i
\(539\) 22.1376 36.9473i 0.953535 1.59143i
\(540\) 0 0
\(541\) −14.6794 + 25.4255i −0.631117 + 1.09313i 0.356207 + 0.934407i \(0.384070\pi\)
−0.987324 + 0.158719i \(0.949263\pi\)
\(542\) −5.20856 19.4630i −0.223727 0.836005i
\(543\) −30.2229 + 17.4492i −1.29699 + 0.748816i
\(544\) 3.75802 13.9379i 0.161124 0.597583i
\(545\) 0 0
\(546\) 0.155298 18.4496i 0.00664613 0.789570i
\(547\) 1.50735i 0.0644495i −0.999481 0.0322248i \(-0.989741\pi\)
0.999481 0.0322248i \(-0.0102592\pi\)
\(548\) −18.5509 + 10.6949i −0.792456 + 0.456864i
\(549\) 2.49954 1.44311i 0.106678 0.0615904i
\(550\) 0 0
\(551\) −1.82715 + 3.16471i −0.0778390 + 0.134821i
\(552\) −5.82397 + 5.81305i −0.247885 + 0.247420i
\(553\) −15.8577 4.38712i −0.674340 0.186559i
\(554\) 31.6352 + 8.48722i 1.34405 + 0.360588i
\(555\) 0 0
\(556\) −0.0202217 + 32.3265i −0.000857592 + 1.37095i
\(557\) −22.8589 39.5927i −0.968562 1.67760i −0.699725 0.714412i \(-0.746694\pi\)
−0.268837 0.963186i \(-0.586639\pi\)
\(558\) −5.52631 + 5.52286i −0.233947 + 0.233801i
\(559\) 15.3312 0.648442
\(560\) 0 0
\(561\) 23.2259 0.980599
\(562\) 6.59088 6.58675i 0.278019 0.277845i
\(563\) −9.18431 15.9077i −0.387072 0.670429i 0.604982 0.796239i \(-0.293180\pi\)
−0.992054 + 0.125810i \(0.959847\pi\)
\(564\) −0.00808561 + 12.9257i −0.000340466 + 0.544270i
\(565\) 0 0
\(566\) −36.6158 9.82344i −1.53907 0.412910i
\(567\) −10.9561 11.1352i −0.460114 0.467633i
\(568\) 6.74801 6.73536i 0.283140 0.282609i
\(569\) −4.58078 + 7.93415i −0.192036 + 0.332617i −0.945925 0.324385i \(-0.894843\pi\)
0.753889 + 0.657002i \(0.228176\pi\)
\(570\) 0 0
\(571\) 12.5753 7.26034i 0.526259 0.303836i −0.213233 0.977001i \(-0.568399\pi\)
0.739492 + 0.673166i \(0.235066\pi\)
\(572\) −35.5413 + 20.4901i −1.48605 + 0.856735i
\(573\) 16.0588i 0.670864i
\(574\) −8.17003 4.80911i −0.341011 0.200729i
\(575\) 0 0
\(576\) 5.62006 + 3.25882i 0.234169 + 0.135784i
\(577\) 13.6384 7.87411i 0.567772 0.327804i −0.188487 0.982076i \(-0.560358\pi\)
0.756259 + 0.654272i \(0.227025\pi\)
\(578\) −3.83434 14.3279i −0.159488 0.595962i
\(579\) 5.61523 9.72586i 0.233361 0.404193i
\(580\) 0 0
\(581\) 12.0438 3.12274i 0.499661 0.129553i
\(582\) 5.12953 19.1198i 0.212626 0.792539i
\(583\) −29.5921 17.0850i −1.22558 0.707588i
\(584\) 6.97013 + 1.87465i 0.288426 + 0.0775737i
\(585\) 0 0
\(586\) −14.2383 14.2472i −0.588179 0.588547i
\(587\) 21.3535 0.881355 0.440678 0.897665i \(-0.354738\pi\)
0.440678 + 0.897665i \(0.354738\pi\)
\(588\) 10.6546 17.7571i 0.439388 0.732290i
\(589\) 4.80002 0.197781
\(590\) 0 0
\(591\) 10.0058 + 17.3305i 0.411582 + 0.712881i
\(592\) −13.6650 + 23.6002i −0.561626 + 0.969961i
\(593\) −15.8039 9.12440i −0.648990 0.374694i 0.139079 0.990281i \(-0.455586\pi\)
−0.788069 + 0.615587i \(0.788919\pi\)
\(594\) −12.7142 + 47.3908i −0.521671 + 1.94447i
\(595\) 0 0
\(596\) −13.1395 7.59704i −0.538213 0.311187i
\(597\) −3.37246 + 5.84127i −0.138025 + 0.239067i
\(598\) 2.39712 + 8.95739i 0.0980256 + 0.366295i
\(599\) 37.6528 21.7389i 1.53845 0.888226i 0.539522 0.841971i \(-0.318605\pi\)
0.998930 0.0462544i \(-0.0147285\pi\)
\(600\) 0 0
\(601\) 0.772217i 0.0314994i 0.999876 + 0.0157497i \(0.00501349\pi\)
−0.999876 + 0.0157497i \(0.994987\pi\)
\(602\) 14.8293 + 8.72892i 0.604395 + 0.355764i
\(603\) 2.35598i 0.0959430i
\(604\) 2.08081 + 3.60929i 0.0846671 + 0.146860i
\(605\) 0 0
\(606\) 17.8979 4.78973i 0.727053 0.194569i
\(607\) 2.76301 4.78567i 0.112147 0.194245i −0.804489 0.593968i \(-0.797561\pi\)
0.916636 + 0.399724i \(0.130894\pi\)
\(608\) −1.02698 3.85687i −0.0416497 0.156417i
\(609\) 14.2158 + 14.4481i 0.576052 + 0.585466i
\(610\) 0 0
\(611\) 12.6142 + 7.28280i 0.510315 + 0.294630i
\(612\) −4.14461 0.00259264i −0.167536 0.000104801i
\(613\) −13.7936 23.8912i −0.557117 0.964955i −0.997735 0.0672607i \(-0.978574\pi\)
0.440618 0.897695i \(-0.354759\pi\)
\(614\) −26.0859 + 26.0696i −1.05274 + 1.05208i
\(615\) 0 0
\(616\) −46.0437 0.416374i −1.85516 0.0167762i
\(617\) 13.6354 0.548941 0.274471 0.961595i \(-0.411497\pi\)
0.274471 + 0.961595i \(0.411497\pi\)
\(618\) −12.5504 + 12.5425i −0.504850 + 0.504535i
\(619\) 18.4295 + 31.9208i 0.740744 + 1.28301i 0.952157 + 0.305609i \(0.0988601\pi\)
−0.211413 + 0.977397i \(0.567807\pi\)
\(620\) 0 0
\(621\) 9.60447 + 5.54514i 0.385414 + 0.222519i
\(622\) −4.03606 1.08281i −0.161831 0.0434168i
\(623\) −15.3021 4.23338i −0.613064 0.169607i
\(624\) −17.0939 + 9.84069i −0.684305 + 0.393943i
\(625\) 0 0
\(626\) 32.0637 8.58071i 1.28152 0.342954i
\(627\) 5.56131 3.21083i 0.222097 0.128228i
\(628\) −13.0269 22.5959i −0.519831 0.901676i
\(629\) 17.3980i 0.693705i
\(630\) 0 0
\(631\) 16.3105i 0.649312i −0.945832 0.324656i \(-0.894751\pi\)
0.945832 0.324656i \(-0.105249\pi\)
\(632\) 4.53654 + 16.9944i 0.180454 + 0.675999i
\(633\) −13.6814 + 7.89898i −0.543788 + 0.313956i
\(634\) −4.86015 18.1610i −0.193021 0.721267i
\(635\) 0 0
\(636\) −14.2223 8.22313i −0.563952 0.326068i
\(637\) −11.3387 20.3957i −0.449256 0.808107i
\(638\) 11.6783 43.5296i 0.462349 1.72335i
\(639\) −2.37062 1.36868i −0.0937801 0.0541440i
\(640\) 0 0
\(641\) 10.7109 + 18.5519i 0.423057 + 0.732756i 0.996237 0.0866736i \(-0.0276237\pi\)
−0.573180 + 0.819430i \(0.694290\pi\)
\(642\) −1.04819 1.04884i −0.0413686 0.0413945i
\(643\) 38.3710 1.51320 0.756601 0.653876i \(-0.226858\pi\)
0.756601 + 0.653876i \(0.226858\pi\)
\(644\) −2.78130 + 10.0289i −0.109599 + 0.395195i
\(645\) 0 0
\(646\) 1.79995 + 1.80108i 0.0708182 + 0.0708625i
\(647\) −17.9463 31.0838i −0.705540 1.22203i −0.966496 0.256681i \(-0.917371\pi\)
0.260956 0.965351i \(-0.415962\pi\)
\(648\) −4.33741 + 16.1269i −0.170390 + 0.633525i
\(649\) 36.2520 + 20.9301i 1.42302 + 0.821579i
\(650\) 0 0
\(651\) 7.09899 25.6601i 0.278231 1.00570i
\(652\) −1.51103 + 2.61340i −0.0591763 + 0.102349i
\(653\) −13.6634 + 23.6657i −0.534690 + 0.926110i 0.464488 + 0.885579i \(0.346238\pi\)
−0.999178 + 0.0405310i \(0.987095\pi\)
\(654\) 1.67224 + 6.24871i 0.0653899 + 0.244344i
\(655\) 0 0
\(656\) −0.0126797 + 10.1349i −0.000495059 + 0.395702i
\(657\) 2.07230i 0.0808483i
\(658\) 8.05466 + 14.2263i 0.314003 + 0.554599i
\(659\) 22.7714i 0.887046i 0.896263 + 0.443523i \(0.146272\pi\)
−0.896263 + 0.443523i \(0.853728\pi\)
\(660\) 0 0
\(661\) 35.2100 20.3285i 1.36951 0.790686i 0.378643 0.925543i \(-0.376391\pi\)
0.990865 + 0.134857i \(0.0430573\pi\)
\(662\) 41.8674 11.2043i 1.62722 0.435467i
\(663\) 6.29173 10.8976i 0.244350 0.423227i
\(664\) −9.39648 9.41413i −0.364654 0.365339i
\(665\) 0 0
\(666\) 7.56228 + 2.02884i 0.293033 + 0.0786161i
\(667\) −8.82193 5.09334i −0.341587 0.197215i
\(668\) −0.0253373 + 40.5044i −0.000980331 + 1.56716i
\(669\) −8.11198 14.0504i −0.313627 0.543218i
\(670\) 0 0
\(671\) 21.8691 0.844249
\(672\) −22.1371 0.214035i −0.853957 0.00825657i
\(673\) 37.5436 1.44720 0.723599 0.690220i \(-0.242486\pi\)
0.723599 + 0.690220i \(0.242486\pi\)
\(674\) 16.1110 16.1009i 0.620571 0.620183i
\(675\) 0 0
\(676\) 0.00236046 3.77344i 9.07867e−5 0.145132i
\(677\) −9.24340 5.33668i −0.355253 0.205105i 0.311744 0.950166i \(-0.399087\pi\)
−0.666996 + 0.745061i \(0.732420\pi\)
\(678\) 29.7415 + 7.97919i 1.14222 + 0.306439i
\(679\) −6.28399 24.2361i −0.241157 0.930098i
\(680\) 0 0
\(681\) 8.32736 14.4234i 0.319105 0.552707i
\(682\) −57.1870 + 15.3040i −2.18980 + 0.586022i
\(683\) 13.9738 8.06776i 0.534691 0.308704i −0.208233 0.978079i \(-0.566771\pi\)
0.742925 + 0.669375i \(0.233438\pi\)
\(684\) −0.992761 + 0.572343i −0.0379592 + 0.0218841i
\(685\) 0 0
\(686\) 0.644931 26.1837i 0.0246236 0.999697i
\(687\) 10.5346i 0.401919i
\(688\) 0.0230147 18.3957i 0.000877426 0.701328i
\(689\) −16.0325 + 9.25638i −0.610791 + 0.352640i
\(690\) 0 0
\(691\) −10.1615 + 17.6003i −0.386562 + 0.669546i −0.991985 0.126359i \(-0.959671\pi\)
0.605422 + 0.795904i \(0.293004\pi\)
\(692\) 9.74686 16.8577i 0.370520 0.640834i
\(693\) 3.31802 + 12.7970i 0.126041 + 0.486117i
\(694\) 12.8535 47.9100i 0.487913 1.81864i
\(695\) 0 0
\(696\) 5.62787 20.9249i 0.213324 0.793158i
\(697\) −3.23290 5.59954i −0.122455 0.212098i
\(698\) −20.3090 20.3217i −0.768708 0.769189i
\(699\) 8.32191 0.314764
\(700\) 0 0
\(701\) 5.55111 0.209663 0.104831 0.994490i \(-0.466570\pi\)
0.104831 + 0.994490i \(0.466570\pi\)
\(702\) 18.7916 + 18.8033i 0.709242 + 0.709686i
\(703\) −2.40516 4.16586i −0.0907123 0.157118i
\(704\) 24.5324 + 42.6761i 0.924599 + 1.60842i
\(705\) 0 0
\(706\) −10.6143 + 39.5638i −0.399476 + 1.48900i
\(707\) 16.7038 16.4352i 0.628211 0.618110i
\(708\) 17.4232 + 10.0738i 0.654804 + 0.378598i
\(709\) 1.13330 1.96293i 0.0425619 0.0737194i −0.843960 0.536407i \(-0.819781\pi\)
0.886522 + 0.462687i \(0.153115\pi\)
\(710\) 0 0
\(711\) 4.37351 2.52504i 0.164019 0.0946966i
\(712\) 4.37757 + 16.3988i 0.164056 + 0.614573i
\(713\) 13.3805i 0.501104i
\(714\) 12.2903 6.95855i 0.459954 0.260417i
\(715\) 0 0
\(716\) −6.91050 11.9866i −0.258258 0.447962i
\(717\) 24.2478 13.9995i 0.905549 0.522819i
\(718\) 13.9662 3.73756i 0.521215 0.139485i
\(719\) −2.78544 + 4.82453i −0.103880 + 0.179925i −0.913280 0.407333i \(-0.866459\pi\)
0.809400 + 0.587257i \(0.199792\pi\)
\(720\) 0 0
\(721\) −5.98379 + 21.6291i −0.222848 + 0.805510i
\(722\) −25.2723 6.78017i −0.940539 0.252332i
\(723\) −6.03845 3.48630i −0.224572 0.129657i
\(724\) 47.1865 + 0.0295173i 1.75367 + 0.00109700i
\(725\) 0 0
\(726\) −39.7439 + 39.7190i −1.47503 + 1.47411i
\(727\) −31.2822 −1.16019 −0.580097 0.814548i \(-0.696985\pi\)
−0.580097 + 0.814548i \(0.696985\pi\)
\(728\) −12.6683 + 21.4909i −0.469517 + 0.796506i
\(729\) 29.8164 1.10431
\(730\) 0 0
\(731\) 5.86796 + 10.1636i 0.217034 + 0.375915i
\(732\) 10.5144 + 0.00657723i 0.388623 + 0.000243102i
\(733\) 18.2504 + 10.5369i 0.674092 + 0.389187i 0.797626 0.603153i \(-0.206089\pi\)
−0.123533 + 0.992340i \(0.539422\pi\)
\(734\) −38.5498 10.3423i −1.42290 0.381741i
\(735\) 0 0
\(736\) 10.7514 2.86282i 0.396302 0.105525i
\(737\) 8.92574 15.4598i 0.328784 0.569471i
\(738\) 2.81091 0.752240i 0.103471 0.0276903i
\(739\) −33.6932 + 19.4528i −1.23943 + 0.715583i −0.968977 0.247152i \(-0.920505\pi\)
−0.270449 + 0.962734i \(0.587172\pi\)
\(740\) 0 0
\(741\) 3.47915i 0.127810i
\(742\) −20.7778 0.174895i −0.762776 0.00642059i
\(743\) 15.9696i 0.585867i −0.956133 0.292934i \(-0.905368\pi\)
0.956133 0.292934i \(-0.0946315\pi\)
\(744\) −27.4993 + 7.34078i −1.00817 + 0.269126i
\(745\) 0 0
\(746\) 4.69041 + 17.5268i 0.171728 + 0.641700i
\(747\) −1.90944 + 3.30724i −0.0698626 + 0.121006i
\(748\) −27.1869 15.7190i −0.994051 0.574745i
\(749\) −1.80756 0.500069i −0.0660467 0.0182721i
\(750\) 0 0
\(751\) 16.3642 + 9.44785i 0.597137 + 0.344757i 0.767914 0.640553i \(-0.221295\pi\)
−0.170778 + 0.985310i \(0.554628\pi\)
\(752\) 8.75743 15.1246i 0.319351 0.551537i
\(753\) −17.5712 30.4342i −0.640330 1.10908i
\(754\) −17.2605 17.2713i −0.628590 0.628983i
\(755\) 0 0
\(756\) 7.47052 + 28.8867i 0.271700 + 1.05060i
\(757\) 21.9755 0.798714 0.399357 0.916796i \(-0.369233\pi\)
0.399357 + 0.916796i \(0.369233\pi\)
\(758\) −18.2239 18.2354i −0.661924 0.662338i
\(759\) 8.95048 + 15.5027i 0.324882 + 0.562712i
\(760\) 0 0
\(761\) −44.7044 25.8101i −1.62053 0.935616i −0.986777 0.162084i \(-0.948179\pi\)
−0.633757 0.773532i \(-0.718488\pi\)
\(762\) 2.42875 9.05287i 0.0879842 0.327951i
\(763\) 5.73805 + 5.83182i 0.207731 + 0.211126i
\(764\) −10.8684 + 18.7974i −0.393205 + 0.680068i
\(765\) 0 0
\(766\) −12.3279 46.0662i −0.445427 1.66444i
\(767\) 19.6408 11.3396i 0.709188 0.409450i
\(768\) 11.7820 + 20.5255i 0.425147 + 0.740649i
\(769\) 16.7704i 0.604756i −0.953188 0.302378i \(-0.902220\pi\)
0.953188 0.302378i \(-0.0977805\pi\)
\(770\) 0 0
\(771\) 22.5417i 0.811819i
\(772\) −13.1552 + 7.58420i −0.473466 + 0.272961i
\(773\) 22.7401 13.1290i 0.817903 0.472217i −0.0317896 0.999495i \(-0.510121\pi\)
0.849693 + 0.527278i \(0.176787\pi\)
\(774\) −5.10203 + 1.36537i −0.183389 + 0.0490774i
\(775\) 0 0
\(776\) −18.9444 + 18.9088i −0.680063 + 0.678788i
\(777\) −25.8271 + 6.69650i −0.926543 + 0.240236i
\(778\) −47.3799 12.7113i −1.69865 0.455721i
\(779\) −1.54820 0.893852i −0.0554699 0.0320256i
\(780\) 0 0
\(781\) −10.3706 17.9624i −0.371088 0.642744i
\(782\) −5.02068 + 5.01754i −0.179539 + 0.179427i
\(783\) −29.2042 −1.04367
\(784\) −24.4894 + 13.5745i −0.874623 + 0.484804i
\(785\) 0 0
\(786\) −23.9435 + 23.9285i −0.854035 + 0.853501i
\(787\) −14.9357 25.8693i −0.532398 0.922141i −0.999284 0.0378237i \(-0.987957\pi\)
0.466886 0.884318i \(-0.345376\pi\)
\(788\) 0.0169259 27.0579i 0.000602961 0.963896i
\(789\) −21.6781 12.5159i −0.771762 0.445577i
\(790\) 0 0
\(791\) 37.7003 9.77499i 1.34047 0.347559i
\(792\) 10.0028 9.98409i 0.355436 0.354769i
\(793\) 5.92419 10.2610i 0.210374 0.364378i
\(794\) −39.0134 + 10.4405i −1.38453 + 0.370521i
\(795\) 0 0
\(796\) 7.90090 4.55500i 0.280040 0.161448i
\(797\) 17.1648i 0.608010i 0.952670 + 0.304005i \(0.0983240\pi\)
−0.952670 + 0.304005i \(0.901676\pi\)
\(798\) 1.98087 3.36524i 0.0701222 0.119128i
\(799\) 11.1498i 0.394453i
\(800\) 0 0
\(801\) 4.22025 2.43656i 0.149115 0.0860917i
\(802\) −1.22787 4.58821i −0.0433576 0.162015i
\(803\) 7.85102 13.5984i 0.277056 0.479876i
\(804\) 4.29603 7.43020i 0.151509 0.262043i
\(805\) 0 0
\(806\) −8.31087 + 30.9778i −0.292738 + 1.09115i
\(807\) 0.763416 + 0.440758i 0.0268735 + 0.0155154i
\(808\) −24.1919 6.50653i −0.851067 0.228899i
\(809\) 13.6136 + 23.5795i 0.478630 + 0.829011i 0.999700 0.0245028i \(-0.00780027\pi\)
−0.521070 + 0.853514i \(0.674467\pi\)
\(810\) 0 0
\(811\) 26.6882 0.937148 0.468574 0.883424i \(-0.344768\pi\)
0.468574 + 0.883424i \(0.344768\pi\)
\(812\) −6.86185 26.5332i −0.240804 0.931131i
\(813\) −21.0732 −0.739069
\(814\) 41.9370 + 41.9632i 1.46989 + 1.47081i
\(815\) 0 0
\(816\) −13.0664 7.56569i −0.457415 0.264852i
\(817\) 2.81010 + 1.62241i 0.0983130 + 0.0567610i
\(818\) −2.56382 + 9.55636i −0.0896420 + 0.334130i
\(819\) 6.90315 + 1.90979i 0.241216 + 0.0667334i
\(820\) 0 0
\(821\) 3.81521 6.60813i 0.133152 0.230625i −0.791738 0.610861i \(-0.790824\pi\)
0.924890 + 0.380235i \(0.124157\pi\)
\(822\) 5.78987 + 21.6352i 0.201945 + 0.754613i
\(823\) −4.69139 + 2.70858i −0.163532 + 0.0944150i −0.579532 0.814949i \(-0.696765\pi\)
0.416001 + 0.909364i \(0.363431\pi\)
\(824\) 23.1794 6.18759i 0.807492 0.215555i
\(825\) 0 0
\(826\) 25.4540 + 0.214257i 0.885658 + 0.00745495i
\(827\) 54.4560i 1.89362i 0.321792 + 0.946810i \(0.395715\pi\)
−0.321792 + 0.946810i \(0.604285\pi\)
\(828\) −1.59546 2.76742i −0.0554461 0.0961744i
\(829\) −1.41764 + 0.818472i −0.0492365 + 0.0284267i −0.524416 0.851462i \(-0.675716\pi\)
0.475180 + 0.879889i \(0.342383\pi\)
\(830\) 0 0
\(831\) 17.1291 29.6685i 0.594202 1.02919i
\(832\) 26.6692 + 0.0500485i 0.924589 + 0.00173512i
\(833\) 9.18117 15.3232i 0.318109 0.530917i
\(834\) 32.6564 + 8.76121i 1.13080 + 0.303376i
\(835\) 0 0
\(836\) −8.68280 0.00543148i −0.300301 0.000187852i
\(837\) 19.1803 + 33.2212i 0.662968 + 1.14829i
\(838\) −10.0689 + 10.0626i −0.347823 + 0.347606i
\(839\) −13.4985 −0.466021 −0.233011 0.972474i \(-0.574858\pi\)
−0.233011 + 0.972474i \(0.574858\pi\)
\(840\) 0 0
\(841\) −2.17525 −0.0750086
\(842\) 8.08613 8.08108i 0.278667 0.278492i
\(843\) −4.87298 8.44024i −0.167834 0.290697i
\(844\) 21.3606 + 0.0133620i 0.735263 + 0.000459941i
\(845\) 0 0
\(846\) −4.84643 1.30022i −0.166624 0.0447025i
\(847\) −18.9491 + 68.4939i −0.651100 + 2.35348i
\(848\) 11.0825 + 19.2510i 0.380575 + 0.661083i
\(849\) −19.8259 + 34.3394i −0.680423 + 1.17853i
\(850\) 0 0
\(851\) 11.6127 6.70461i 0.398079 0.229831i
\(852\) −4.98063 8.63918i −0.170634 0.295974i
\(853\) 37.8821i 1.29706i 0.761189 + 0.648530i \(0.224616\pi\)
−0.761189 + 0.648530i \(0.775384\pi\)
\(854\) 11.5724 6.55206i 0.395998 0.224207i
\(855\) 0 0
\(856\) 0.517101 + 1.93711i 0.0176741 + 0.0662092i
\(857\) −16.1748 + 9.33854i −0.552522 + 0.318998i −0.750138 0.661281i \(-0.770013\pi\)
0.197617 + 0.980279i \(0.436680\pi\)
\(858\) 11.0927 + 41.4503i 0.378698 + 1.41509i
\(859\) −13.6369 + 23.6198i −0.465285 + 0.805898i −0.999214 0.0396315i \(-0.987382\pi\)
0.533929 + 0.845529i \(0.320715\pi\)
\(860\) 0 0
\(861\) −7.06810 + 6.95445i −0.240880 + 0.237007i
\(862\) −0.719720 + 2.68267i −0.0245137 + 0.0913722i
\(863\) 20.9749 + 12.1098i 0.713993 + 0.412224i 0.812538 0.582909i \(-0.198085\pi\)
−0.0985450 + 0.995133i \(0.531419\pi\)
\(864\) 22.5900 22.5194i 0.768526 0.766126i
\(865\) 0 0
\(866\) −32.6421 32.6625i −1.10922 1.10992i
\(867\) −15.5133 −0.526859
\(868\) −25.6762 + 25.2317i −0.871506 + 0.856420i
\(869\) 38.2650 1.29805
\(870\) 0 0
\(871\) −4.83583 8.37591i −0.163856 0.283807i
\(872\) 2.27163 8.44613i 0.0769271 0.286022i
\(873\) 6.65527 + 3.84242i 0.225247 + 0.130046i
\(874\) −0.508532 + 1.89550i −0.0172014 + 0.0641161i
\(875\) 0 0
\(876\) 3.77876 6.53555i 0.127672 0.220816i
\(877\) 14.0625 24.3570i 0.474857 0.822477i −0.524728 0.851270i \(-0.675833\pi\)
0.999585 + 0.0287932i \(0.00916642\pi\)
\(878\) −8.94392 33.4210i −0.301843 1.12790i
\(879\) −18.2449 + 10.5337i −0.615386 + 0.355293i
\(880\) 0 0
\(881\) 12.3462i 0.415953i −0.978134 0.207976i \(-0.933312\pi\)
0.978134 0.207976i \(-0.0666877\pi\)
\(882\) 5.58978 + 5.77761i 0.188218 + 0.194542i
\(883\) 33.0518i 1.11228i 0.831088 + 0.556140i \(0.187718\pi\)
−0.831088 + 0.556140i \(0.812282\pi\)
\(884\) −14.7401 + 8.49791i −0.495763 + 0.285815i
\(885\) 0 0
\(886\) −51.3642 + 13.7458i −1.72561 + 0.461799i
\(887\) 15.1276 26.2017i 0.507934 0.879767i −0.492024 0.870582i \(-0.663743\pi\)
0.999958 0.00918566i \(-0.00292393\pi\)
\(888\) 20.1501 + 20.1880i 0.676194 + 0.677464i
\(889\) −2.97536 11.4754i −0.0997903 0.384873i
\(890\) 0 0
\(891\) 31.4627 + 18.1650i 1.05404 + 0.608551i
\(892\) −0.0137223 + 21.9366i −0.000459458 + 0.734492i
\(893\) 1.54139 + 2.66977i 0.0515806 + 0.0893403i
\(894\) −11.2286 + 11.2216i −0.375542 + 0.375307i
\(895\) 0 0
\(896\) 25.7675 + 15.2327i 0.860833 + 0.508888i
\(897\) 9.69847 0.323823
\(898\) 30.2854 30.2664i 1.01064 1.01000i
\(899\) −17.6175 30.5145i −0.587578 1.01771i
\(900\) 0 0
\(901\) −12.2728 7.08568i −0.408865 0.236058i
\(902\) 21.2950 + 5.71311i 0.709045 + 0.190226i
\(903\) 12.8292 12.6229i 0.426928 0.420063i
\(904\) −29.4135 29.4687i −0.978278 0.980115i
\(905\) 0 0
\(906\) 4.20936 1.12648i 0.139847 0.0374249i
\(907\) 32.3561 18.6808i 1.07437 0.620287i 0.144997 0.989432i \(-0.453683\pi\)
0.929372 + 0.369145i \(0.120350\pi\)
\(908\) −19.5091 + 11.2473i −0.647433 + 0.373256i
\(909\) 7.19254i 0.238561i
\(910\) 0 0
\(911\) 21.4157i 0.709535i 0.934955 + 0.354768i \(0.115440\pi\)
−0.934955 + 0.354768i \(0.884560\pi\)
\(912\) −4.17457 0.00522277i −0.138234 0.000172943i
\(913\) −25.0593 + 14.4680i −0.829340 + 0.478820i
\(914\) −9.71570 36.3049i −0.321367 1.20086i
\(915\) 0 0
\(916\) 7.12968 12.3311i 0.235571 0.407433i
\(917\) −11.4158 + 41.2637i −0.376983 + 1.36265i
\(918\) −5.27299 + 19.6545i −0.174035 + 0.648694i
\(919\) 13.1132 + 7.57091i 0.432565 + 0.249741i 0.700439 0.713713i \(-0.252988\pi\)
−0.267874 + 0.963454i \(0.586321\pi\)
\(920\) 0 0
\(921\) 19.2867 + 33.4055i 0.635518 + 1.10075i
\(922\) 26.3136 + 26.3300i 0.866592 + 0.867134i
\(923\) −11.2372 −0.369878
\(924\) −12.8705 + 46.4088i −0.423407 + 1.52674i
\(925\) 0 0
\(926\) 33.8505 + 33.8717i 1.11240 + 1.11309i
\(927\) −3.44402 5.96522i −0.113117 0.195924i
\(928\) −20.7494 + 20.6846i −0.681133 + 0.679006i
\(929\) −12.1825 7.03359i −0.399696 0.230765i 0.286657 0.958033i \(-0.407456\pi\)
−0.686353 + 0.727269i \(0.740789\pi\)
\(930\) 0 0
\(931\) 0.0800511 4.93829i 0.00262357 0.161846i
\(932\) −9.74114 5.63218i −0.319082 0.184488i
\(933\) −2.18536 + 3.78515i −0.0715453 + 0.123920i
\(934\) −7.61328 28.4487i −0.249114 0.930871i
\(935\) 0 0
\(936\) −1.97483 7.39794i −0.0645495 0.241809i
\(937\) 6.12130i 0.199974i 0.994989 + 0.0999871i \(0.0318802\pi\)
−0.994989 + 0.0999871i \(0.968120\pi\)
\(938\) 0.0913707 10.8550i 0.00298336 0.354427i
\(939\) 34.7165i 1.13293i
\(940\) 0 0
\(941\) 24.8876 14.3689i 0.811312 0.468411i −0.0360991 0.999348i \(-0.511493\pi\)
0.847411 + 0.530937i \(0.178160\pi\)
\(942\) −26.3527 + 7.05235i −0.858618 + 0.229778i
\(943\) 2.49170 4.31575i 0.0811409 0.140540i
\(944\) −13.5767 23.5837i −0.441885 0.767583i
\(945\) 0 0
\(946\) −38.6521 10.3697i −1.25669 0.337149i
\(947\) −9.92118 5.72800i −0.322395 0.186135i 0.330065 0.943958i \(-0.392929\pi\)
−0.652460 + 0.757823i \(0.726263\pi\)
\(948\) 18.3973 + 0.0115083i 0.597516 + 0.000373774i
\(949\) −4.25356 7.36739i −0.138076 0.239155i
\(950\) 0 0
\(951\) −19.6636 −0.637635
\(952\) −19.0958 0.172683i −0.618898 0.00559670i
\(953\) −39.4042 −1.27643 −0.638214 0.769859i \(-0.720326\pi\)
−0.638214 + 0.769859i \(0.720326\pi\)
\(954\) 4.51105 4.50823i 0.146051 0.145959i
\(955\) 0 0
\(956\) −37.8577 0.0236817i −1.22440 0.000765921i
\(957\) −40.8235 23.5694i −1.31964 0.761892i
\(958\) 7.16653 + 1.92267i 0.231540 + 0.0621186i
\(959\) 19.8671 + 20.1917i 0.641541 + 0.652024i
\(960\) 0 0
\(961\) −7.64115 + 13.2349i −0.246489 + 0.426931i
\(962\) 31.0495 8.30929i 1.00108 0.267902i
\(963\) 0.498517 0.287819i 0.0160645 0.00927484i
\(964\) 4.70876 + 8.16761i 0.151659 + 0.263061i
\(965\) 0 0
\(966\) 9.38093 + 5.52188i 0.301826 + 0.177664i
\(967\) 6.27278i 0.201719i −0.994901 0.100860i \(-0.967841\pi\)
0.994901 0.100860i \(-0.0321593\pi\)
\(968\) 73.4032 19.5945i 2.35927 0.629792i
\(969\) 2.30645 1.33163i 0.0740939 0.0427782i
\(970\) 0 0
\(971\) −14.2485 + 24.6792i −0.457257 + 0.791993i −0.998815 0.0486706i \(-0.984502\pi\)
0.541557 + 0.840664i \(0.317835\pi\)
\(972\) −14.1674 8.19140i −0.454421 0.262739i
\(973\) 41.3952 10.7330i 1.32707 0.344084i
\(974\) 4.39184 16.3701i 0.140723 0.524531i
\(975\) 0 0
\(976\) −12.3031 7.12373i −0.393812 0.228025i
\(977\) −13.7290 23.7793i −0.439228 0.760766i 0.558402 0.829571i \(-0.311415\pi\)
−0.997630 + 0.0688047i \(0.978081\pi\)
\(978\) 2.23194 + 2.23334i 0.0713696 + 0.0714143i
\(979\) 36.9241 1.18010
\(980\) 0 0
\(981\) −2.51114 −0.0801744
\(982\) −22.7946 22.8089i −0.727406 0.727861i
\(983\) 13.4398 + 23.2784i 0.428662 + 0.742465i 0.996755 0.0804998i \(-0.0256516\pi\)
−0.568092 + 0.822965i \(0.692318\pi\)
\(984\) 10.2366 + 2.75319i 0.326332 + 0.0877686i
\(985\) 0 0
\(986\) 4.84337 18.0531i 0.154244 0.574928i
\(987\) 16.5518 4.29157i 0.526849 0.136602i
\(988\) −2.35465 + 4.07249i −0.0749115 + 0.129563i
\(989\) −4.52263 + 7.83342i −0.143811 + 0.249088i
\(990\) 0 0
\(991\) −21.5616 + 12.4486i −0.684927 + 0.395443i −0.801709 0.597715i \(-0.796075\pi\)
0.116782 + 0.993158i \(0.462742\pi\)
\(992\) 37.1573 + 10.0186i 1.17974 + 0.318090i
\(993\) 45.3312i 1.43854i
\(994\) −10.8693 6.39798i −0.344754 0.202932i
\(995\) 0 0
\(996\) −12.0525 + 6.94847i −0.381898 + 0.220171i
\(997\) −11.7417 + 6.77909i −0.371864 + 0.214696i −0.674273 0.738483i \(-0.735543\pi\)
0.302408 + 0.953178i \(0.402209\pi\)
\(998\) 28.4842 7.62276i 0.901650 0.241294i
\(999\) 19.2214 33.2925i 0.608140 1.05333i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.p.e.551.4 32
4.3 odd 2 inner 700.2.p.e.551.6 32
5.2 odd 4 140.2.s.b.19.5 yes 32
5.3 odd 4 140.2.s.b.19.12 yes 32
5.4 even 2 inner 700.2.p.e.551.13 32
7.3 odd 6 inner 700.2.p.e.451.6 32
20.3 even 4 140.2.s.b.19.14 yes 32
20.7 even 4 140.2.s.b.19.3 32
20.19 odd 2 inner 700.2.p.e.551.11 32
28.3 even 6 inner 700.2.p.e.451.4 32
35.2 odd 12 980.2.c.d.979.16 32
35.3 even 12 140.2.s.b.59.3 yes 32
35.12 even 12 980.2.c.d.979.15 32
35.13 even 4 980.2.s.e.19.12 32
35.17 even 12 140.2.s.b.59.14 yes 32
35.18 odd 12 980.2.s.e.619.3 32
35.23 odd 12 980.2.c.d.979.17 32
35.24 odd 6 inner 700.2.p.e.451.11 32
35.27 even 4 980.2.s.e.19.5 32
35.32 odd 12 980.2.s.e.619.14 32
35.33 even 12 980.2.c.d.979.18 32
140.3 odd 12 140.2.s.b.59.5 yes 32
140.23 even 12 980.2.c.d.979.14 32
140.27 odd 4 980.2.s.e.19.3 32
140.47 odd 12 980.2.c.d.979.20 32
140.59 even 6 inner 700.2.p.e.451.13 32
140.67 even 12 980.2.s.e.619.12 32
140.83 odd 4 980.2.s.e.19.14 32
140.87 odd 12 140.2.s.b.59.12 yes 32
140.103 odd 12 980.2.c.d.979.13 32
140.107 even 12 980.2.c.d.979.19 32
140.123 even 12 980.2.s.e.619.5 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.s.b.19.3 32 20.7 even 4
140.2.s.b.19.5 yes 32 5.2 odd 4
140.2.s.b.19.12 yes 32 5.3 odd 4
140.2.s.b.19.14 yes 32 20.3 even 4
140.2.s.b.59.3 yes 32 35.3 even 12
140.2.s.b.59.5 yes 32 140.3 odd 12
140.2.s.b.59.12 yes 32 140.87 odd 12
140.2.s.b.59.14 yes 32 35.17 even 12
700.2.p.e.451.4 32 28.3 even 6 inner
700.2.p.e.451.6 32 7.3 odd 6 inner
700.2.p.e.451.11 32 35.24 odd 6 inner
700.2.p.e.451.13 32 140.59 even 6 inner
700.2.p.e.551.4 32 1.1 even 1 trivial
700.2.p.e.551.6 32 4.3 odd 2 inner
700.2.p.e.551.11 32 20.19 odd 2 inner
700.2.p.e.551.13 32 5.4 even 2 inner
980.2.c.d.979.13 32 140.103 odd 12
980.2.c.d.979.14 32 140.23 even 12
980.2.c.d.979.15 32 35.12 even 12
980.2.c.d.979.16 32 35.2 odd 12
980.2.c.d.979.17 32 35.23 odd 12
980.2.c.d.979.18 32 35.33 even 12
980.2.c.d.979.19 32 140.107 even 12
980.2.c.d.979.20 32 140.47 odd 12
980.2.s.e.19.3 32 140.27 odd 4
980.2.s.e.19.5 32 35.27 even 4
980.2.s.e.19.12 32 35.13 even 4
980.2.s.e.19.14 32 140.83 odd 4
980.2.s.e.619.3 32 35.18 odd 12
980.2.s.e.619.5 32 140.123 even 12
980.2.s.e.619.12 32 140.67 even 12
980.2.s.e.619.14 32 35.32 odd 12