Properties

Label 700.2.t.d.299.1
Level $700$
Weight $2$
Character 700.299
Analytic conductor $5.590$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,2,Mod(199,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 299.1
Character \(\chi\) \(=\) 700.299
Dual form 700.2.t.d.199.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41125 + 0.0915727i) q^{2} +(2.59647 - 1.49907i) q^{3} +(1.98323 - 0.258463i) q^{4} +(-3.52698 + 2.35332i) q^{6} +(1.65899 + 2.06101i) q^{7} +(-2.77516 + 0.546365i) q^{8} +(2.99443 - 5.18651i) q^{9} +(1.93693 - 1.11828i) q^{11} +(4.76194 - 3.64409i) q^{12} -3.17109 q^{13} +(-2.52997 - 2.75667i) q^{14} +(3.86639 - 1.02518i) q^{16} +(-1.72275 - 2.98390i) q^{17} +(-3.75094 + 7.59365i) q^{18} +(1.02618 - 1.77739i) q^{19} +(7.39711 + 2.86441i) q^{21} +(-2.63107 + 1.75554i) q^{22} +(1.33068 - 2.30481i) q^{23} +(-6.38656 + 5.57878i) q^{24} +(4.47519 - 0.290385i) q^{26} -8.96105i q^{27} +(3.82285 + 3.65867i) q^{28} +7.38092 q^{29} +(2.44599 + 4.23658i) q^{31} +(-5.36255 + 1.80084i) q^{32} +(3.35278 - 5.80718i) q^{33} +(2.70447 + 4.05325i) q^{34} +(4.59812 - 11.0600i) q^{36} +(9.69410 + 5.59689i) q^{37} +(-1.28543 + 2.60230i) q^{38} +(-8.23364 + 4.75369i) q^{39} -1.46011i q^{41} +(-10.7014 - 3.36501i) q^{42} -9.95752 q^{43} +(3.55233 - 2.71844i) q^{44} +(-1.66686 + 3.37451i) q^{46} +(-5.30601 - 3.06343i) q^{47} +(8.50215 - 8.45786i) q^{48} +(-1.49553 + 6.83838i) q^{49} +(-8.94615 - 5.16506i) q^{51} +(-6.28900 + 0.819610i) q^{52} +(-4.03374 + 2.32888i) q^{53} +(0.820587 + 12.6462i) q^{54} +(-5.73001 - 4.81321i) q^{56} -6.15325i q^{57} +(-10.4163 + 0.675891i) q^{58} +(-3.55938 - 6.16503i) q^{59} +(-2.19681 - 1.26833i) q^{61} +(-3.83985 - 5.75488i) q^{62} +(15.6572 - 2.43279i) q^{63} +(7.40297 - 3.03249i) q^{64} +(-4.19981 + 8.50238i) q^{66} +(0.0263848 + 0.0456998i) q^{67} +(-4.18784 - 5.47248i) q^{68} -7.97917i q^{69} -0.212347i q^{71} +(-5.47629 + 16.0294i) q^{72} +(7.43720 + 12.8816i) q^{73} +(-14.1933 - 7.01088i) q^{74} +(1.57575 - 3.79020i) q^{76} +(5.51813 + 2.13680i) q^{77} +(11.1844 - 7.46261i) q^{78} +(0.399413 + 0.230601i) q^{79} +(-4.44995 - 7.70755i) q^{81} +(0.133707 + 2.06058i) q^{82} +10.9174i q^{83} +(15.4105 + 3.76890i) q^{84} +(14.0525 - 0.911837i) q^{86} +(19.1643 - 11.0645i) q^{87} +(-4.76428 + 4.16168i) q^{88} +(-6.07992 - 3.51024i) q^{89} +(-5.26080 - 6.53565i) q^{91} +(2.04334 - 4.91490i) q^{92} +(12.7019 + 7.33344i) q^{93} +(7.76862 + 3.83736i) q^{94} +(-11.2241 + 12.7147i) q^{96} -0.185459 q^{97} +(1.48435 - 9.78758i) q^{98} -13.3945i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{4} + 16 q^{9} + 14 q^{12} + 8 q^{13} - 2 q^{14} - 14 q^{16} - 54 q^{18} - 12 q^{21} - 36 q^{24} + 30 q^{26} - 32 q^{28} + 40 q^{29} - 60 q^{32} + 24 q^{33} + 60 q^{36} + 60 q^{37} + 46 q^{38}+ \cdots + 124 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41125 + 0.0915727i −0.997901 + 0.0647517i
\(3\) 2.59647 1.49907i 1.49907 0.865490i 0.499072 0.866560i \(-0.333674\pi\)
0.999999 + 0.00107081i \(0.000340849\pi\)
\(4\) 1.98323 0.258463i 0.991614 0.129232i
\(5\) 0 0
\(6\) −3.52698 + 2.35332i −1.43988 + 0.960741i
\(7\) 1.65899 + 2.06101i 0.627038 + 0.778989i
\(8\) −2.77516 + 0.546365i −0.981165 + 0.193169i
\(9\) 2.99443 5.18651i 0.998144 1.72884i
\(10\) 0 0
\(11\) 1.93693 1.11828i 0.584005 0.337175i −0.178718 0.983900i \(-0.557195\pi\)
0.762723 + 0.646725i \(0.223862\pi\)
\(12\) 4.76194 3.64409i 1.37465 1.05196i
\(13\) −3.17109 −0.879502 −0.439751 0.898120i \(-0.644933\pi\)
−0.439751 + 0.898120i \(0.644933\pi\)
\(14\) −2.52997 2.75667i −0.676163 0.736752i
\(15\) 0 0
\(16\) 3.86639 1.02518i 0.966598 0.256296i
\(17\) −1.72275 2.98390i −0.417829 0.723701i 0.577892 0.816113i \(-0.303876\pi\)
−0.995721 + 0.0924124i \(0.970542\pi\)
\(18\) −3.75094 + 7.59365i −0.884104 + 1.78984i
\(19\) 1.02618 1.77739i 0.235421 0.407761i −0.723974 0.689827i \(-0.757686\pi\)
0.959395 + 0.282066i \(0.0910198\pi\)
\(20\) 0 0
\(21\) 7.39711 + 2.86441i 1.61418 + 0.625065i
\(22\) −2.63107 + 1.75554i −0.560947 + 0.374283i
\(23\) 1.33068 2.30481i 0.277467 0.480587i −0.693288 0.720661i \(-0.743838\pi\)
0.970755 + 0.240074i \(0.0771718\pi\)
\(24\) −6.38656 + 5.57878i −1.30365 + 1.13876i
\(25\) 0 0
\(26\) 4.47519 0.290385i 0.877657 0.0569493i
\(27\) 8.96105i 1.72455i
\(28\) 3.82285 + 3.65867i 0.722450 + 0.691423i
\(29\) 7.38092 1.37060 0.685301 0.728260i \(-0.259671\pi\)
0.685301 + 0.728260i \(0.259671\pi\)
\(30\) 0 0
\(31\) 2.44599 + 4.23658i 0.439313 + 0.760913i 0.997637 0.0687104i \(-0.0218884\pi\)
−0.558323 + 0.829623i \(0.688555\pi\)
\(32\) −5.36255 + 1.80084i −0.947974 + 0.318347i
\(33\) 3.35278 5.80718i 0.583643 1.01090i
\(34\) 2.70447 + 4.05325i 0.463813 + 0.695127i
\(35\) 0 0
\(36\) 4.59812 11.0600i 0.766354 1.84333i
\(37\) 9.69410 + 5.59689i 1.59370 + 0.920123i 0.992664 + 0.120902i \(0.0385785\pi\)
0.601036 + 0.799222i \(0.294755\pi\)
\(38\) −1.28543 + 2.60230i −0.208524 + 0.422149i
\(39\) −8.23364 + 4.75369i −1.31844 + 0.761200i
\(40\) 0 0
\(41\) 1.46011i 0.228031i −0.993479 0.114016i \(-0.963629\pi\)
0.993479 0.114016i \(-0.0363714\pi\)
\(42\) −10.7014 3.36501i −1.65127 0.519233i
\(43\) −9.95752 −1.51851 −0.759254 0.650794i \(-0.774436\pi\)
−0.759254 + 0.650794i \(0.774436\pi\)
\(44\) 3.55233 2.71844i 0.535534 0.409820i
\(45\) 0 0
\(46\) −1.66686 + 3.37451i −0.245766 + 0.497545i
\(47\) −5.30601 3.06343i −0.773962 0.446847i 0.0603243 0.998179i \(-0.480787\pi\)
−0.834286 + 0.551332i \(0.814120\pi\)
\(48\) 8.50215 8.45786i 1.22718 1.22079i
\(49\) −1.49553 + 6.83838i −0.213647 + 0.976911i
\(50\) 0 0
\(51\) −8.94615 5.16506i −1.25271 0.723253i
\(52\) −6.28900 + 0.819610i −0.872127 + 0.113659i
\(53\) −4.03374 + 2.32888i −0.554077 + 0.319897i −0.750765 0.660570i \(-0.770315\pi\)
0.196688 + 0.980466i \(0.436982\pi\)
\(54\) 0.820587 + 12.6462i 0.111668 + 1.72094i
\(55\) 0 0
\(56\) −5.73001 4.81321i −0.765705 0.643193i
\(57\) 6.15325i 0.815018i
\(58\) −10.4163 + 0.675891i −1.36773 + 0.0887488i
\(59\) −3.55938 6.16503i −0.463392 0.802619i 0.535735 0.844386i \(-0.320035\pi\)
−0.999127 + 0.0417674i \(0.986701\pi\)
\(60\) 0 0
\(61\) −2.19681 1.26833i −0.281272 0.162393i 0.352727 0.935726i \(-0.385254\pi\)
−0.633999 + 0.773334i \(0.718588\pi\)
\(62\) −3.83985 5.75488i −0.487662 0.730870i
\(63\) 15.6572 2.43279i 1.97262 0.306503i
\(64\) 7.40297 3.03249i 0.925371 0.379062i
\(65\) 0 0
\(66\) −4.19981 + 8.50238i −0.516961 + 1.04657i
\(67\) 0.0263848 + 0.0456998i 0.00322341 + 0.00558311i 0.867633 0.497206i \(-0.165641\pi\)
−0.864409 + 0.502789i \(0.832307\pi\)
\(68\) −4.18784 5.47248i −0.507850 0.663636i
\(69\) 7.97917i 0.960579i
\(70\) 0 0
\(71\) 0.212347i 0.0252009i −0.999921 0.0126005i \(-0.995989\pi\)
0.999921 0.0126005i \(-0.00401095\pi\)
\(72\) −5.47629 + 16.0294i −0.645387 + 1.88909i
\(73\) 7.43720 + 12.8816i 0.870459 + 1.50768i 0.861523 + 0.507719i \(0.169511\pi\)
0.00893589 + 0.999960i \(0.497156\pi\)
\(74\) −14.1933 7.01088i −1.64994 0.814998i
\(75\) 0 0
\(76\) 1.57575 3.79020i 0.180751 0.434766i
\(77\) 5.51813 + 2.13680i 0.628849 + 0.243511i
\(78\) 11.1844 7.46261i 1.26638 0.844974i
\(79\) 0.399413 + 0.230601i 0.0449375 + 0.0259447i 0.522300 0.852762i \(-0.325074\pi\)
−0.477363 + 0.878706i \(0.658407\pi\)
\(80\) 0 0
\(81\) −4.44995 7.70755i −0.494439 0.856394i
\(82\) 0.133707 + 2.06058i 0.0147654 + 0.227553i
\(83\) 10.9174i 1.19834i 0.800624 + 0.599168i \(0.204502\pi\)
−0.800624 + 0.599168i \(0.795498\pi\)
\(84\) 15.4105 + 3.76890i 1.68142 + 0.411221i
\(85\) 0 0
\(86\) 14.0525 0.911837i 1.51532 0.0983259i
\(87\) 19.1643 11.0645i 2.05463 1.18624i
\(88\) −4.76428 + 4.16168i −0.507874 + 0.443637i
\(89\) −6.07992 3.51024i −0.644470 0.372085i 0.141864 0.989886i \(-0.454690\pi\)
−0.786334 + 0.617801i \(0.788024\pi\)
\(90\) 0 0
\(91\) −5.26080 6.53565i −0.551481 0.685122i
\(92\) 2.04334 4.91490i 0.213033 0.512414i
\(93\) 12.7019 + 7.33344i 1.31712 + 0.760442i
\(94\) 7.76862 + 3.83736i 0.801272 + 0.395794i
\(95\) 0 0
\(96\) −11.2241 + 12.7147i −1.14556 + 1.29769i
\(97\) −0.185459 −0.0188305 −0.00941523 0.999956i \(-0.502997\pi\)
−0.00941523 + 0.999956i \(0.502997\pi\)
\(98\) 1.48435 9.78758i 0.149942 0.988695i
\(99\) 13.3945i 1.34620i
\(100\) 0 0
\(101\) −5.41172 + 3.12446i −0.538486 + 0.310895i −0.744465 0.667661i \(-0.767295\pi\)
0.205979 + 0.978556i \(0.433962\pi\)
\(102\) 13.0982 + 6.46995i 1.29691 + 0.640620i
\(103\) −9.88858 5.70918i −0.974351 0.562542i −0.0737911 0.997274i \(-0.523510\pi\)
−0.900560 + 0.434732i \(0.856843\pi\)
\(104\) 8.80027 1.73257i 0.862937 0.169893i
\(105\) 0 0
\(106\) 5.47934 3.65601i 0.532201 0.355103i
\(107\) 1.30194 2.25502i 0.125863 0.218001i −0.796207 0.605024i \(-0.793163\pi\)
0.922070 + 0.387023i \(0.126497\pi\)
\(108\) −2.31610 17.7718i −0.222867 1.71009i
\(109\) 0.500946 + 0.867663i 0.0479819 + 0.0831071i 0.889019 0.457871i \(-0.151388\pi\)
−0.841037 + 0.540978i \(0.818054\pi\)
\(110\) 0 0
\(111\) 33.5606 3.18543
\(112\) 8.52721 + 6.26791i 0.805745 + 0.592262i
\(113\) 14.8588i 1.39780i −0.715220 0.698899i \(-0.753674\pi\)
0.715220 0.698899i \(-0.246326\pi\)
\(114\) 0.563470 + 8.68375i 0.0527738 + 0.813307i
\(115\) 0 0
\(116\) 14.6381 1.90770i 1.35911 0.177125i
\(117\) −9.49562 + 16.4469i −0.877870 + 1.52052i
\(118\) 5.58771 + 8.37443i 0.514391 + 0.770929i
\(119\) 3.29182 8.50085i 0.301760 0.779272i
\(120\) 0 0
\(121\) −2.99888 + 5.19421i −0.272626 + 0.472201i
\(122\) 3.21638 + 1.58875i 0.291197 + 0.143839i
\(123\) −2.18882 3.79114i −0.197359 0.341836i
\(124\) 5.94597 + 7.76992i 0.533963 + 0.697759i
\(125\) 0 0
\(126\) −21.8733 + 4.86704i −1.94863 + 0.433590i
\(127\) −3.02360 −0.268301 −0.134151 0.990961i \(-0.542831\pi\)
−0.134151 + 0.990961i \(0.542831\pi\)
\(128\) −10.1697 + 4.95750i −0.898885 + 0.438186i
\(129\) −25.8544 + 14.9270i −2.27635 + 1.31425i
\(130\) 0 0
\(131\) −7.85267 + 13.6012i −0.686091 + 1.18834i 0.287002 + 0.957930i \(0.407341\pi\)
−0.973093 + 0.230414i \(0.925992\pi\)
\(132\) 5.14838 12.3835i 0.448109 1.07785i
\(133\) 5.36563 0.833705i 0.465259 0.0722914i
\(134\) −0.0414202 0.0620775i −0.00357816 0.00536268i
\(135\) 0 0
\(136\) 6.41120 + 7.33952i 0.549756 + 0.629359i
\(137\) 8.32628 4.80718i 0.711362 0.410705i −0.100203 0.994967i \(-0.531949\pi\)
0.811565 + 0.584262i \(0.198616\pi\)
\(138\) 0.730674 + 11.2606i 0.0621991 + 0.958563i
\(139\) −7.49745 −0.635925 −0.317963 0.948103i \(-0.602999\pi\)
−0.317963 + 0.948103i \(0.602999\pi\)
\(140\) 0 0
\(141\) −18.3692 −1.54697
\(142\) 0.0194451 + 0.299673i 0.00163180 + 0.0251480i
\(143\) −6.14217 + 3.54618i −0.513634 + 0.296547i
\(144\) 6.26053 23.1229i 0.521711 1.92691i
\(145\) 0 0
\(146\) −11.6753 17.4981i −0.966257 1.44815i
\(147\) 6.36813 + 19.9975i 0.525234 + 1.64937i
\(148\) 20.6722 + 8.59435i 1.69925 + 0.706451i
\(149\) 3.25066 5.63031i 0.266305 0.461253i −0.701600 0.712571i \(-0.747531\pi\)
0.967905 + 0.251318i \(0.0808640\pi\)
\(150\) 0 0
\(151\) −20.5029 + 11.8373i −1.66850 + 0.963309i −0.700052 + 0.714092i \(0.746840\pi\)
−0.968448 + 0.249217i \(0.919827\pi\)
\(152\) −1.87670 + 5.49320i −0.152220 + 0.445557i
\(153\) −20.6347 −1.66821
\(154\) −7.98311 2.51025i −0.643297 0.202281i
\(155\) 0 0
\(156\) −15.1005 + 11.5558i −1.20901 + 0.925201i
\(157\) 3.91624 + 6.78313i 0.312550 + 0.541353i 0.978914 0.204274i \(-0.0654834\pi\)
−0.666363 + 0.745627i \(0.732150\pi\)
\(158\) −0.584787 0.288860i −0.0465232 0.0229805i
\(159\) −6.98233 + 12.0937i −0.553734 + 0.959096i
\(160\) 0 0
\(161\) 6.95783 1.08110i 0.548354 0.0852026i
\(162\) 6.98578 + 10.4697i 0.548855 + 0.822581i
\(163\) 5.42579 9.39774i 0.424980 0.736088i −0.571438 0.820645i \(-0.693614\pi\)
0.996419 + 0.0845574i \(0.0269476\pi\)
\(164\) −0.377386 2.89574i −0.0294689 0.226119i
\(165\) 0 0
\(166\) −0.999731 15.4071i −0.0775942 1.19582i
\(167\) 11.7476i 0.909058i 0.890732 + 0.454529i \(0.150192\pi\)
−0.890732 + 0.454529i \(0.849808\pi\)
\(168\) −22.0931 3.90766i −1.70452 0.301483i
\(169\) −2.94418 −0.226476
\(170\) 0 0
\(171\) −6.14563 10.6445i −0.469968 0.814009i
\(172\) −19.7480 + 2.57365i −1.50577 + 0.196239i
\(173\) −8.24371 + 14.2785i −0.626758 + 1.08558i 0.361440 + 0.932395i \(0.382285\pi\)
−0.988198 + 0.153181i \(0.951048\pi\)
\(174\) −26.0324 + 17.3697i −1.97351 + 1.31679i
\(175\) 0 0
\(176\) 6.34247 6.30943i 0.478082 0.475591i
\(177\) −18.4836 10.6715i −1.38932 0.802122i
\(178\) 8.90170 + 4.39706i 0.667211 + 0.329574i
\(179\) −7.88914 + 4.55480i −0.589662 + 0.340441i −0.764964 0.644073i \(-0.777243\pi\)
0.175302 + 0.984515i \(0.443910\pi\)
\(180\) 0 0
\(181\) 16.5755i 1.23205i 0.787728 + 0.616023i \(0.211257\pi\)
−0.787728 + 0.616023i \(0.788743\pi\)
\(182\) 8.02276 + 8.74166i 0.594687 + 0.647975i
\(183\) −7.60525 −0.562196
\(184\) −2.43359 + 7.12325i −0.179406 + 0.525133i
\(185\) 0 0
\(186\) −18.5970 9.18614i −1.36360 0.673560i
\(187\) −6.67369 3.85305i −0.488028 0.281763i
\(188\) −11.3148 4.70407i −0.825218 0.343080i
\(189\) 18.4688 14.8663i 1.34341 1.08136i
\(190\) 0 0
\(191\) 2.59197 + 1.49648i 0.187549 + 0.108281i 0.590834 0.806793i \(-0.298799\pi\)
−0.403286 + 0.915074i \(0.632132\pi\)
\(192\) 14.6757 18.9714i 1.05912 1.36914i
\(193\) 12.7382 7.35442i 0.916918 0.529383i 0.0342676 0.999413i \(-0.489090\pi\)
0.882651 + 0.470030i \(0.155757\pi\)
\(194\) 0.261728 0.0169829i 0.0187909 0.00121930i
\(195\) 0 0
\(196\) −1.19851 + 13.9486i −0.0856075 + 0.996329i
\(197\) 4.81748i 0.343231i 0.985164 + 0.171616i \(0.0548987\pi\)
−0.985164 + 0.171616i \(0.945101\pi\)
\(198\) 1.22657 + 18.9029i 0.0871686 + 1.34337i
\(199\) −0.637180 1.10363i −0.0451685 0.0782342i 0.842557 0.538607i \(-0.181049\pi\)
−0.887726 + 0.460373i \(0.847716\pi\)
\(200\) 0 0
\(201\) 0.137014 + 0.0791053i 0.00966425 + 0.00557966i
\(202\) 7.35115 4.90494i 0.517225 0.345110i
\(203\) 12.2448 + 15.2122i 0.859420 + 1.06768i
\(204\) −19.0772 7.93125i −1.33567 0.555298i
\(205\) 0 0
\(206\) 14.4780 + 7.15153i 1.00873 + 0.498270i
\(207\) −7.96929 13.8032i −0.553904 0.959390i
\(208\) −12.2607 + 3.25095i −0.850126 + 0.225413i
\(209\) 4.59023i 0.317513i
\(210\) 0 0
\(211\) 3.70986i 0.255397i 0.991813 + 0.127698i \(0.0407590\pi\)
−0.991813 + 0.127698i \(0.959241\pi\)
\(212\) −7.39791 + 5.66128i −0.508090 + 0.388818i
\(213\) −0.318323 0.551351i −0.0218111 0.0377780i
\(214\) −1.63085 + 3.30161i −0.111483 + 0.225693i
\(215\) 0 0
\(216\) 4.89600 + 24.8683i 0.333131 + 1.69207i
\(217\) −4.67378 + 12.0697i −0.317277 + 0.819342i
\(218\) −0.786412 1.17861i −0.0532625 0.0798258i
\(219\) 38.6209 + 22.2978i 2.60976 + 1.50675i
\(220\) 0 0
\(221\) 5.46301 + 9.46220i 0.367482 + 0.636497i
\(222\) −47.3622 + 3.07323i −3.17874 + 0.206262i
\(223\) 12.9581i 0.867737i −0.900976 0.433869i \(-0.857148\pi\)
0.900976 0.433869i \(-0.142852\pi\)
\(224\) −12.6080 8.06471i −0.842404 0.538846i
\(225\) 0 0
\(226\) 1.36066 + 20.9694i 0.0905098 + 1.39487i
\(227\) −7.70115 + 4.44626i −0.511143 + 0.295109i −0.733304 0.679901i \(-0.762023\pi\)
0.222160 + 0.975010i \(0.428689\pi\)
\(228\) −1.59039 12.2033i −0.105326 0.808183i
\(229\) 11.2113 + 6.47287i 0.740866 + 0.427739i 0.822384 0.568933i \(-0.192643\pi\)
−0.0815180 + 0.996672i \(0.525977\pi\)
\(230\) 0 0
\(231\) 17.5309 2.72392i 1.15345 0.179221i
\(232\) −20.4832 + 4.03267i −1.34479 + 0.264758i
\(233\) −13.1776 7.60809i −0.863294 0.498423i 0.00182020 0.999998i \(-0.499421\pi\)
−0.865114 + 0.501576i \(0.832754\pi\)
\(234\) 11.8946 24.0801i 0.777572 1.57417i
\(235\) 0 0
\(236\) −8.65250 11.3067i −0.563230 0.736003i
\(237\) 1.38275 0.0898194
\(238\) −3.86712 + 12.2982i −0.250668 + 0.797176i
\(239\) 0.0438513i 0.00283650i 0.999999 + 0.00141825i \(0.000451444\pi\)
−0.999999 + 0.00141825i \(0.999549\pi\)
\(240\) 0 0
\(241\) 1.99236 1.15029i 0.128339 0.0740968i −0.434456 0.900693i \(-0.643059\pi\)
0.562795 + 0.826596i \(0.309726\pi\)
\(242\) 3.75651 7.60493i 0.241478 0.488863i
\(243\) 0.173149 + 0.0999675i 0.0111075 + 0.00641292i
\(244\) −4.68458 1.94759i −0.299900 0.124682i
\(245\) 0 0
\(246\) 3.43612 + 5.14979i 0.219079 + 0.328339i
\(247\) −3.25410 + 5.63627i −0.207053 + 0.358627i
\(248\) −9.10273 10.4208i −0.578024 0.661720i
\(249\) 16.3659 + 28.3466i 1.03715 + 1.79639i
\(250\) 0 0
\(251\) −6.32409 −0.399173 −0.199587 0.979880i \(-0.563960\pi\)
−0.199587 + 0.979880i \(0.563960\pi\)
\(252\) 30.4230 8.87159i 1.91647 0.558857i
\(253\) 5.95233i 0.374220i
\(254\) 4.26704 0.276879i 0.267738 0.0173729i
\(255\) 0 0
\(256\) 13.8980 7.92752i 0.868625 0.495470i
\(257\) 7.12068 12.3334i 0.444176 0.769335i −0.553819 0.832637i \(-0.686830\pi\)
0.997994 + 0.0633025i \(0.0201633\pi\)
\(258\) 35.1200 23.4333i 2.18648 1.45889i
\(259\) 4.54713 + 29.2648i 0.282545 + 1.81843i
\(260\) 0 0
\(261\) 22.1017 38.2812i 1.36806 2.36955i
\(262\) 9.83654 19.9138i 0.607704 1.23028i
\(263\) 5.87421 + 10.1744i 0.362219 + 0.627382i 0.988326 0.152355i \(-0.0486858\pi\)
−0.626107 + 0.779738i \(0.715353\pi\)
\(264\) −6.13164 + 17.9477i −0.377376 + 1.10460i
\(265\) 0 0
\(266\) −7.49588 + 1.66791i −0.459602 + 0.102266i
\(267\) −21.0484 −1.28814
\(268\) 0.0641387 + 0.0838136i 0.00391790 + 0.00511973i
\(269\) 7.35196 4.24466i 0.448257 0.258801i −0.258837 0.965921i \(-0.583339\pi\)
0.707094 + 0.707120i \(0.250006\pi\)
\(270\) 0 0
\(271\) 3.98686 6.90544i 0.242184 0.419476i −0.719152 0.694853i \(-0.755469\pi\)
0.961336 + 0.275377i \(0.0888028\pi\)
\(272\) −9.71988 9.77078i −0.589354 0.592440i
\(273\) −23.4569 9.08330i −1.41968 0.549746i
\(274\) −11.3102 + 7.54657i −0.683275 + 0.455905i
\(275\) 0 0
\(276\) −2.06232 15.8245i −0.124137 0.952524i
\(277\) −11.7737 + 6.79754i −0.707412 + 0.408425i −0.810102 0.586289i \(-0.800588\pi\)
0.102690 + 0.994713i \(0.467255\pi\)
\(278\) 10.5807 0.686562i 0.634591 0.0411772i
\(279\) 29.2974 1.75399
\(280\) 0 0
\(281\) 9.48286 0.565700 0.282850 0.959164i \(-0.408720\pi\)
0.282850 + 0.959164i \(0.408720\pi\)
\(282\) 25.9235 1.68212i 1.54372 0.100169i
\(283\) 18.6621 10.7746i 1.10935 0.640483i 0.170689 0.985325i \(-0.445401\pi\)
0.938661 + 0.344842i \(0.112067\pi\)
\(284\) −0.0548838 0.421132i −0.00325675 0.0249896i
\(285\) 0 0
\(286\) 8.34337 5.56699i 0.493354 0.329183i
\(287\) 3.00931 2.42231i 0.177634 0.142984i
\(288\) −6.71772 + 33.2054i −0.395845 + 1.95665i
\(289\) 2.56424 4.44140i 0.150838 0.261259i
\(290\) 0 0
\(291\) −0.481537 + 0.278016i −0.0282282 + 0.0162976i
\(292\) 18.0791 + 23.6249i 1.05800 + 1.38255i
\(293\) −28.9496 −1.69125 −0.845626 0.533776i \(-0.820773\pi\)
−0.845626 + 0.533776i \(0.820773\pi\)
\(294\) −10.8182 27.6383i −0.630931 1.61190i
\(295\) 0 0
\(296\) −29.9606 10.2357i −1.74142 0.594940i
\(297\) −10.0210 17.3569i −0.581477 1.00715i
\(298\) −4.07190 + 8.24342i −0.235879 + 0.477529i
\(299\) −4.21972 + 7.30877i −0.244033 + 0.422677i
\(300\) 0 0
\(301\) −16.5194 20.5226i −0.952162 1.18290i
\(302\) 27.8506 18.5829i 1.60262 1.06933i
\(303\) −9.36757 + 16.2251i −0.538153 + 0.932108i
\(304\) 2.14545 7.92411i 0.123050 0.454479i
\(305\) 0 0
\(306\) 29.1206 1.88957i 1.66471 0.108020i
\(307\) 8.00589i 0.456920i 0.973553 + 0.228460i \(0.0733690\pi\)
−0.973553 + 0.228460i \(0.926631\pi\)
\(308\) 11.4960 + 2.81154i 0.655045 + 0.160202i
\(309\) −34.2339 −1.94750
\(310\) 0 0
\(311\) −6.87633 11.9101i −0.389921 0.675363i 0.602518 0.798105i \(-0.294164\pi\)
−0.992438 + 0.122743i \(0.960831\pi\)
\(312\) 20.2524 17.6908i 1.14656 1.00154i
\(313\) 5.31792 9.21091i 0.300587 0.520631i −0.675682 0.737193i \(-0.736151\pi\)
0.976269 + 0.216562i \(0.0694842\pi\)
\(314\) −6.14793 9.21404i −0.346948 0.519979i
\(315\) 0 0
\(316\) 0.851730 + 0.354102i 0.0479136 + 0.0199198i
\(317\) 14.7081 + 8.49175i 0.826091 + 0.476944i 0.852513 0.522707i \(-0.175078\pi\)
−0.0264211 + 0.999651i \(0.508411\pi\)
\(318\) 8.74632 17.7066i 0.490469 0.992939i
\(319\) 14.2963 8.25397i 0.800439 0.462133i
\(320\) 0 0
\(321\) 7.80679i 0.435732i
\(322\) −9.72021 + 2.16284i −0.541686 + 0.120531i
\(323\) −7.07140 −0.393463
\(324\) −10.8174 14.1357i −0.600966 0.785316i
\(325\) 0 0
\(326\) −6.79654 + 13.7594i −0.376426 + 0.762061i
\(327\) 2.60138 + 1.50191i 0.143857 + 0.0830557i
\(328\) 0.797755 + 4.05204i 0.0440486 + 0.223737i
\(329\) −2.48885 16.0179i −0.137215 0.883097i
\(330\) 0 0
\(331\) −7.21415 4.16509i −0.396525 0.228934i 0.288458 0.957492i \(-0.406857\pi\)
−0.684984 + 0.728558i \(0.740191\pi\)
\(332\) 2.82173 + 21.6516i 0.154863 + 1.18829i
\(333\) 58.0567 33.5190i 3.18149 1.83683i
\(334\) −1.07576 16.5788i −0.0588630 0.907150i
\(335\) 0 0
\(336\) 31.5367 + 3.49154i 1.72047 + 0.190479i
\(337\) 27.0772i 1.47499i −0.675353 0.737495i \(-0.736009\pi\)
0.675353 0.737495i \(-0.263991\pi\)
\(338\) 4.15496 0.269607i 0.226000 0.0146647i
\(339\) −22.2744 38.5804i −1.20978 2.09540i
\(340\) 0 0
\(341\) 9.47541 + 5.47063i 0.513122 + 0.296251i
\(342\) 9.64775 + 14.4593i 0.521690 + 0.781870i
\(343\) −16.5750 + 8.26248i −0.894967 + 0.446132i
\(344\) 27.6337 5.44044i 1.48991 0.293329i
\(345\) 0 0
\(346\) 10.3264 20.9054i 0.555150 1.12388i
\(347\) 13.8861 + 24.0514i 0.745443 + 1.29115i 0.949987 + 0.312288i \(0.101095\pi\)
−0.204544 + 0.978857i \(0.565571\pi\)
\(348\) 35.1475 26.8968i 1.88410 1.44182i
\(349\) 9.64063i 0.516051i 0.966138 + 0.258026i \(0.0830719\pi\)
−0.966138 + 0.258026i \(0.916928\pi\)
\(350\) 0 0
\(351\) 28.4163i 1.51675i
\(352\) −8.37301 + 9.48495i −0.446283 + 0.505550i
\(353\) 8.15697 + 14.1283i 0.434152 + 0.751973i 0.997226 0.0744333i \(-0.0237148\pi\)
−0.563074 + 0.826406i \(0.690381\pi\)
\(354\) 27.0622 + 13.3676i 1.43834 + 0.710478i
\(355\) 0 0
\(356\) −12.9651 5.39018i −0.687151 0.285679i
\(357\) −4.19629 27.0069i −0.222091 1.42936i
\(358\) 10.7164 7.15037i 0.566380 0.377909i
\(359\) 1.38744 + 0.801040i 0.0732264 + 0.0422773i 0.536166 0.844112i \(-0.319872\pi\)
−0.462940 + 0.886390i \(0.653205\pi\)
\(360\) 0 0
\(361\) 7.39392 + 12.8067i 0.389154 + 0.674034i
\(362\) −1.51786 23.3921i −0.0797771 1.22946i
\(363\) 17.9822i 0.943818i
\(364\) −12.1226 11.6020i −0.635396 0.608108i
\(365\) 0 0
\(366\) 10.7329 0.696433i 0.561016 0.0364031i
\(367\) −1.09164 + 0.630259i −0.0569832 + 0.0328993i −0.528221 0.849107i \(-0.677141\pi\)
0.471238 + 0.882006i \(0.343807\pi\)
\(368\) 2.78209 10.2755i 0.145027 0.535648i
\(369\) −7.57289 4.37221i −0.394229 0.227608i
\(370\) 0 0
\(371\) −11.4918 4.45000i −0.596623 0.231033i
\(372\) 27.0862 + 11.2609i 1.40435 + 0.583851i
\(373\) 7.99120 + 4.61372i 0.413768 + 0.238889i 0.692408 0.721507i \(-0.256550\pi\)
−0.278639 + 0.960396i \(0.589883\pi\)
\(374\) 9.77105 + 4.82648i 0.505249 + 0.249571i
\(375\) 0 0
\(376\) 16.3988 + 5.60247i 0.845702 + 0.288925i
\(377\) −23.4056 −1.20545
\(378\) −24.7027 + 22.6712i −1.27057 + 1.16608i
\(379\) 2.53516i 0.130223i −0.997878 0.0651113i \(-0.979260\pi\)
0.997878 0.0651113i \(-0.0207403\pi\)
\(380\) 0 0
\(381\) −7.85068 + 4.53259i −0.402203 + 0.232212i
\(382\) −3.79495 1.87454i −0.194166 0.0959099i
\(383\) −1.14737 0.662435i −0.0586279 0.0338489i 0.470400 0.882454i \(-0.344110\pi\)
−0.529027 + 0.848605i \(0.677443\pi\)
\(384\) −18.9737 + 28.1171i −0.968248 + 1.43485i
\(385\) 0 0
\(386\) −17.3033 + 11.5454i −0.880715 + 0.587644i
\(387\) −29.8171 + 51.6448i −1.51569 + 2.62525i
\(388\) −0.367807 + 0.0479342i −0.0186726 + 0.00243349i
\(389\) 16.1134 + 27.9093i 0.816983 + 1.41506i 0.907895 + 0.419197i \(0.137688\pi\)
−0.0909120 + 0.995859i \(0.528978\pi\)
\(390\) 0 0
\(391\) −9.16976 −0.463735
\(392\) 0.414074 19.7947i 0.0209139 0.999781i
\(393\) 47.0869i 2.37522i
\(394\) −0.441150 6.79865i −0.0222248 0.342511i
\(395\) 0 0
\(396\) −3.46199 26.5644i −0.173971 1.33491i
\(397\) 17.5871 30.4617i 0.882670 1.52883i 0.0343095 0.999411i \(-0.489077\pi\)
0.848361 0.529419i \(-0.177590\pi\)
\(398\) 1.00028 + 1.49914i 0.0501395 + 0.0751452i
\(399\) 12.6819 10.2082i 0.634890 0.511047i
\(400\) 0 0
\(401\) −15.9623 + 27.6476i −0.797120 + 1.38065i 0.124364 + 0.992237i \(0.460311\pi\)
−0.921484 + 0.388416i \(0.873022\pi\)
\(402\) −0.200605 0.0990903i −0.0100053 0.00494217i
\(403\) −7.75647 13.4346i −0.386377 0.669225i
\(404\) −9.92512 + 7.59524i −0.493793 + 0.377877i
\(405\) 0 0
\(406\) −18.6735 20.3468i −0.926751 1.00979i
\(407\) 25.0357 1.24097
\(408\) 27.6490 + 9.44599i 1.36883 + 0.467646i
\(409\) −14.2151 + 8.20712i −0.702894 + 0.405816i −0.808424 0.588600i \(-0.799679\pi\)
0.105530 + 0.994416i \(0.466346\pi\)
\(410\) 0 0
\(411\) 14.4126 24.9634i 0.710922 1.23135i
\(412\) −21.0869 8.76677i −1.03888 0.431908i
\(413\) 6.80123 17.5636i 0.334666 0.864250i
\(414\) 12.5106 + 18.7500i 0.614864 + 0.921510i
\(415\) 0 0
\(416\) 17.0051 5.71063i 0.833746 0.279987i
\(417\) −19.4669 + 11.2392i −0.953298 + 0.550387i
\(418\) 0.420340 + 6.47794i 0.0205595 + 0.316846i
\(419\) −11.8654 −0.579665 −0.289832 0.957077i \(-0.593600\pi\)
−0.289832 + 0.957077i \(0.593600\pi\)
\(420\) 0 0
\(421\) 10.3433 0.504101 0.252051 0.967714i \(-0.418895\pi\)
0.252051 + 0.967714i \(0.418895\pi\)
\(422\) −0.339721 5.23552i −0.0165374 0.254861i
\(423\) −31.7770 + 18.3465i −1.54505 + 0.892035i
\(424\) 9.92185 8.66691i 0.481847 0.420902i
\(425\) 0 0
\(426\) 0.499720 + 0.748942i 0.0242115 + 0.0362864i
\(427\) −1.03044 6.63178i −0.0498663 0.320934i
\(428\) 1.99920 4.80873i 0.0966349 0.232439i
\(429\) −10.6320 + 18.4151i −0.513316 + 0.889089i
\(430\) 0 0
\(431\) 25.6838 14.8286i 1.23715 0.714267i 0.268636 0.963242i \(-0.413427\pi\)
0.968510 + 0.248975i \(0.0800937\pi\)
\(432\) −9.18671 34.6469i −0.441996 1.66695i
\(433\) 29.4107 1.41339 0.706693 0.707520i \(-0.250186\pi\)
0.706693 + 0.707520i \(0.250186\pi\)
\(434\) 5.49059 17.4612i 0.263557 0.838166i
\(435\) 0 0
\(436\) 1.21775 + 1.59130i 0.0583196 + 0.0762094i
\(437\) −2.73103 4.73029i −0.130643 0.226280i
\(438\) −56.5455 27.9311i −2.70185 1.33460i
\(439\) 4.41191 7.64165i 0.210569 0.364716i −0.741324 0.671147i \(-0.765802\pi\)
0.951893 + 0.306432i \(0.0991351\pi\)
\(440\) 0 0
\(441\) 30.9890 + 28.2336i 1.47567 + 1.34446i
\(442\) −8.57612 12.8532i −0.407925 0.611366i
\(443\) 9.78342 16.9454i 0.464824 0.805099i −0.534369 0.845251i \(-0.679451\pi\)
0.999194 + 0.0401518i \(0.0127842\pi\)
\(444\) 66.5583 8.67417i 3.15872 0.411658i
\(445\) 0 0
\(446\) 1.18661 + 18.2870i 0.0561874 + 0.865916i
\(447\) 19.4919i 0.921935i
\(448\) 18.5314 + 10.2267i 0.875528 + 0.483168i
\(449\) −5.02309 −0.237054 −0.118527 0.992951i \(-0.537817\pi\)
−0.118527 + 0.992951i \(0.537817\pi\)
\(450\) 0 0
\(451\) −1.63282 2.82813i −0.0768866 0.133171i
\(452\) −3.84045 29.4684i −0.180640 1.38608i
\(453\) −35.4900 + 61.4705i −1.66747 + 2.88814i
\(454\) 10.4611 6.97998i 0.490962 0.327587i
\(455\) 0 0
\(456\) 3.36192 + 17.0762i 0.157436 + 0.799667i
\(457\) 24.1144 + 13.9225i 1.12802 + 0.651265i 0.943437 0.331551i \(-0.107572\pi\)
0.184587 + 0.982816i \(0.440905\pi\)
\(458\) −16.4147 8.10816i −0.767008 0.378869i
\(459\) −26.7388 + 15.4377i −1.24806 + 0.720569i
\(460\) 0 0
\(461\) 19.8494i 0.924481i −0.886755 0.462240i \(-0.847046\pi\)
0.886755 0.462240i \(-0.152954\pi\)
\(462\) −24.4909 + 5.44948i −1.13942 + 0.253533i
\(463\) 35.7118 1.65967 0.829833 0.558012i \(-0.188436\pi\)
0.829833 + 0.558012i \(0.188436\pi\)
\(464\) 28.5375 7.56680i 1.32482 0.351280i
\(465\) 0 0
\(466\) 19.2935 + 9.53018i 0.893756 + 0.441477i
\(467\) −19.5818 11.3055i −0.906136 0.523158i −0.0269503 0.999637i \(-0.508580\pi\)
−0.879186 + 0.476479i \(0.841913\pi\)
\(468\) −14.5811 + 35.0722i −0.674010 + 1.62121i
\(469\) −0.0504157 + 0.130195i −0.00232798 + 0.00601183i
\(470\) 0 0
\(471\) 20.3368 + 11.7415i 0.937070 + 0.541018i
\(472\) 13.2462 + 15.1642i 0.609705 + 0.697989i
\(473\) −19.2870 + 11.1353i −0.886816 + 0.512003i
\(474\) −1.95140 + 0.126622i −0.0896309 + 0.00581596i
\(475\) 0 0
\(476\) 4.33127 17.7100i 0.198523 0.811734i
\(477\) 27.8947i 1.27721i
\(478\) −0.00401558 0.0618849i −0.000183668 0.00283055i
\(479\) −4.28200 7.41664i −0.195649 0.338875i 0.751464 0.659774i \(-0.229348\pi\)
−0.947113 + 0.320900i \(0.896015\pi\)
\(480\) 0 0
\(481\) −30.7409 17.7483i −1.40166 0.809251i
\(482\) −2.70638 + 1.80579i −0.123272 + 0.0822515i
\(483\) 16.4451 13.2373i 0.748280 0.602319i
\(484\) −4.60495 + 11.0764i −0.209316 + 0.503473i
\(485\) 0 0
\(486\) −0.253510 0.125223i −0.0114994 0.00568023i
\(487\) −15.8225 27.4054i −0.716987 1.24186i −0.962188 0.272386i \(-0.912187\pi\)
0.245201 0.969472i \(-0.421146\pi\)
\(488\) 6.78945 + 2.31955i 0.307344 + 0.105001i
\(489\) 32.5346i 1.47126i
\(490\) 0 0
\(491\) 35.7781i 1.61464i −0.590113 0.807321i \(-0.700917\pi\)
0.590113 0.807321i \(-0.299083\pi\)
\(492\) −5.32079 6.95297i −0.239880 0.313464i
\(493\) −12.7155 22.0239i −0.572677 0.991906i
\(494\) 4.07621 8.25214i 0.183397 0.371281i
\(495\) 0 0
\(496\) 13.8004 + 13.8727i 0.619658 + 0.622903i
\(497\) 0.437649 0.352280i 0.0196312 0.0158019i
\(498\) −25.6921 38.5053i −1.15129 1.72546i
\(499\) −35.7797 20.6574i −1.60172 0.924752i −0.991144 0.132793i \(-0.957605\pi\)
−0.610574 0.791959i \(-0.709061\pi\)
\(500\) 0 0
\(501\) 17.6105 + 30.5023i 0.786780 + 1.36274i
\(502\) 8.92485 0.579114i 0.398336 0.0258471i
\(503\) 29.0170i 1.29381i −0.762572 0.646903i \(-0.776064\pi\)
0.762572 0.646903i \(-0.223936\pi\)
\(504\) −42.1219 + 15.3059i −1.87626 + 0.681779i
\(505\) 0 0
\(506\) 0.545071 + 8.40021i 0.0242314 + 0.373435i
\(507\) −7.64448 + 4.41354i −0.339503 + 0.196012i
\(508\) −5.99649 + 0.781489i −0.266051 + 0.0346730i
\(509\) −17.3474 10.0155i −0.768910 0.443931i 0.0635754 0.997977i \(-0.479750\pi\)
−0.832486 + 0.554046i \(0.813083\pi\)
\(510\) 0 0
\(511\) −14.2109 + 36.6986i −0.628654 + 1.62345i
\(512\) −18.8875 + 12.4604i −0.834720 + 0.550675i
\(513\) −15.9273 9.19562i −0.703206 0.405996i
\(514\) −8.91962 + 18.0575i −0.393428 + 0.796481i
\(515\) 0 0
\(516\) −47.4171 + 36.2861i −2.08742 + 1.59741i
\(517\) −13.7031 −0.602663
\(518\) −9.09698 40.8835i −0.399698 1.79632i
\(519\) 49.4317i 2.16981i
\(520\) 0 0
\(521\) 18.5712 10.7221i 0.813620 0.469743i −0.0345917 0.999402i \(-0.511013\pi\)
0.848211 + 0.529658i \(0.177680\pi\)
\(522\) −27.6854 + 56.0481i −1.21176 + 2.45316i
\(523\) −35.5105 20.5020i −1.55277 0.896491i −0.997915 0.0645418i \(-0.979441\pi\)
−0.554852 0.831949i \(-0.687225\pi\)
\(524\) −12.0582 + 29.0040i −0.526766 + 1.26704i
\(525\) 0 0
\(526\) −9.22165 13.8207i −0.402083 0.602611i
\(527\) 8.42768 14.5972i 0.367116 0.635863i
\(528\) 7.00973 25.8901i 0.305059 1.12672i
\(529\) 7.95856 + 13.7846i 0.346024 + 0.599332i
\(530\) 0 0
\(531\) −42.6333 −1.85013
\(532\) 10.4258 3.04025i 0.452016 0.131811i
\(533\) 4.63015i 0.200554i
\(534\) 29.7045 1.92746i 1.28544 0.0834094i
\(535\) 0 0
\(536\) −0.0981906 0.112408i −0.00424119 0.00485530i
\(537\) −13.6559 + 23.6528i −0.589297 + 1.02069i
\(538\) −9.98673 + 6.66349i −0.430559 + 0.287284i
\(539\) 4.75052 + 14.9178i 0.204620 + 0.642557i
\(540\) 0 0
\(541\) −1.72641 + 2.99023i −0.0742242 + 0.128560i −0.900749 0.434341i \(-0.856981\pi\)
0.826524 + 0.562901i \(0.190315\pi\)
\(542\) −4.99409 + 10.1104i −0.214514 + 0.434277i
\(543\) 24.8479 + 43.0377i 1.06632 + 1.84693i
\(544\) 14.6119 + 12.8989i 0.626479 + 0.553035i
\(545\) 0 0
\(546\) 33.9352 + 10.6708i 1.45229 + 0.456666i
\(547\) 28.2607 1.20834 0.604170 0.796855i \(-0.293505\pi\)
0.604170 + 0.796855i \(0.293505\pi\)
\(548\) 15.2704 11.6858i 0.652321 0.499191i
\(549\) −13.1564 + 7.59584i −0.561500 + 0.324182i
\(550\) 0 0
\(551\) 7.57413 13.1188i 0.322669 0.558879i
\(552\) 4.35953 + 22.1434i 0.185554 + 0.942487i
\(553\) 0.187349 + 1.20576i 0.00796691 + 0.0512741i
\(554\) 15.9931 10.6711i 0.679481 0.453374i
\(555\) 0 0
\(556\) −14.8692 + 1.93781i −0.630593 + 0.0821816i
\(557\) 1.79833 1.03826i 0.0761976 0.0439927i −0.461417 0.887183i \(-0.652659\pi\)
0.537615 + 0.843191i \(0.319326\pi\)
\(558\) −41.3459 + 2.68285i −1.75031 + 0.113574i
\(559\) 31.5762 1.33553
\(560\) 0 0
\(561\) −23.1040 −0.975453
\(562\) −13.3826 + 0.868371i −0.564513 + 0.0366300i
\(563\) −39.7588 + 22.9547i −1.67563 + 0.967426i −0.711240 + 0.702949i \(0.751866\pi\)
−0.964392 + 0.264477i \(0.914801\pi\)
\(564\) −36.4303 + 4.74776i −1.53399 + 0.199917i
\(565\) 0 0
\(566\) −25.3502 + 16.9145i −1.06555 + 0.710971i
\(567\) 8.50292 21.9581i 0.357089 0.922154i
\(568\) 0.116019 + 0.589295i 0.00486803 + 0.0247263i
\(569\) 3.96413 6.86607i 0.166185 0.287840i −0.770891 0.636968i \(-0.780189\pi\)
0.937075 + 0.349127i \(0.113522\pi\)
\(570\) 0 0
\(571\) −18.3314 + 10.5837i −0.767147 + 0.442912i −0.831856 0.554992i \(-0.812721\pi\)
0.0647092 + 0.997904i \(0.479388\pi\)
\(572\) −11.2648 + 8.62041i −0.471003 + 0.360438i
\(573\) 8.97330 0.374865
\(574\) −4.02506 + 3.69404i −0.168003 + 0.154186i
\(575\) 0 0
\(576\) 6.43964 47.4762i 0.268318 1.97817i
\(577\) 5.16573 + 8.94731i 0.215052 + 0.372481i 0.953289 0.302061i \(-0.0976745\pi\)
−0.738237 + 0.674542i \(0.764341\pi\)
\(578\) −3.21207 + 6.50272i −0.133604 + 0.270478i
\(579\) 22.0496 38.1911i 0.916351 1.58717i
\(580\) 0 0
\(581\) −22.5008 + 18.1117i −0.933490 + 0.751402i
\(582\) 0.654109 0.436444i 0.0271137 0.0180912i
\(583\) −5.20871 + 9.02174i −0.215723 + 0.373642i
\(584\) −27.6774 31.6851i −1.14530 1.31114i
\(585\) 0 0
\(586\) 40.8550 2.65099i 1.68770 0.109511i
\(587\) 20.4660i 0.844722i 0.906428 + 0.422361i \(0.138799\pi\)
−0.906428 + 0.422361i \(0.861201\pi\)
\(588\) 17.7981 + 38.0138i 0.733980 + 1.56766i
\(589\) 10.0401 0.413694
\(590\) 0 0
\(591\) 7.22175 + 12.5084i 0.297063 + 0.514529i
\(592\) 43.2191 + 11.7016i 1.77629 + 0.480931i
\(593\) 22.4236 38.8389i 0.920828 1.59492i 0.122692 0.992445i \(-0.460847\pi\)
0.798136 0.602477i \(-0.205819\pi\)
\(594\) 15.7315 + 23.5772i 0.645471 + 0.967383i
\(595\) 0 0
\(596\) 4.99158 12.0064i 0.204463 0.491800i
\(597\) −3.30884 1.91036i −0.135422 0.0781857i
\(598\) 5.28578 10.7009i 0.216152 0.437592i
\(599\) −14.1499 + 8.16942i −0.578147 + 0.333793i −0.760397 0.649459i \(-0.774995\pi\)
0.182250 + 0.983252i \(0.441662\pi\)
\(600\) 0 0
\(601\) 39.8029i 1.62359i −0.583941 0.811796i \(-0.698490\pi\)
0.583941 0.811796i \(-0.301510\pi\)
\(602\) 25.1922 + 27.4496i 1.02676 + 1.11876i
\(603\) 0.316030 0.0128697
\(604\) −37.6024 + 28.7754i −1.53002 + 1.17085i
\(605\) 0 0
\(606\) 11.7342 23.7554i 0.476668 0.964998i
\(607\) −8.14710 4.70373i −0.330681 0.190919i 0.325463 0.945555i \(-0.394480\pi\)
−0.656143 + 0.754636i \(0.727813\pi\)
\(608\) −2.30213 + 11.3793i −0.0933636 + 0.461493i
\(609\) 54.5975 + 21.1420i 2.21240 + 0.856716i
\(610\) 0 0
\(611\) 16.8259 + 9.71441i 0.680701 + 0.393003i
\(612\) −40.9233 + 5.33330i −1.65423 + 0.215586i
\(613\) −11.8091 + 6.81796i −0.476963 + 0.275375i −0.719150 0.694855i \(-0.755469\pi\)
0.242187 + 0.970230i \(0.422135\pi\)
\(614\) −0.733121 11.2983i −0.0295863 0.455961i
\(615\) 0 0
\(616\) −16.4811 2.91505i −0.664044 0.117451i
\(617\) 39.1144i 1.57469i 0.616515 + 0.787343i \(0.288544\pi\)
−0.616515 + 0.787343i \(0.711456\pi\)
\(618\) 48.3124 3.13489i 1.94341 0.126104i
\(619\) 9.50950 + 16.4709i 0.382219 + 0.662023i 0.991379 0.131024i \(-0.0418266\pi\)
−0.609160 + 0.793047i \(0.708493\pi\)
\(620\) 0 0
\(621\) −20.6535 11.9243i −0.828798 0.478507i
\(622\) 10.7948 + 16.1785i 0.432833 + 0.648697i
\(623\) −2.85186 18.3542i −0.114257 0.735347i
\(624\) −26.9611 + 26.8206i −1.07931 + 1.07368i
\(625\) 0 0
\(626\) −6.66143 + 13.4858i −0.266244 + 0.539002i
\(627\) −6.88108 11.9184i −0.274804 0.475974i
\(628\) 9.52000 + 12.4403i 0.379889 + 0.496422i
\(629\) 38.5683i 1.53782i
\(630\) 0 0
\(631\) 16.4987i 0.656802i 0.944538 + 0.328401i \(0.106510\pi\)
−0.944538 + 0.328401i \(0.893490\pi\)
\(632\) −1.23443 0.421729i −0.0491028 0.0167755i
\(633\) 5.56134 + 9.63252i 0.221043 + 0.382858i
\(634\) −21.5344 10.6371i −0.855241 0.422452i
\(635\) 0 0
\(636\) −10.7218 + 25.7893i −0.425146 + 1.02261i
\(637\) 4.74245 21.6851i 0.187903 0.859196i
\(638\) −19.4197 + 12.9575i −0.768835 + 0.512993i
\(639\) −1.10134 0.635857i −0.0435682 0.0251541i
\(640\) 0 0
\(641\) −13.4723 23.3347i −0.532124 0.921665i −0.999297 0.0374991i \(-0.988061\pi\)
0.467173 0.884166i \(-0.345272\pi\)
\(642\) 0.714889 + 11.0173i 0.0282144 + 0.434818i
\(643\) 43.6730i 1.72229i −0.508355 0.861147i \(-0.669746\pi\)
0.508355 0.861147i \(-0.330254\pi\)
\(644\) 13.5195 3.94241i 0.532745 0.155353i
\(645\) 0 0
\(646\) 9.97948 0.647547i 0.392637 0.0254774i
\(647\) 24.3422 14.0540i 0.956989 0.552518i 0.0617443 0.998092i \(-0.480334\pi\)
0.895245 + 0.445574i \(0.147000\pi\)
\(648\) 16.5604 + 18.9583i 0.650556 + 0.744754i
\(649\) −13.7885 7.96080i −0.541246 0.312489i
\(650\) 0 0
\(651\) 5.95797 + 38.3448i 0.233511 + 1.50285i
\(652\) 8.33161 20.0402i 0.326291 0.784836i
\(653\) −36.0902 20.8367i −1.41232 0.815403i −0.416713 0.909038i \(-0.636818\pi\)
−0.995607 + 0.0936346i \(0.970151\pi\)
\(654\) −3.80872 1.88134i −0.148933 0.0735664i
\(655\) 0 0
\(656\) −1.49688 5.64538i −0.0584435 0.220415i
\(657\) 89.0808 3.47537
\(658\) 4.97918 + 22.3773i 0.194109 + 0.872359i
\(659\) 47.0951i 1.83457i −0.398236 0.917283i \(-0.630378\pi\)
0.398236 0.917283i \(-0.369622\pi\)
\(660\) 0 0
\(661\) −10.0792 + 5.81924i −0.392036 + 0.226342i −0.683042 0.730379i \(-0.739343\pi\)
0.291006 + 0.956721i \(0.406010\pi\)
\(662\) 10.5623 + 5.21735i 0.410517 + 0.202778i
\(663\) 28.3690 + 16.3789i 1.10176 + 0.636103i
\(664\) −5.96486 30.2973i −0.231481 1.17577i
\(665\) 0 0
\(666\) −78.8628 + 52.6200i −3.05587 + 2.03898i
\(667\) 9.82168 17.0116i 0.380297 0.658693i
\(668\) 3.03633 + 23.2982i 0.117479 + 0.901435i
\(669\) −19.4251 33.6452i −0.751017 1.30080i
\(670\) 0 0
\(671\) −5.67340 −0.219019
\(672\) −44.8257 2.03952i −1.72919 0.0786763i
\(673\) 14.9849i 0.577626i −0.957385 0.288813i \(-0.906739\pi\)
0.957385 0.288813i \(-0.0932606\pi\)
\(674\) 2.47953 + 38.2126i 0.0955080 + 1.47189i
\(675\) 0 0
\(676\) −5.83899 + 0.760963i −0.224576 + 0.0292678i
\(677\) −11.5093 + 19.9347i −0.442339 + 0.766154i −0.997863 0.0653470i \(-0.979185\pi\)
0.555524 + 0.831501i \(0.312518\pi\)
\(678\) 34.9676 + 52.4067i 1.34292 + 2.01267i
\(679\) −0.307673 0.382232i −0.0118074 0.0146687i
\(680\) 0 0
\(681\) −13.3305 + 23.0892i −0.510827 + 0.884779i
\(682\) −13.8731 6.85272i −0.531228 0.262404i
\(683\) 18.6347 + 32.2762i 0.713037 + 1.23502i 0.963712 + 0.266945i \(0.0860142\pi\)
−0.250675 + 0.968071i \(0.580652\pi\)
\(684\) −14.9394 19.5222i −0.571223 0.746448i
\(685\) 0 0
\(686\) 22.6348 13.1782i 0.864201 0.503146i
\(687\) 38.8132 1.48082
\(688\) −38.4997 + 10.2083i −1.46779 + 0.389187i
\(689\) 12.7914 7.38510i 0.487312 0.281350i
\(690\) 0 0
\(691\) 13.9969 24.2433i 0.532467 0.922260i −0.466815 0.884355i \(-0.654598\pi\)
0.999281 0.0379044i \(-0.0120682\pi\)
\(692\) −12.6587 + 30.4483i −0.481211 + 1.15747i
\(693\) 27.6062 22.2213i 1.04867 0.844118i
\(694\) −21.7991 32.6708i −0.827483 1.24017i
\(695\) 0 0
\(696\) −47.1387 + 41.1765i −1.78679 + 1.56079i
\(697\) −4.35683 + 2.51542i −0.165027 + 0.0952782i
\(698\) −0.882819 13.6053i −0.0334152 0.514968i
\(699\) −45.6203 −1.72552
\(700\) 0 0
\(701\) 29.2334 1.10413 0.552065 0.833801i \(-0.313840\pi\)
0.552065 + 0.833801i \(0.313840\pi\)
\(702\) −2.60216 40.1024i −0.0982121 1.51357i
\(703\) 19.8957 11.4868i 0.750381 0.433233i
\(704\) 10.9478 14.1523i 0.412611 0.533386i
\(705\) 0 0
\(706\) −12.8053 19.1915i −0.481932 0.722283i
\(707\) −15.4175 5.97017i −0.579835 0.224532i
\(708\) −39.4155 16.3868i −1.48133 0.615852i
\(709\) −2.08074 + 3.60395i −0.0781440 + 0.135349i −0.902449 0.430796i \(-0.858233\pi\)
0.824305 + 0.566146i \(0.191566\pi\)
\(710\) 0 0
\(711\) 2.39203 1.38104i 0.0897082 0.0517931i
\(712\) 18.7906 + 6.41962i 0.704207 + 0.240585i
\(713\) 13.0194 0.487580
\(714\) 8.39509 + 37.7291i 0.314178 + 1.41197i
\(715\) 0 0
\(716\) −14.4687 + 11.0723i −0.540722 + 0.413790i
\(717\) 0.0657362 + 0.113858i 0.00245496 + 0.00425212i
\(718\) −2.03137 1.00341i −0.0758102 0.0374470i
\(719\) −21.1113 + 36.5658i −0.787318 + 1.36368i 0.140286 + 0.990111i \(0.455198\pi\)
−0.927604 + 0.373564i \(0.878135\pi\)
\(720\) 0 0
\(721\) −4.63835 29.8519i −0.172741 1.11174i
\(722\) −11.6074 17.3962i −0.431982 0.647421i
\(723\) 3.44874 5.97339i 0.128260 0.222153i
\(724\) 4.28415 + 32.8730i 0.159219 + 1.22172i
\(725\) 0 0
\(726\) −1.64667 25.3772i −0.0611138 0.941837i
\(727\) 27.2605i 1.01104i −0.862816 0.505519i \(-0.831301\pi\)
0.862816 0.505519i \(-0.168699\pi\)
\(728\) 18.1704 + 15.2631i 0.673439 + 0.565689i
\(729\) 27.2992 1.01108
\(730\) 0 0
\(731\) 17.1544 + 29.7122i 0.634477 + 1.09895i
\(732\) −15.0830 + 1.96568i −0.557482 + 0.0726535i
\(733\) 7.65300 13.2554i 0.282670 0.489599i −0.689372 0.724408i \(-0.742113\pi\)
0.972041 + 0.234809i \(0.0754466\pi\)
\(734\) 1.48286 0.989415i 0.0547333 0.0365200i
\(735\) 0 0
\(736\) −2.98526 + 14.7560i −0.110038 + 0.543915i
\(737\) 0.102211 + 0.0590113i 0.00376498 + 0.00217371i
\(738\) 11.0876 + 5.47680i 0.408140 + 0.201604i
\(739\) 42.5694 24.5774i 1.56594 0.904096i 0.569305 0.822126i \(-0.307212\pi\)
0.996635 0.0819692i \(-0.0261209\pi\)
\(740\) 0 0
\(741\) 19.5125i 0.716810i
\(742\) 16.6252 + 5.22771i 0.610331 + 0.191915i
\(743\) 35.2067 1.29161 0.645805 0.763503i \(-0.276522\pi\)
0.645805 + 0.763503i \(0.276522\pi\)
\(744\) −39.2564 13.4116i −1.43921 0.491692i
\(745\) 0 0
\(746\) −11.7000 5.77932i −0.428369 0.211596i
\(747\) 56.6229 + 32.6913i 2.07173 + 1.19611i
\(748\) −14.2313 5.91659i −0.520349 0.216332i
\(749\) 6.80752 1.05774i 0.248741 0.0386491i
\(750\) 0 0
\(751\) −0.584292 0.337341i −0.0213211 0.0123098i 0.489302 0.872115i \(-0.337252\pi\)
−0.510623 + 0.859805i \(0.670585\pi\)
\(752\) −23.6557 6.40478i −0.862635 0.233558i
\(753\) −16.4203 + 9.48027i −0.598389 + 0.345480i
\(754\) 33.0310 2.14331i 1.20292 0.0780548i
\(755\) 0 0
\(756\) 32.7855 34.2567i 1.19240 1.24590i
\(757\) 45.8640i 1.66695i −0.552553 0.833477i \(-0.686346\pi\)
0.552553 0.833477i \(-0.313654\pi\)
\(758\) 0.232152 + 3.57774i 0.00843214 + 0.129949i
\(759\) −8.92298 15.4550i −0.323883 0.560983i
\(760\) 0 0
\(761\) 18.9229 + 10.9252i 0.685956 + 0.396037i 0.802095 0.597196i \(-0.203719\pi\)
−0.116139 + 0.993233i \(0.537052\pi\)
\(762\) 10.6642 7.11551i 0.386322 0.257768i
\(763\) −0.957201 + 2.47190i −0.0346530 + 0.0894886i
\(764\) 5.52726 + 2.29793i 0.199969 + 0.0831360i
\(765\) 0 0
\(766\) 1.67988 + 0.829791i 0.0606967 + 0.0299816i
\(767\) 11.2871 + 19.5499i 0.407554 + 0.705905i
\(768\) 24.2018 41.4177i 0.873307 1.49453i
\(769\) 16.0214i 0.577745i −0.957368 0.288872i \(-0.906720\pi\)
0.957368 0.288872i \(-0.0932803\pi\)
\(770\) 0 0
\(771\) 42.6976i 1.53772i
\(772\) 23.3620 17.8779i 0.840816 0.643439i
\(773\) 21.1707 + 36.6688i 0.761458 + 1.31888i 0.942099 + 0.335335i \(0.108850\pi\)
−0.180641 + 0.983549i \(0.557817\pi\)
\(774\) 37.3500 75.6139i 1.34252 2.71789i
\(775\) 0 0
\(776\) 0.514676 0.101328i 0.0184758 0.00363746i
\(777\) 55.6765 + 69.1687i 1.99738 + 2.48141i
\(778\) −25.2957 37.9113i −0.906896 1.35919i
\(779\) −2.59519 1.49833i −0.0929824 0.0536834i
\(780\) 0 0
\(781\) −0.237464 0.411299i −0.00849712 0.0147174i
\(782\) 12.9408 0.839700i 0.462762 0.0300276i
\(783\) 66.1408i 2.36368i
\(784\) 1.22829 + 27.9730i 0.0438675 + 0.999037i
\(785\) 0 0
\(786\) −4.31187 66.4511i −0.153799 2.37023i
\(787\) −3.79528 + 2.19121i −0.135287 + 0.0781081i −0.566116 0.824326i \(-0.691555\pi\)
0.430829 + 0.902434i \(0.358221\pi\)
\(788\) 1.24514 + 9.55417i 0.0443563 + 0.340353i
\(789\) 30.5044 + 17.6117i 1.08599 + 0.626994i
\(790\) 0 0
\(791\) 30.6241 24.6506i 1.08887 0.876473i
\(792\) 7.31828 + 37.1718i 0.260044 + 1.32084i
\(793\) 6.96627 + 4.02198i 0.247380 + 0.142825i
\(794\) −22.0302 + 44.5995i −0.781824 + 1.58278i
\(795\) 0 0
\(796\) −1.54892 2.02406i −0.0549001 0.0717409i
\(797\) −53.6019 −1.89868 −0.949339 0.314255i \(-0.898245\pi\)
−0.949339 + 0.314255i \(0.898245\pi\)
\(798\) −16.9625 + 15.5675i −0.600466 + 0.551085i
\(799\) 21.1101i 0.746822i
\(800\) 0 0
\(801\) −36.4118 + 21.0224i −1.28655 + 0.742789i
\(802\) 19.9950 40.4792i 0.706048 1.42937i
\(803\) 28.8106 + 16.6338i 1.01670 + 0.586995i
\(804\) 0.292177 + 0.121471i 0.0103043 + 0.00428394i
\(805\) 0 0
\(806\) 12.1765 + 18.2492i 0.428900 + 0.642802i
\(807\) 12.7261 22.0422i 0.447980 0.775924i
\(808\) 13.3113 11.6276i 0.468289 0.409058i
\(809\) −0.754693 1.30717i −0.0265336 0.0459575i 0.852454 0.522803i \(-0.175114\pi\)
−0.878987 + 0.476845i \(0.841780\pi\)
\(810\) 0 0
\(811\) −43.1894 −1.51658 −0.758292 0.651915i \(-0.773966\pi\)
−0.758292 + 0.651915i \(0.773966\pi\)
\(812\) 28.2161 + 27.0043i 0.990192 + 0.947667i
\(813\) 23.9063i 0.838432i
\(814\) −35.3315 + 2.29258i −1.23837 + 0.0803550i
\(815\) 0 0
\(816\) −39.8845 10.7987i −1.39624 0.378031i
\(817\) −10.2182 + 17.6984i −0.357489 + 0.619189i
\(818\) 19.3095 12.8840i 0.675142 0.450478i
\(819\) −49.6503 + 7.71460i −1.73492 + 0.269570i
\(820\) 0 0
\(821\) 4.56478 7.90644i 0.159312 0.275937i −0.775309 0.631582i \(-0.782406\pi\)
0.934621 + 0.355646i \(0.115739\pi\)
\(822\) −18.0538 + 36.5493i −0.629698 + 1.27480i
\(823\) −0.190193 0.329424i −0.00662972 0.0114830i 0.862692 0.505731i \(-0.168777\pi\)
−0.869321 + 0.494248i \(0.835444\pi\)
\(824\) 30.5616 + 10.4411i 1.06467 + 0.363732i
\(825\) 0 0
\(826\) −7.98985 + 25.4094i −0.278003 + 0.884106i
\(827\) −23.9044 −0.831236 −0.415618 0.909539i \(-0.636435\pi\)
−0.415618 + 0.909539i \(0.636435\pi\)
\(828\) −19.3725 25.3152i −0.673243 0.879763i
\(829\) −35.8241 + 20.6830i −1.24422 + 0.718352i −0.969951 0.243301i \(-0.921770\pi\)
−0.274271 + 0.961653i \(0.588436\pi\)
\(830\) 0 0
\(831\) −20.3800 + 35.2992i −0.706974 + 1.22452i
\(832\) −23.4755 + 9.61631i −0.813866 + 0.333386i
\(833\) 22.9814 7.31833i 0.796259 0.253565i
\(834\) 26.4434 17.6439i 0.915659 0.610959i
\(835\) 0 0
\(836\) −1.18640 9.10347i −0.0410327 0.314850i
\(837\) 37.9642 21.9187i 1.31224 0.757620i
\(838\) 16.7451 1.08655i 0.578448 0.0375343i
\(839\) 46.4174 1.60251 0.801253 0.598326i \(-0.204167\pi\)
0.801253 + 0.598326i \(0.204167\pi\)
\(840\) 0 0
\(841\) 25.4780 0.878551
\(842\) −14.5969 + 0.947163i −0.503043 + 0.0326414i
\(843\) 24.6219 14.2155i 0.848025 0.489607i
\(844\) 0.958861 + 7.35749i 0.0330054 + 0.253255i
\(845\) 0 0
\(846\) 43.1651 28.8013i 1.48405 0.990208i
\(847\) −15.6804 + 2.43641i −0.538786 + 0.0837159i
\(848\) −13.2085 + 13.1397i −0.453582 + 0.451219i
\(849\) 32.3038 55.9518i 1.10866 1.92026i
\(850\) 0 0
\(851\) 25.7996 14.8954i 0.884398 0.510608i
\(852\) −0.773811 1.01118i −0.0265103 0.0346425i
\(853\) 10.5928 0.362692 0.181346 0.983419i \(-0.441955\pi\)
0.181346 + 0.983419i \(0.441955\pi\)
\(854\) 2.06149 + 9.26471i 0.0705427 + 0.317032i
\(855\) 0 0
\(856\) −2.38101 + 6.96937i −0.0813814 + 0.238208i
\(857\) −0.141688 0.245410i −0.00483996 0.00838305i 0.863595 0.504186i \(-0.168207\pi\)
−0.868435 + 0.495803i \(0.834874\pi\)
\(858\) 13.3180 26.9618i 0.454669 0.920461i
\(859\) 4.93861 8.55393i 0.168503 0.291856i −0.769391 0.638779i \(-0.779440\pi\)
0.937894 + 0.346922i \(0.112773\pi\)
\(860\) 0 0
\(861\) 4.18236 10.8006i 0.142535 0.368084i
\(862\) −34.8883 + 23.2787i −1.18830 + 0.792875i
\(863\) −16.2817 + 28.2007i −0.554235 + 0.959963i 0.443728 + 0.896162i \(0.353656\pi\)
−0.997963 + 0.0638012i \(0.979678\pi\)
\(864\) 16.1374 + 48.0541i 0.549006 + 1.63483i
\(865\) 0 0
\(866\) −41.5057 + 2.69321i −1.41042 + 0.0915192i
\(867\) 15.3759i 0.522195i
\(868\) −6.14961 + 25.1449i −0.208731 + 0.853473i
\(869\) 1.03151 0.0349916
\(870\) 0 0
\(871\) −0.0836685 0.144918i −0.00283500 0.00491036i
\(872\) −1.86426 2.13420i −0.0631319 0.0722732i
\(873\) −0.555343 + 0.961883i −0.0187955 + 0.0325548i
\(874\) 4.28733 + 6.42551i 0.145021 + 0.217346i
\(875\) 0 0
\(876\) 82.3573 + 34.2396i 2.78260 + 1.15685i
\(877\) −32.9700 19.0353i −1.11332 0.642775i −0.173632 0.984811i \(-0.555550\pi\)
−0.939687 + 0.342036i \(0.888884\pi\)
\(878\) −5.52652 + 11.1883i −0.186511 + 0.377585i
\(879\) −75.1666 + 43.3975i −2.53531 + 1.46376i
\(880\) 0 0
\(881\) 27.7529i 0.935019i −0.883988 0.467509i \(-0.845151\pi\)
0.883988 0.467509i \(-0.154849\pi\)
\(882\) −46.3186 37.0068i −1.55963 1.24608i
\(883\) −44.1707 −1.48646 −0.743232 0.669034i \(-0.766708\pi\)
−0.743232 + 0.669034i \(0.766708\pi\)
\(884\) 13.2800 + 17.3537i 0.446656 + 0.583669i
\(885\) 0 0
\(886\) −12.2551 + 24.8100i −0.411717 + 0.833508i
\(887\) −17.4310 10.0638i −0.585275 0.337909i 0.177952 0.984039i \(-0.443053\pi\)
−0.763227 + 0.646130i \(0.776386\pi\)
\(888\) −93.1358 + 18.3363i −3.12543 + 0.615326i
\(889\) −5.01611 6.23167i −0.168235 0.209003i
\(890\) 0 0
\(891\) −17.2385 9.95263i −0.577510 0.333426i
\(892\) −3.34919 25.6988i −0.112139 0.860461i
\(893\) −10.8898 + 6.28724i −0.364414 + 0.210394i
\(894\) 1.78493 + 27.5079i 0.0596968 + 0.920000i
\(895\) 0 0
\(896\) −27.0889 12.7355i −0.904976 0.425462i
\(897\) 25.3027i 0.844831i
\(898\) 7.08882 0.459978i 0.236557 0.0153497i
\(899\) 18.0537 + 31.2699i 0.602124 + 1.04291i
\(900\) 0 0
\(901\) 13.8983 + 8.02418i 0.463019 + 0.267324i
\(902\) 2.56329 + 3.84167i 0.0853483 + 0.127913i
\(903\) −73.6569 28.5224i −2.45115 0.949167i
\(904\) 8.11832 + 41.2355i 0.270011 + 1.37147i
\(905\) 0 0
\(906\) 44.4561 90.0000i 1.47696 2.99005i
\(907\) 7.50854 + 13.0052i 0.249317 + 0.431830i 0.963336 0.268296i \(-0.0864606\pi\)
−0.714020 + 0.700126i \(0.753127\pi\)
\(908\) −14.1240 + 10.8084i −0.468720 + 0.358690i
\(909\) 37.4239i 1.24127i
\(910\) 0 0
\(911\) 24.0198i 0.795811i 0.917426 + 0.397906i \(0.130263\pi\)
−0.917426 + 0.397906i \(0.869737\pi\)
\(912\) −6.30821 23.7909i −0.208886 0.787795i
\(913\) 12.2087 + 21.1461i 0.404049 + 0.699834i
\(914\) −35.3063 17.4398i −1.16783 0.576857i
\(915\) 0 0
\(916\) 23.9076 + 9.93946i 0.789931 + 0.328409i
\(917\) −41.0597 + 6.37981i −1.35591 + 0.210680i
\(918\) 36.3214 24.2349i 1.19878 0.799871i
\(919\) −49.7575 28.7275i −1.64135 0.947632i −0.980355 0.197239i \(-0.936802\pi\)
−0.660992 0.750393i \(-0.729864\pi\)
\(920\) 0 0
\(921\) 12.0014 + 20.7870i 0.395459 + 0.684956i
\(922\) 1.81767 + 28.0124i 0.0598617 + 0.922541i
\(923\) 0.673370i 0.0221643i
\(924\) 34.0637 9.93325i 1.12061 0.326780i
\(925\) 0 0
\(926\) −50.3981 + 3.27022i −1.65618 + 0.107466i
\(927\) −59.2214 + 34.1915i −1.94509 + 1.12300i
\(928\) −39.5806 + 13.2919i −1.29930 + 0.436327i
\(929\) −3.45964 1.99743i −0.113507 0.0655334i 0.442172 0.896930i \(-0.354208\pi\)
−0.555679 + 0.831397i \(0.687542\pi\)
\(930\) 0 0
\(931\) 10.6198 + 9.67552i 0.348049 + 0.317102i
\(932\) −28.1006 11.6827i −0.920466 0.382678i
\(933\) −35.7083 20.6162i −1.16904 0.674945i
\(934\) 28.6700 + 14.1617i 0.938110 + 0.463386i
\(935\) 0 0
\(936\) 17.3658 50.8307i 0.567619 1.66145i
\(937\) 43.2204 1.41195 0.705975 0.708237i \(-0.250509\pi\)
0.705975 + 0.708237i \(0.250509\pi\)
\(938\) 0.0592267 0.188353i 0.00193382 0.00614995i
\(939\) 31.8878i 1.04062i
\(940\) 0 0
\(941\) −30.6731 + 17.7091i −0.999915 + 0.577301i −0.908223 0.418486i \(-0.862561\pi\)
−0.0916918 + 0.995787i \(0.529227\pi\)
\(942\) −29.7754 14.7078i −0.970136 0.479206i
\(943\) −3.36529 1.94295i −0.109589 0.0632712i
\(944\) −20.0823 20.1874i −0.653622 0.657044i
\(945\) 0 0
\(946\) 26.1990 17.4809i 0.851802 0.568352i
\(947\) 24.3466 42.1696i 0.791159 1.37033i −0.134091 0.990969i \(-0.542812\pi\)
0.925250 0.379358i \(-0.123855\pi\)
\(948\) 2.74231 0.357390i 0.0890662 0.0116075i
\(949\) −23.5840 40.8488i −0.765571 1.32601i
\(950\) 0 0
\(951\) 50.9190 1.65116
\(952\) −4.49073 + 25.3897i −0.145546 + 0.822886i
\(953\) 47.5308i 1.53967i 0.638241 + 0.769837i \(0.279662\pi\)
−0.638241 + 0.769837i \(0.720338\pi\)
\(954\) −2.55440 39.3663i −0.0827016 1.27453i
\(955\) 0 0
\(956\) 0.0113339 + 0.0869671i 0.000366566 + 0.00281272i
\(957\) 24.7466 42.8623i 0.799943 1.38554i
\(958\) 6.72211 + 10.0746i 0.217182 + 0.325495i
\(959\) 23.7208 + 9.18550i 0.765986 + 0.296615i
\(960\) 0 0
\(961\) 3.53423 6.12147i 0.114008 0.197467i
\(962\) 45.0082 + 22.2321i 1.45112 + 0.716792i
\(963\) −7.79713 13.5050i −0.251259 0.435193i
\(964\) 3.65400 2.79624i 0.117688 0.0900609i
\(965\) 0 0
\(966\) −21.9960 + 20.1870i −0.707708 + 0.649508i
\(967\) −29.3643 −0.944292 −0.472146 0.881520i \(-0.656521\pi\)
−0.472146 + 0.881520i \(0.656521\pi\)
\(968\) 5.48442 16.0532i 0.176276 0.515970i
\(969\) −18.3607 + 10.6005i −0.589829 + 0.340538i
\(970\) 0 0
\(971\) −13.3188 + 23.0688i −0.427419 + 0.740312i −0.996643 0.0818708i \(-0.973911\pi\)
0.569224 + 0.822183i \(0.307244\pi\)
\(972\) 0.369231 + 0.153506i 0.0118431 + 0.00492370i
\(973\) −12.4382 15.4523i −0.398749 0.495379i
\(974\) 24.8391 + 37.2269i 0.795895 + 1.19283i
\(975\) 0 0
\(976\) −9.79398 2.65172i −0.313498 0.0848795i
\(977\) 13.3970 7.73476i 0.428608 0.247457i −0.270146 0.962819i \(-0.587072\pi\)
0.698753 + 0.715363i \(0.253739\pi\)
\(978\) 2.97928 + 45.9143i 0.0952668 + 1.46818i
\(979\) −15.7018 −0.501832
\(980\) 0 0
\(981\) 6.00019 0.191571
\(982\) 3.27629 + 50.4916i 0.104551 + 1.61125i
\(983\) −38.1277 + 22.0131i −1.21609 + 0.702107i −0.964078 0.265618i \(-0.914424\pi\)
−0.252007 + 0.967725i \(0.581091\pi\)
\(984\) 8.14565 + 9.32511i 0.259674 + 0.297274i
\(985\) 0 0
\(986\) 19.9615 + 29.9167i 0.635703 + 0.952743i
\(987\) −30.4743 37.8591i −0.970006 1.20507i
\(988\) −4.99686 + 12.0191i −0.158971 + 0.382378i
\(989\) −13.2503 + 22.9502i −0.421336 + 0.729775i
\(990\) 0 0
\(991\) 14.4776 8.35865i 0.459896 0.265521i −0.252104 0.967700i \(-0.581123\pi\)
0.712001 + 0.702179i \(0.247789\pi\)
\(992\) −20.7462 18.3141i −0.658692 0.581472i
\(993\) −24.9751 −0.792560
\(994\) −0.585370 + 0.537230i −0.0185668 + 0.0170399i
\(995\) 0 0
\(996\) 39.7839 + 51.9877i 1.26060 + 1.64729i
\(997\) 13.7897 + 23.8844i 0.436723 + 0.756427i 0.997435 0.0715845i \(-0.0228056\pi\)
−0.560711 + 0.828011i \(0.689472\pi\)
\(998\) 52.3856 + 25.8762i 1.65824 + 0.819098i
\(999\) 50.1540 86.8693i 1.58680 2.74842i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.t.d.299.1 32
4.3 odd 2 inner 700.2.t.d.299.6 32
5.2 odd 4 700.2.p.c.551.9 32
5.3 odd 4 140.2.o.a.131.8 yes 32
5.4 even 2 700.2.t.c.299.16 32
7.3 odd 6 700.2.t.c.199.11 32
20.3 even 4 140.2.o.a.131.3 yes 32
20.7 even 4 700.2.p.c.551.14 32
20.19 odd 2 700.2.t.c.299.11 32
28.3 even 6 700.2.t.c.199.16 32
35.3 even 12 140.2.o.a.31.3 32
35.13 even 4 980.2.o.f.411.8 32
35.17 even 12 700.2.p.c.451.14 32
35.18 odd 12 980.2.o.f.31.3 32
35.23 odd 12 980.2.g.a.391.25 32
35.24 odd 6 inner 700.2.t.d.199.6 32
35.33 even 12 980.2.g.a.391.26 32
140.3 odd 12 140.2.o.a.31.8 yes 32
140.23 even 12 980.2.g.a.391.28 32
140.59 even 6 inner 700.2.t.d.199.1 32
140.83 odd 4 980.2.o.f.411.3 32
140.87 odd 12 700.2.p.c.451.9 32
140.103 odd 12 980.2.g.a.391.27 32
140.123 even 12 980.2.o.f.31.8 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.o.a.31.3 32 35.3 even 12
140.2.o.a.31.8 yes 32 140.3 odd 12
140.2.o.a.131.3 yes 32 20.3 even 4
140.2.o.a.131.8 yes 32 5.3 odd 4
700.2.p.c.451.9 32 140.87 odd 12
700.2.p.c.451.14 32 35.17 even 12
700.2.p.c.551.9 32 5.2 odd 4
700.2.p.c.551.14 32 20.7 even 4
700.2.t.c.199.11 32 7.3 odd 6
700.2.t.c.199.16 32 28.3 even 6
700.2.t.c.299.11 32 20.19 odd 2
700.2.t.c.299.16 32 5.4 even 2
700.2.t.d.199.1 32 140.59 even 6 inner
700.2.t.d.199.6 32 35.24 odd 6 inner
700.2.t.d.299.1 32 1.1 even 1 trivial
700.2.t.d.299.6 32 4.3 odd 2 inner
980.2.g.a.391.25 32 35.23 odd 12
980.2.g.a.391.26 32 35.33 even 12
980.2.g.a.391.27 32 140.103 odd 12
980.2.g.a.391.28 32 140.23 even 12
980.2.o.f.31.3 32 35.18 odd 12
980.2.o.f.31.8 32 140.123 even 12
980.2.o.f.411.3 32 140.83 odd 4
980.2.o.f.411.8 32 35.13 even 4