Properties

Label 700.5.o.c.549.1
Level $700$
Weight $5$
Character 700.549
Analytic conductor $72.359$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,5,Mod(549,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.549");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 700.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(72.3589741587\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 549.1
Character \(\chi\) \(=\) 700.549
Dual form 700.5.o.c.649.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-8.52174 + 14.7601i) q^{3} +(40.1198 + 28.1318i) q^{7} +(-104.740 - 181.415i) q^{9} +(-93.3277 + 161.648i) q^{11} +200.942 q^{13} +(-55.0227 + 95.3020i) q^{17} +(226.158 - 130.572i) q^{19} +(-757.119 + 352.440i) q^{21} +(-385.090 + 222.332i) q^{23} +2189.75 q^{27} -734.572 q^{29} +(-406.469 - 234.675i) q^{31} +(-1590.63 - 2755.05i) q^{33} +(-1743.27 + 1006.48i) q^{37} +(-1712.38 + 2965.92i) q^{39} +46.3418i q^{41} -2748.95i q^{43} +(-2145.32 - 3715.80i) q^{47} +(818.201 + 2257.29i) q^{49} +(-937.777 - 1624.28i) q^{51} +(-2851.55 - 1646.34i) q^{53} +4450.82i q^{57} +(207.675 + 119.901i) q^{59} +(-2363.68 + 1364.67i) q^{61} +(901.384 - 10224.9i) q^{63} +(4326.27 + 2497.77i) q^{67} -7578.62i q^{69} -2966.43 q^{71} +(-2081.39 + 3605.08i) q^{73} +(-8291.75 + 3859.82i) q^{77} +(1760.95 + 3050.05i) q^{79} +(-10176.5 + 17626.2i) q^{81} -2158.50 q^{83} +(6259.83 - 10842.3i) q^{87} +(-8809.09 + 5085.93i) q^{89} +(8061.77 + 5652.87i) q^{91} +(6927.64 - 3999.68i) q^{93} +12024.1 q^{97} +39100.6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 684 q^{9} - 300 q^{11} + 540 q^{19} - 190 q^{21} - 528 q^{29} - 2334 q^{31} - 852 q^{39} + 4092 q^{49} - 3902 q^{51} + 9414 q^{59} - 23598 q^{61} + 32820 q^{71} - 4890 q^{79} - 23710 q^{81} - 37764 q^{89}+ \cdots + 168180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −8.52174 + 14.7601i −0.946860 + 1.64001i −0.194876 + 0.980828i \(0.562430\pi\)
−0.751984 + 0.659181i \(0.770903\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 40.1198 + 28.1318i 0.818772 + 0.574119i
\(8\) 0 0
\(9\) −104.740 181.415i −1.29309 2.23969i
\(10\) 0 0
\(11\) −93.3277 + 161.648i −0.771303 + 1.33594i 0.165546 + 0.986202i \(0.447061\pi\)
−0.936849 + 0.349734i \(0.886272\pi\)
\(12\) 0 0
\(13\) 200.942 1.18901 0.594504 0.804093i \(-0.297349\pi\)
0.594504 + 0.804093i \(0.297349\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −55.0227 + 95.3020i −0.190390 + 0.329765i −0.945379 0.325972i \(-0.894309\pi\)
0.754990 + 0.655737i \(0.227642\pi\)
\(18\) 0 0
\(19\) 226.158 130.572i 0.626477 0.361696i −0.152910 0.988240i \(-0.548864\pi\)
0.779386 + 0.626544i \(0.215531\pi\)
\(20\) 0 0
\(21\) −757.119 + 352.440i −1.71682 + 0.799184i
\(22\) 0 0
\(23\) −385.090 + 222.332i −0.727959 + 0.420287i −0.817675 0.575680i \(-0.804737\pi\)
0.0897163 + 0.995967i \(0.471404\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 2189.75 3.00377
\(28\) 0 0
\(29\) −734.572 −0.873450 −0.436725 0.899595i \(-0.643862\pi\)
−0.436725 + 0.899595i \(0.643862\pi\)
\(30\) 0 0
\(31\) −406.469 234.675i −0.422965 0.244199i 0.273380 0.961906i \(-0.411858\pi\)
−0.696345 + 0.717707i \(0.745192\pi\)
\(32\) 0 0
\(33\) −1590.63 2755.05i −1.46063 2.52989i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1743.27 + 1006.48i −1.27339 + 0.735194i −0.975625 0.219445i \(-0.929575\pi\)
−0.297768 + 0.954638i \(0.596242\pi\)
\(38\) 0 0
\(39\) −1712.38 + 2965.92i −1.12582 + 1.94998i
\(40\) 0 0
\(41\) 46.3418i 0.0275680i 0.999905 + 0.0137840i \(0.00438772\pi\)
−0.999905 + 0.0137840i \(0.995612\pi\)
\(42\) 0 0
\(43\) 2748.95i 1.48672i −0.668890 0.743361i \(-0.733230\pi\)
0.668890 0.743361i \(-0.266770\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2145.32 3715.80i −0.971171 1.68212i −0.692033 0.721866i \(-0.743285\pi\)
−0.279138 0.960251i \(-0.590049\pi\)
\(48\) 0 0
\(49\) 818.201 + 2257.29i 0.340775 + 0.940145i
\(50\) 0 0
\(51\) −937.777 1624.28i −0.360545 0.624482i
\(52\) 0 0
\(53\) −2851.55 1646.34i −1.01515 0.586096i −0.102454 0.994738i \(-0.532669\pi\)
−0.912695 + 0.408641i \(0.866003\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4450.82i 1.36990i
\(58\) 0 0
\(59\) 207.675 + 119.901i 0.0596596 + 0.0344445i 0.529533 0.848289i \(-0.322367\pi\)
−0.469873 + 0.882734i \(0.655700\pi\)
\(60\) 0 0
\(61\) −2363.68 + 1364.67i −0.635226 + 0.366748i −0.782773 0.622307i \(-0.786195\pi\)
0.147547 + 0.989055i \(0.452862\pi\)
\(62\) 0 0
\(63\) 901.384 10224.9i 0.227106 2.57618i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4326.27 + 2497.77i 0.963749 + 0.556421i 0.897325 0.441371i \(-0.145508\pi\)
0.0664243 + 0.997791i \(0.478841\pi\)
\(68\) 0 0
\(69\) 7578.62i 1.59181i
\(70\) 0 0
\(71\) −2966.43 −0.588461 −0.294231 0.955734i \(-0.595063\pi\)
−0.294231 + 0.955734i \(0.595063\pi\)
\(72\) 0 0
\(73\) −2081.39 + 3605.08i −0.390579 + 0.676502i −0.992526 0.122034i \(-0.961058\pi\)
0.601947 + 0.798536i \(0.294392\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8291.75 + 3859.82i −1.39851 + 0.651007i
\(78\) 0 0
\(79\) 1760.95 + 3050.05i 0.282158 + 0.488712i 0.971916 0.235328i \(-0.0756164\pi\)
−0.689758 + 0.724040i \(0.742283\pi\)
\(80\) 0 0
\(81\) −10176.5 + 17626.2i −1.55106 + 2.68651i
\(82\) 0 0
\(83\) −2158.50 −0.313326 −0.156663 0.987652i \(-0.550074\pi\)
−0.156663 + 0.987652i \(0.550074\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 6259.83 10842.3i 0.827035 1.43247i
\(88\) 0 0
\(89\) −8809.09 + 5085.93i −1.11212 + 0.642082i −0.939377 0.342885i \(-0.888596\pi\)
−0.172742 + 0.984967i \(0.555263\pi\)
\(90\) 0 0
\(91\) 8061.77 + 5652.87i 0.973526 + 0.682632i
\(92\) 0 0
\(93\) 6927.64 3999.68i 0.800976 0.462444i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 12024.1 1.27794 0.638970 0.769231i \(-0.279361\pi\)
0.638970 + 0.769231i \(0.279361\pi\)
\(98\) 0 0
\(99\) 39100.6 3.98945
\(100\) 0 0
\(101\) −7742.92 4470.38i −0.759035 0.438229i 0.0699141 0.997553i \(-0.477727\pi\)
−0.828949 + 0.559324i \(0.811061\pi\)
\(102\) 0 0
\(103\) 6771.73 + 11729.0i 0.638301 + 1.10557i 0.985806 + 0.167891i \(0.0536958\pi\)
−0.347505 + 0.937678i \(0.612971\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 17736.7 10240.3i 1.54919 0.894428i 0.550991 0.834511i \(-0.314250\pi\)
0.998203 0.0599162i \(-0.0190833\pi\)
\(108\) 0 0
\(109\) 6936.88 12015.0i 0.583863 1.01128i −0.411153 0.911566i \(-0.634874\pi\)
0.995016 0.0997145i \(-0.0317929\pi\)
\(110\) 0 0
\(111\) 34307.8i 2.78450i
\(112\) 0 0
\(113\) 14984.4i 1.17350i −0.809769 0.586748i \(-0.800408\pi\)
0.809769 0.586748i \(-0.199592\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −21046.7 36453.9i −1.53749 2.66301i
\(118\) 0 0
\(119\) −4888.52 + 2275.61i −0.345210 + 0.160696i
\(120\) 0 0
\(121\) −10099.6 17493.0i −0.689817 1.19480i
\(122\) 0 0
\(123\) −684.009 394.913i −0.0452118 0.0261030i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 5331.98i 0.330583i 0.986245 + 0.165292i \(0.0528566\pi\)
−0.986245 + 0.165292i \(0.947143\pi\)
\(128\) 0 0
\(129\) 40574.7 + 23425.8i 2.43824 + 1.40772i
\(130\) 0 0
\(131\) 8943.10 5163.30i 0.521129 0.300874i −0.216267 0.976334i \(-0.569388\pi\)
0.737397 + 0.675460i \(0.236055\pi\)
\(132\) 0 0
\(133\) 12746.7 + 1123.70i 0.720598 + 0.0635251i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −27056.4 15621.0i −1.44155 0.832277i −0.443593 0.896228i \(-0.646296\pi\)
−0.997953 + 0.0639513i \(0.979630\pi\)
\(138\) 0 0
\(139\) 35302.9i 1.82718i −0.406640 0.913588i \(-0.633300\pi\)
0.406640 0.913588i \(-0.366700\pi\)
\(140\) 0 0
\(141\) 73127.3 3.67825
\(142\) 0 0
\(143\) −18753.5 + 32482.0i −0.917085 + 1.58844i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −40290.2 7159.30i −1.86451 0.331311i
\(148\) 0 0
\(149\) 4953.80 + 8580.23i 0.223134 + 0.386480i 0.955758 0.294154i \(-0.0950379\pi\)
−0.732624 + 0.680634i \(0.761705\pi\)
\(150\) 0 0
\(151\) −8963.08 + 15524.5i −0.393100 + 0.680869i −0.992857 0.119313i \(-0.961931\pi\)
0.599757 + 0.800183i \(0.295264\pi\)
\(152\) 0 0
\(153\) 23052.3 0.984762
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 7322.38 12682.7i 0.297066 0.514534i −0.678397 0.734695i \(-0.737325\pi\)
0.975463 + 0.220162i \(0.0706585\pi\)
\(158\) 0 0
\(159\) 48600.4 28059.4i 1.92241 1.10990i
\(160\) 0 0
\(161\) −21704.3 1913.37i −0.837327 0.0738154i
\(162\) 0 0
\(163\) 7552.29 4360.32i 0.284252 0.164113i −0.351095 0.936340i \(-0.614191\pi\)
0.635347 + 0.772227i \(0.280857\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 44129.3 1.58232 0.791160 0.611610i \(-0.209478\pi\)
0.791160 + 0.611610i \(0.209478\pi\)
\(168\) 0 0
\(169\) 11816.8 0.413738
\(170\) 0 0
\(171\) −47375.6 27352.3i −1.62018 0.935410i
\(172\) 0 0
\(173\) −4885.29 8461.56i −0.163229 0.282721i 0.772796 0.634655i \(-0.218858\pi\)
−0.936025 + 0.351933i \(0.885524\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −3539.51 + 2043.54i −0.112979 + 0.0652282i
\(178\) 0 0
\(179\) 7694.67 13327.6i 0.240151 0.415953i −0.720606 0.693344i \(-0.756136\pi\)
0.960757 + 0.277391i \(0.0894698\pi\)
\(180\) 0 0
\(181\) 54639.8i 1.66783i 0.551892 + 0.833916i \(0.313906\pi\)
−0.551892 + 0.833916i \(0.686094\pi\)
\(182\) 0 0
\(183\) 46517.4i 1.38903i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −10270.3 17788.6i −0.293697 0.508697i
\(188\) 0 0
\(189\) 87852.2 + 61601.6i 2.45940 + 1.72452i
\(190\) 0 0
\(191\) 22397.2 + 38793.1i 0.613941 + 1.06338i 0.990569 + 0.137013i \(0.0437501\pi\)
−0.376628 + 0.926365i \(0.622917\pi\)
\(192\) 0 0
\(193\) 55391.5 + 31980.3i 1.48706 + 0.858555i 0.999891 0.0147531i \(-0.00469622\pi\)
0.487169 + 0.873308i \(0.338030\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 25491.2i 0.656837i −0.944532 0.328419i \(-0.893484\pi\)
0.944532 0.328419i \(-0.106516\pi\)
\(198\) 0 0
\(199\) 2236.98 + 1291.52i 0.0564879 + 0.0326133i 0.527978 0.849258i \(-0.322950\pi\)
−0.471490 + 0.881871i \(0.656284\pi\)
\(200\) 0 0
\(201\) −73734.7 + 42570.7i −1.82507 + 1.05371i
\(202\) 0 0
\(203\) −29470.9 20664.8i −0.715157 0.501464i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 80668.7 + 46574.1i 1.88263 + 1.08694i
\(208\) 0 0
\(209\) 48744.1i 1.11591i
\(210\) 0 0
\(211\) −14510.3 −0.325920 −0.162960 0.986633i \(-0.552104\pi\)
−0.162960 + 0.986633i \(0.552104\pi\)
\(212\) 0 0
\(213\) 25279.2 43784.8i 0.557190 0.965082i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −9705.63 20849.8i −0.206112 0.442775i
\(218\) 0 0
\(219\) −35474.2 61443.1i −0.739646 1.28110i
\(220\) 0 0
\(221\) −11056.4 + 19150.2i −0.226375 + 0.392093i
\(222\) 0 0
\(223\) −61440.5 −1.23551 −0.617753 0.786372i \(-0.711957\pi\)
−0.617753 + 0.786372i \(0.711957\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5698.60 + 9870.26i −0.110590 + 0.191548i −0.916008 0.401159i \(-0.868607\pi\)
0.805418 + 0.592707i \(0.201941\pi\)
\(228\) 0 0
\(229\) −38838.2 + 22423.2i −0.740607 + 0.427590i −0.822290 0.569069i \(-0.807304\pi\)
0.0816828 + 0.996658i \(0.473971\pi\)
\(230\) 0 0
\(231\) 13688.8 155279.i 0.256532 2.90998i
\(232\) 0 0
\(233\) 41439.1 23924.9i 0.763306 0.440695i −0.0671757 0.997741i \(-0.521399\pi\)
0.830481 + 0.557046i \(0.188065\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −60025.3 −1.06866
\(238\) 0 0
\(239\) −39249.0 −0.687120 −0.343560 0.939131i \(-0.611633\pi\)
−0.343560 + 0.939131i \(0.611633\pi\)
\(240\) 0 0
\(241\) −95527.7 55152.9i −1.64473 0.949586i −0.979119 0.203289i \(-0.934837\pi\)
−0.665613 0.746297i \(-0.731830\pi\)
\(242\) 0 0
\(243\) −84758.2 146806.i −1.43539 2.48617i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 45444.7 26237.5i 0.744885 0.430060i
\(248\) 0 0
\(249\) 18394.2 31859.6i 0.296675 0.513857i
\(250\) 0 0
\(251\) 31065.0i 0.493088i −0.969132 0.246544i \(-0.920705\pi\)
0.969132 0.246544i \(-0.0792950\pi\)
\(252\) 0 0
\(253\) 82998.9i 1.29667i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 36797.6 + 63735.4i 0.557126 + 0.964971i 0.997735 + 0.0672717i \(0.0214294\pi\)
−0.440608 + 0.897699i \(0.645237\pi\)
\(258\) 0 0
\(259\) −98254.0 8661.69i −1.46471 0.129123i
\(260\) 0 0
\(261\) 76939.0 + 133262.i 1.12945 + 1.95626i
\(262\) 0 0
\(263\) −62913.7 36323.3i −0.909566 0.525138i −0.0292743 0.999571i \(-0.509320\pi\)
−0.880291 + 0.474433i \(0.842653\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 173364.i 2.43185i
\(268\) 0 0
\(269\) −6852.82 3956.48i −0.0947032 0.0546769i 0.451900 0.892068i \(-0.350746\pi\)
−0.546604 + 0.837391i \(0.684080\pi\)
\(270\) 0 0
\(271\) 85123.4 49146.0i 1.15907 0.669190i 0.207990 0.978131i \(-0.433308\pi\)
0.951081 + 0.308941i \(0.0999745\pi\)
\(272\) 0 0
\(273\) −152137. + 70820.1i −2.04131 + 0.950235i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −5986.07 3456.06i −0.0780157 0.0450424i 0.460485 0.887668i \(-0.347676\pi\)
−0.538500 + 0.842625i \(0.681009\pi\)
\(278\) 0 0
\(279\) 98319.5i 1.26308i
\(280\) 0 0
\(281\) −92240.8 −1.16818 −0.584091 0.811688i \(-0.698549\pi\)
−0.584091 + 0.811688i \(0.698549\pi\)
\(282\) 0 0
\(283\) −16206.8 + 28071.0i −0.202360 + 0.350497i −0.949288 0.314407i \(-0.898194\pi\)
0.746929 + 0.664904i \(0.231528\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1303.68 + 1859.23i −0.0158273 + 0.0225719i
\(288\) 0 0
\(289\) 35705.5 + 61843.8i 0.427503 + 0.740458i
\(290\) 0 0
\(291\) −102467. + 177477.i −1.21003 + 2.09583i
\(292\) 0 0
\(293\) −75728.6 −0.882114 −0.441057 0.897479i \(-0.645396\pi\)
−0.441057 + 0.897479i \(0.645396\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −204364. + 353969.i −2.31681 + 4.01284i
\(298\) 0 0
\(299\) −77380.9 + 44675.9i −0.865548 + 0.499724i
\(300\) 0 0
\(301\) 77333.0 110287.i 0.853555 1.21729i
\(302\) 0 0
\(303\) 131966. 76190.7i 1.43740 0.829883i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −8913.62 −0.0945753 −0.0472876 0.998881i \(-0.515058\pi\)
−0.0472876 + 0.998881i \(0.515058\pi\)
\(308\) 0 0
\(309\) −230828. −2.41753
\(310\) 0 0
\(311\) −93267.8 53848.2i −0.964298 0.556737i −0.0668045 0.997766i \(-0.521280\pi\)
−0.897493 + 0.441029i \(0.854614\pi\)
\(312\) 0 0
\(313\) 2739.86 + 4745.58i 0.0279666 + 0.0484396i 0.879670 0.475585i \(-0.157763\pi\)
−0.851703 + 0.524024i \(0.824430\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 125839. 72653.4i 1.25227 0.722999i 0.280711 0.959792i \(-0.409430\pi\)
0.971560 + 0.236794i \(0.0760965\pi\)
\(318\) 0 0
\(319\) 68555.9 118742.i 0.673695 1.16687i
\(320\) 0 0
\(321\) 349061.i 3.38759i
\(322\) 0 0
\(323\) 28737.8i 0.275453i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 118229. + 204778.i 1.10567 + 1.91508i
\(328\) 0 0
\(329\) 18462.4 209429.i 0.170568 1.93484i
\(330\) 0 0
\(331\) −57649.3 99851.6i −0.526185 0.911379i −0.999535 0.0305044i \(-0.990289\pi\)
0.473350 0.880875i \(-0.343045\pi\)
\(332\) 0 0
\(333\) 365181. + 210837.i 3.29321 + 1.90134i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 155840.i 1.37220i −0.727506 0.686101i \(-0.759321\pi\)
0.727506 0.686101i \(-0.240679\pi\)
\(338\) 0 0
\(339\) 221171. + 127693.i 1.92454 + 1.11114i
\(340\) 0 0
\(341\) 75869.6 43803.3i 0.652468 0.376702i
\(342\) 0 0
\(343\) −30675.5 + 113579.i −0.260738 + 0.965410i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 134819. + 77837.8i 1.11968 + 0.646445i 0.941318 0.337520i \(-0.109588\pi\)
0.178358 + 0.983966i \(0.442922\pi\)
\(348\) 0 0
\(349\) 16897.8i 0.138733i 0.997591 + 0.0693665i \(0.0220978\pi\)
−0.997591 + 0.0693665i \(0.977902\pi\)
\(350\) 0 0
\(351\) 440013. 3.57150
\(352\) 0 0
\(353\) −91030.7 + 157670.i −0.730531 + 1.26532i 0.226126 + 0.974098i \(0.427394\pi\)
−0.956657 + 0.291218i \(0.905940\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 8070.44 91547.1i 0.0633229 0.718304i
\(358\) 0 0
\(359\) 26246.3 + 45459.9i 0.203647 + 0.352727i 0.949701 0.313158i \(-0.101387\pi\)
−0.746054 + 0.665886i \(0.768054\pi\)
\(360\) 0 0
\(361\) −31062.2 + 53801.3i −0.238351 + 0.412837i
\(362\) 0 0
\(363\) 344265. 2.61264
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 27031.5 46819.9i 0.200695 0.347615i −0.748057 0.663634i \(-0.769013\pi\)
0.948753 + 0.316020i \(0.102347\pi\)
\(368\) 0 0
\(369\) 8407.10 4853.84i 0.0617438 0.0356478i
\(370\) 0 0
\(371\) −68089.1 146270.i −0.494686 1.06270i
\(372\) 0 0
\(373\) −61750.1 + 35651.4i −0.443833 + 0.256247i −0.705222 0.708986i \(-0.749153\pi\)
0.261389 + 0.965234i \(0.415819\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −147606. −1.03854
\(378\) 0 0
\(379\) −200433. −1.39537 −0.697686 0.716403i \(-0.745787\pi\)
−0.697686 + 0.716403i \(0.745787\pi\)
\(380\) 0 0
\(381\) −78700.4 45437.7i −0.542160 0.313016i
\(382\) 0 0
\(383\) 41013.3 + 71037.1i 0.279594 + 0.484270i 0.971284 0.237924i \(-0.0764669\pi\)
−0.691690 + 0.722194i \(0.743134\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −498701. + 287925.i −3.32980 + 1.92246i
\(388\) 0 0
\(389\) 47546.9 82353.6i 0.314212 0.544231i −0.665058 0.746792i \(-0.731593\pi\)
0.979270 + 0.202561i \(0.0649264\pi\)
\(390\) 0 0
\(391\) 48933.2i 0.320074i
\(392\) 0 0
\(393\) 176001.i 1.13954i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −66430.0 115060.i −0.421486 0.730035i 0.574599 0.818435i \(-0.305158\pi\)
−0.996085 + 0.0883998i \(0.971825\pi\)
\(398\) 0 0
\(399\) −125210. + 178566.i −0.786487 + 1.12164i
\(400\) 0 0
\(401\) −3695.08 6400.06i −0.0229792 0.0398011i 0.854307 0.519769i \(-0.173982\pi\)
−0.877286 + 0.479967i \(0.840648\pi\)
\(402\) 0 0
\(403\) −81676.8 47156.1i −0.502908 0.290354i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 375730.i 2.26823i
\(408\) 0 0
\(409\) −145297. 83887.2i −0.868580 0.501475i −0.00170409 0.999999i \(-0.500542\pi\)
−0.866876 + 0.498523i \(0.833876\pi\)
\(410\) 0 0
\(411\) 461135. 266236.i 2.72988 1.57610i
\(412\) 0 0
\(413\) 4958.85 + 10652.7i 0.0290724 + 0.0624539i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 521073. + 300842.i 2.99659 + 1.73008i
\(418\) 0 0
\(419\) 107092.i 0.609998i −0.952353 0.304999i \(-0.901344\pi\)
0.952353 0.304999i \(-0.0986561\pi\)
\(420\) 0 0
\(421\) 189741. 1.07053 0.535264 0.844685i \(-0.320212\pi\)
0.535264 + 0.844685i \(0.320212\pi\)
\(422\) 0 0
\(423\) −449401. + 778385.i −2.51162 + 4.35025i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −133221. 11744.2i −0.730662 0.0644123i
\(428\) 0 0
\(429\) −319624. 553606.i −1.73670 3.00806i
\(430\) 0 0
\(431\) −57533.3 + 99650.6i −0.309717 + 0.536445i −0.978300 0.207192i \(-0.933568\pi\)
0.668584 + 0.743637i \(0.266901\pi\)
\(432\) 0 0
\(433\) −71376.7 −0.380698 −0.190349 0.981716i \(-0.560962\pi\)
−0.190349 + 0.981716i \(0.560962\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −58060.8 + 100564.i −0.304033 + 0.526600i
\(438\) 0 0
\(439\) −41314.4 + 23852.9i −0.214374 + 0.123769i −0.603343 0.797482i \(-0.706165\pi\)
0.388969 + 0.921251i \(0.372831\pi\)
\(440\) 0 0
\(441\) 323808. 384862.i 1.66498 1.97892i
\(442\) 0 0
\(443\) −53111.5 + 30663.9i −0.270633 + 0.156250i −0.629175 0.777263i \(-0.716607\pi\)
0.358542 + 0.933514i \(0.383274\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −168860. −0.845107
\(448\) 0 0
\(449\) 1671.86 0.00829293 0.00414646 0.999991i \(-0.498680\pi\)
0.00414646 + 0.999991i \(0.498680\pi\)
\(450\) 0 0
\(451\) −7491.07 4324.97i −0.0368291 0.0212633i
\(452\) 0 0
\(453\) −152762. 264591.i −0.744421 1.28938i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 331100. 191160.i 1.58535 0.915305i 0.591296 0.806454i \(-0.298616\pi\)
0.994058 0.108850i \(-0.0347169\pi\)
\(458\) 0 0
\(459\) −120486. + 208687.i −0.571887 + 0.990537i
\(460\) 0 0
\(461\) 140500.i 0.661112i −0.943786 0.330556i \(-0.892764\pi\)
0.943786 0.330556i \(-0.107236\pi\)
\(462\) 0 0
\(463\) 75338.7i 0.351444i 0.984440 + 0.175722i \(0.0562260\pi\)
−0.984440 + 0.175722i \(0.943774\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −119774. 207455.i −0.549199 0.951240i −0.998330 0.0577740i \(-0.981600\pi\)
0.449131 0.893466i \(-0.351734\pi\)
\(468\) 0 0
\(469\) 103302. + 221916.i 0.469639 + 1.00889i
\(470\) 0 0
\(471\) 124799. + 216158.i 0.562560 + 0.974382i
\(472\) 0 0
\(473\) 444363. + 256553.i 1.98617 + 1.14671i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 689753.i 3.03149i
\(478\) 0 0
\(479\) 39339.0 + 22712.4i 0.171456 + 0.0989900i 0.583272 0.812277i \(-0.301772\pi\)
−0.411816 + 0.911267i \(0.635105\pi\)
\(480\) 0 0
\(481\) −350297. + 202244.i −1.51407 + 0.874151i
\(482\) 0 0
\(483\) 213200. 304053.i 0.913889 1.30333i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −125334. 72361.8i −0.528460 0.305107i 0.211929 0.977285i \(-0.432025\pi\)
−0.740389 + 0.672179i \(0.765359\pi\)
\(488\) 0 0
\(489\) 148630.i 0.621568i
\(490\) 0 0
\(491\) 15374.4 0.0637729 0.0318865 0.999491i \(-0.489849\pi\)
0.0318865 + 0.999491i \(0.489849\pi\)
\(492\) 0 0
\(493\) 40418.1 70006.2i 0.166296 0.288033i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −119013. 83451.2i −0.481816 0.337847i
\(498\) 0 0
\(499\) −80710.7 139795.i −0.324138 0.561424i 0.657199 0.753717i \(-0.271741\pi\)
−0.981338 + 0.192293i \(0.938408\pi\)
\(500\) 0 0
\(501\) −376058. + 651352.i −1.49823 + 2.59502i
\(502\) 0 0
\(503\) 102790. 0.406270 0.203135 0.979151i \(-0.434887\pi\)
0.203135 + 0.979151i \(0.434887\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −100700. + 174417.i −0.391752 + 0.678535i
\(508\) 0 0
\(509\) −239227. + 138118.i −0.923366 + 0.533106i −0.884707 0.466147i \(-0.845642\pi\)
−0.0386588 + 0.999252i \(0.512309\pi\)
\(510\) 0 0
\(511\) −184923. + 86081.8i −0.708187 + 0.329662i
\(512\) 0 0
\(513\) 495229. 285920.i 1.88179 1.08645i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 800869. 2.99627
\(518\) 0 0
\(519\) 166524. 0.618221
\(520\) 0 0
\(521\) −213489. 123258.i −0.786503 0.454088i 0.0522272 0.998635i \(-0.483368\pi\)
−0.838730 + 0.544548i \(0.816701\pi\)
\(522\) 0 0
\(523\) 50667.2 + 87758.2i 0.185235 + 0.320837i 0.943656 0.330929i \(-0.107362\pi\)
−0.758420 + 0.651766i \(0.774029\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 44730.0 25824.9i 0.161056 0.0929859i
\(528\) 0 0
\(529\) −41057.6 + 71113.8i −0.146718 + 0.254122i
\(530\) 0 0
\(531\) 50233.9i 0.178159i
\(532\) 0 0
\(533\) 9312.03i 0.0327786i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 131144. + 227148.i 0.454778 + 0.787699i
\(538\) 0 0
\(539\) −441247. 78406.6i −1.51881 0.269883i
\(540\) 0 0
\(541\) −13098.2 22686.7i −0.0447523 0.0775133i 0.842782 0.538256i \(-0.180917\pi\)
−0.887534 + 0.460742i \(0.847583\pi\)
\(542\) 0 0
\(543\) −806488. 465626.i −2.73526 1.57920i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 483160.i 1.61479i 0.590012 + 0.807395i \(0.299123\pi\)
−0.590012 + 0.807395i \(0.700877\pi\)
\(548\) 0 0
\(549\) 495143. + 285871.i 1.64280 + 0.948473i
\(550\) 0 0
\(551\) −166129. + 95914.8i −0.547196 + 0.315924i
\(552\) 0 0
\(553\) −15154.6 + 171906.i −0.0495557 + 0.562136i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 79228.5 + 45742.6i 0.255371 + 0.147438i 0.622221 0.782842i \(-0.286231\pi\)
−0.366850 + 0.930280i \(0.619564\pi\)
\(558\) 0 0
\(559\) 552380.i 1.76772i
\(560\) 0 0
\(561\) 350082. 1.11236
\(562\) 0 0
\(563\) −106624. + 184678.i −0.336386 + 0.582638i −0.983750 0.179543i \(-0.942538\pi\)
0.647364 + 0.762181i \(0.275871\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −904137. + 420877.i −2.81234 + 1.30915i
\(568\) 0 0
\(569\) −8033.59 13914.6i −0.0248133 0.0429780i 0.853352 0.521335i \(-0.174566\pi\)
−0.878165 + 0.478357i \(0.841232\pi\)
\(570\) 0 0
\(571\) −213022. + 368965.i −0.653360 + 1.13165i 0.328943 + 0.944350i \(0.393308\pi\)
−0.982302 + 0.187302i \(0.940026\pi\)
\(572\) 0 0
\(573\) −763452. −2.32526
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 214913. 372240.i 0.645521 1.11808i −0.338660 0.940909i \(-0.609974\pi\)
0.984181 0.177166i \(-0.0566931\pi\)
\(578\) 0 0
\(579\) −944064. + 545055.i −2.81607 + 1.62586i
\(580\) 0 0
\(581\) −86598.6 60722.5i −0.256542 0.179886i
\(582\) 0 0
\(583\) 532257. 307299.i 1.56597 0.904116i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 72375.4 0.210046 0.105023 0.994470i \(-0.466508\pi\)
0.105023 + 0.994470i \(0.466508\pi\)
\(588\) 0 0
\(589\) −122568. −0.353303
\(590\) 0 0
\(591\) 376252. + 217229.i 1.07722 + 0.621933i
\(592\) 0 0
\(593\) −186483. 322998.i −0.530311 0.918525i −0.999375 0.0353606i \(-0.988742\pi\)
0.469064 0.883164i \(-0.344591\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −38125.9 + 22012.0i −0.106972 + 0.0617605i
\(598\) 0 0
\(599\) −278948. + 483153.i −0.777446 + 1.34658i 0.155963 + 0.987763i \(0.450152\pi\)
−0.933409 + 0.358813i \(0.883182\pi\)
\(600\) 0 0
\(601\) 68122.4i 0.188600i 0.995544 + 0.0942999i \(0.0300613\pi\)
−0.995544 + 0.0942999i \(0.969939\pi\)
\(602\) 0 0
\(603\) 1.04647e6i 2.87800i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −182260. 315683.i −0.494667 0.856788i 0.505314 0.862935i \(-0.331377\pi\)
−0.999981 + 0.00614713i \(0.998043\pi\)
\(608\) 0 0
\(609\) 556158. 258892.i 1.49956 0.698047i
\(610\) 0 0
\(611\) −431085. 746661.i −1.15473 2.00005i
\(612\) 0 0
\(613\) −202893. 117140.i −0.539940 0.311735i 0.205114 0.978738i \(-0.434243\pi\)
−0.745055 + 0.667003i \(0.767577\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 335125.i 0.880312i −0.897921 0.440156i \(-0.854923\pi\)
0.897921 0.440156i \(-0.145077\pi\)
\(618\) 0 0
\(619\) −129011. 74484.6i −0.336702 0.194395i 0.322111 0.946702i \(-0.395608\pi\)
−0.658813 + 0.752307i \(0.728941\pi\)
\(620\) 0 0
\(621\) −843250. + 486850.i −2.18662 + 1.26244i
\(622\) 0 0
\(623\) −496496. 43769.1i −1.27920 0.112770i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −719467. 415384.i −1.83010 1.05661i
\(628\) 0 0
\(629\) 221517.i 0.559893i
\(630\) 0 0
\(631\) 681456. 1.71151 0.855754 0.517383i \(-0.173094\pi\)
0.855754 + 0.517383i \(0.173094\pi\)
\(632\) 0 0
\(633\) 123653. 214173.i 0.308601 0.534513i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 164411. + 453584.i 0.405184 + 1.11784i
\(638\) 0 0
\(639\) 310704. + 538156.i 0.760932 + 1.31797i
\(640\) 0 0
\(641\) 385755. 668147.i 0.938848 1.62613i 0.171225 0.985232i \(-0.445228\pi\)
0.767624 0.640901i \(-0.221439\pi\)
\(642\) 0 0
\(643\) −199260. −0.481945 −0.240973 0.970532i \(-0.577466\pi\)
−0.240973 + 0.970532i \(0.577466\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 203005. 351615.i 0.484951 0.839960i −0.514899 0.857251i \(-0.672171\pi\)
0.999851 + 0.0172904i \(0.00550399\pi\)
\(648\) 0 0
\(649\) −38763.7 + 22380.2i −0.0920313 + 0.0531343i
\(650\) 0 0
\(651\) 390454. + 34420.9i 0.921315 + 0.0812195i
\(652\) 0 0
\(653\) −547579. + 316145.i −1.28416 + 0.741412i −0.977607 0.210441i \(-0.932510\pi\)
−0.306556 + 0.951852i \(0.599177\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 872021. 2.02021
\(658\) 0 0
\(659\) 645822. 1.48711 0.743554 0.668676i \(-0.233139\pi\)
0.743554 + 0.668676i \(0.233139\pi\)
\(660\) 0 0
\(661\) −551042. 318145.i −1.26119 0.728151i −0.287889 0.957664i \(-0.592953\pi\)
−0.973306 + 0.229513i \(0.926287\pi\)
\(662\) 0 0
\(663\) −188439. 326386.i −0.428691 0.742514i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 282876. 163319.i 0.635836 0.367100i
\(668\) 0 0
\(669\) 523580. 906867.i 1.16985 2.02624i
\(670\) 0 0
\(671\) 509445.i 1.13149i
\(672\) 0 0
\(673\) 190181.i 0.419891i −0.977713 0.209946i \(-0.932671\pi\)
0.977713 0.209946i \(-0.0673287\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 34152.8 + 59154.4i 0.0745159 + 0.129065i 0.900876 0.434077i \(-0.142926\pi\)
−0.826360 + 0.563143i \(0.809592\pi\)
\(678\) 0 0
\(679\) 482406. + 338261.i 1.04634 + 0.733690i
\(680\) 0 0
\(681\) −97123.9 168223.i −0.209427 0.362737i
\(682\) 0 0
\(683\) 274448. + 158452.i 0.588326 + 0.339670i 0.764435 0.644700i \(-0.223018\pi\)
−0.176109 + 0.984371i \(0.556351\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 764340.i 1.61947i
\(688\) 0 0
\(689\) −572997. 330820.i −1.20702 0.696873i
\(690\) 0 0
\(691\) −474220. + 273791.i −0.993171 + 0.573408i −0.906221 0.422805i \(-0.861046\pi\)
−0.0869506 + 0.996213i \(0.527712\pi\)
\(692\) 0 0
\(693\) 1.56871e6 + 1.09997e6i 3.26645 + 2.29042i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −4416.47 2549.85i −0.00909096 0.00524867i
\(698\) 0 0
\(699\) 815526.i 1.66910i
\(700\) 0 0
\(701\) −429632. −0.874301 −0.437150 0.899388i \(-0.644012\pi\)
−0.437150 + 0.899388i \(0.644012\pi\)
\(702\) 0 0
\(703\) −262837. + 455247.i −0.531834 + 0.921163i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −184885. 397173.i −0.369881 0.794586i
\(708\) 0 0
\(709\) −461346. 799074.i −0.917771 1.58963i −0.802793 0.596257i \(-0.796654\pi\)
−0.114977 0.993368i \(-0.536679\pi\)
\(710\) 0 0
\(711\) 368883. 638925.i 0.729709 1.26389i
\(712\) 0 0
\(713\) 208703. 0.410534
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 334470. 579318.i 0.650607 1.12688i
\(718\) 0 0
\(719\) 849653. 490547.i 1.64355 0.948906i 0.663997 0.747736i \(-0.268859\pi\)
0.979556 0.201170i \(-0.0644744\pi\)
\(720\) 0 0
\(721\) −58277.0 + 661066.i −0.112105 + 1.27167i
\(722\) 0 0
\(723\) 1.62812e6 939997.i 3.11466 1.79825i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −206124. −0.389995 −0.194997 0.980804i \(-0.562470\pi\)
−0.194997 + 0.980804i \(0.562470\pi\)
\(728\) 0 0
\(729\) 1.24056e6 2.33433
\(730\) 0 0
\(731\) 261981. + 151255.i 0.490269 + 0.283057i
\(732\) 0 0
\(733\) −3647.88 6318.31i −0.00678942 0.0117596i 0.862611 0.505868i \(-0.168828\pi\)
−0.869400 + 0.494109i \(0.835494\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −807521. + 466223.i −1.48669 + 0.858338i
\(738\) 0 0
\(739\) −7878.12 + 13645.3i −0.0144256 + 0.0249859i −0.873148 0.487455i \(-0.837925\pi\)
0.858722 + 0.512441i \(0.171259\pi\)
\(740\) 0 0
\(741\) 894357.i 1.62882i
\(742\) 0 0
\(743\) 918563.i 1.66392i 0.554839 + 0.831958i \(0.312780\pi\)
−0.554839 + 0.831958i \(0.687220\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 226081. + 391584.i 0.405157 + 0.701753i
\(748\) 0 0
\(749\) 999673. + 88127.2i 1.78194 + 0.157089i
\(750\) 0 0
\(751\) 324544. + 562127.i 0.575432 + 0.996678i 0.995995 + 0.0894142i \(0.0284995\pi\)
−0.420562 + 0.907264i \(0.638167\pi\)
\(752\) 0 0
\(753\) 458523. + 264728.i 0.808669 + 0.466885i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 361330.i 0.630540i 0.949002 + 0.315270i \(0.102095\pi\)
−0.949002 + 0.315270i \(0.897905\pi\)
\(758\) 0 0
\(759\) 1.22507e6 + 707294.i 2.12656 + 1.22777i
\(760\) 0 0
\(761\) −352574. + 203559.i −0.608810 + 0.351496i −0.772499 0.635015i \(-0.780994\pi\)
0.163690 + 0.986512i \(0.447660\pi\)
\(762\) 0 0
\(763\) 616311. 286894.i 1.05865 0.492802i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 41730.7 + 24093.2i 0.0709357 + 0.0409548i
\(768\) 0 0
\(769\) 3720.24i 0.00629098i −0.999995 0.00314549i \(-0.998999\pi\)
0.999995 0.00314549i \(-0.00100124\pi\)
\(770\) 0 0
\(771\) −1.25432e6 −2.11008
\(772\) 0 0
\(773\) 64914.4 112435.i 0.108638 0.188167i −0.806581 0.591124i \(-0.798684\pi\)
0.915219 + 0.402957i \(0.132018\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 965142. 1.37642e6i 1.59863 2.27987i
\(778\) 0 0
\(779\) 6050.96 + 10480.6i 0.00997125 + 0.0172707i
\(780\) 0 0
\(781\) 276850. 479519.i 0.453882 0.786147i
\(782\) 0 0
\(783\) −1.60853e6 −2.62364
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 301911. 522925.i 0.487450 0.844287i −0.512446 0.858719i \(-0.671261\pi\)
0.999896 + 0.0144319i \(0.00459398\pi\)
\(788\) 0 0
\(789\) 1.07227e6 619075.i 1.72246 0.994464i
\(790\) 0 0
\(791\) 421538. 601171.i 0.673726 0.960826i
\(792\) 0 0
\(793\) −474962. + 274220.i −0.755288 + 0.436066i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −981302. −1.54485 −0.772425 0.635106i \(-0.780956\pi\)
−0.772425 + 0.635106i \(0.780956\pi\)
\(798\) 0 0
\(799\) 472164. 0.739604
\(800\) 0 0
\(801\) 1.84533e6 + 1.06540e6i 2.87613 + 1.66054i
\(802\) 0 0
\(803\) −388503. 672907.i −0.602509 1.04358i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 116796. 67432.1i 0.179341 0.103543i
\(808\) 0 0
\(809\) −540742. + 936593.i −0.826216 + 1.43105i 0.0747711 + 0.997201i \(0.476177\pi\)
−0.900987 + 0.433847i \(0.857156\pi\)
\(810\) 0 0
\(811\) 976385.i 1.48450i −0.670125 0.742249i \(-0.733759\pi\)
0.670125 0.742249i \(-0.266241\pi\)
\(812\) 0 0
\(813\) 1.67524e6i 2.53452i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −358937. 621697.i −0.537742 0.931397i
\(818\) 0 0
\(819\) 181126. 2.05461e6i 0.270031 3.06310i
\(820\) 0 0
\(821\) −88380.7 153080.i −0.131121 0.227108i 0.792988 0.609237i \(-0.208524\pi\)
−0.924109 + 0.382129i \(0.875191\pi\)
\(822\) 0 0
\(823\) 317321. + 183205.i 0.468488 + 0.270482i 0.715607 0.698503i \(-0.246150\pi\)
−0.247118 + 0.968985i \(0.579484\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 674908.i 0.986811i 0.869799 + 0.493405i \(0.164248\pi\)
−0.869799 + 0.493405i \(0.835752\pi\)
\(828\) 0 0
\(829\) 245500. + 141739.i 0.357225 + 0.206244i 0.667863 0.744284i \(-0.267209\pi\)
−0.310638 + 0.950528i \(0.600543\pi\)
\(830\) 0 0
\(831\) 102023. 58903.2i 0.147740 0.0852977i
\(832\) 0 0
\(833\) −260144. 46225.7i −0.374907 0.0666184i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −890064. 513879.i −1.27049 0.733516i
\(838\) 0 0
\(839\) 1.03574e6i 1.47138i 0.677317 + 0.735691i \(0.263142\pi\)
−0.677317 + 0.735691i \(0.736858\pi\)
\(840\) 0 0
\(841\) −167686. −0.237085
\(842\) 0 0
\(843\) 786052. 1.36148e6i 1.10610 1.91583i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 86916.4 985938.i 0.121153 1.37430i
\(848\) 0 0
\(849\) −276220. 478427.i −0.383213 0.663744i
\(850\) 0 0
\(851\) 447545. 775171.i 0.617985 1.07038i
\(852\) 0 0
\(853\) 998779. 1.37269 0.686344 0.727277i \(-0.259215\pi\)
0.686344 + 0.727277i \(0.259215\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −578029. + 1.00118e6i −0.787024 + 1.36317i 0.140759 + 0.990044i \(0.455046\pi\)
−0.927783 + 0.373121i \(0.878288\pi\)
\(858\) 0 0
\(859\) −807360. + 466129.i −1.09416 + 0.631713i −0.934681 0.355488i \(-0.884315\pi\)
−0.159479 + 0.987201i \(0.550981\pi\)
\(860\) 0 0
\(861\) −16332.7 35086.2i −0.0220319 0.0473294i
\(862\) 0 0
\(863\) −378841. + 218724.i −0.508669 + 0.293680i −0.732286 0.680997i \(-0.761547\pi\)
0.223618 + 0.974677i \(0.428213\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −1.21709e6 −1.61914
\(868\) 0 0
\(869\) −657381. −0.870517
\(870\) 0 0
\(871\) 869330. + 501908.i 1.14590 + 0.661589i
\(872\) 0 0
\(873\) −1.25941e6 2.18136e6i −1.65249 2.86219i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −941044. + 543312.i −1.22352 + 0.706399i −0.965666 0.259785i \(-0.916348\pi\)
−0.257853 + 0.966184i \(0.583015\pi\)
\(878\) 0 0
\(879\) 645339. 1.11776e6i 0.835238 1.44667i
\(880\) 0 0
\(881\) 878341.i 1.13165i 0.824526 + 0.565824i \(0.191442\pi\)
−0.824526 + 0.565824i \(0.808558\pi\)
\(882\) 0 0
\(883\) 627160.i 0.804373i 0.915558 + 0.402186i \(0.131750\pi\)
−0.915558 + 0.402186i \(0.868250\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 693541. + 1.20125e6i 0.881505 + 1.52681i 0.849668 + 0.527319i \(0.176803\pi\)
0.0318376 + 0.999493i \(0.489864\pi\)
\(888\) 0 0
\(889\) −149998. + 213918.i −0.189794 + 0.270672i
\(890\) 0 0
\(891\) −1.89950e6 3.29003e6i −2.39267 4.14423i
\(892\) 0 0
\(893\) −970361. 560238.i −1.21683 0.702538i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1.52286e6i 1.89268i
\(898\) 0 0
\(899\) 298581. + 172386.i 0.369439 + 0.213295i
\(900\) 0 0
\(901\) 313800. 181173.i 0.386548 0.223174i
\(902\) 0 0
\(903\) 968840. + 2.08128e6i 1.18816 + 2.55244i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −238143. 137492.i −0.289483 0.167133i 0.348226 0.937411i \(-0.386784\pi\)
−0.637709 + 0.770278i \(0.720118\pi\)
\(908\) 0 0
\(909\) 1.87291e6i 2.26667i
\(910\) 0 0
\(911\) −1.33223e6 −1.60525 −0.802625 0.596484i \(-0.796564\pi\)
−0.802625 + 0.596484i \(0.796564\pi\)
\(912\) 0 0
\(913\) 201448. 348918.i 0.241669 0.418583i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 504049. + 44435.0i 0.599424 + 0.0528429i
\(918\) 0 0
\(919\) 444678. + 770204.i 0.526519 + 0.911958i 0.999523 + 0.0308975i \(0.00983653\pi\)
−0.473003 + 0.881061i \(0.656830\pi\)
\(920\) 0 0
\(921\) 75959.6 131566.i 0.0895495 0.155104i
\(922\) 0 0
\(923\) −596082. −0.699685
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1.41854e6 2.45699e6i 1.65076 2.85919i
\(928\) 0 0
\(929\) 641891. 370596.i 0.743755 0.429407i −0.0796781 0.996821i \(-0.525389\pi\)
0.823433 + 0.567414i \(0.192056\pi\)
\(930\) 0 0
\(931\) 479782. + 403669.i 0.553535 + 0.465722i
\(932\) 0 0
\(933\) 1.58961e6 917760.i 1.82611 1.05430i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 792567. 0.902728 0.451364 0.892340i \(-0.350938\pi\)
0.451364 + 0.892340i \(0.350938\pi\)
\(938\) 0 0
\(939\) −93393.4 −0.105922
\(940\) 0 0
\(941\) 421649. + 243439.i 0.476181 + 0.274923i 0.718824 0.695192i \(-0.244681\pi\)
−0.242642 + 0.970116i \(0.578014\pi\)
\(942\) 0 0
\(943\) −10303.3 17845.8i −0.0115865 0.0200684i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 715538. 413116.i 0.797871 0.460651i −0.0448553 0.998993i \(-0.514283\pi\)
0.842726 + 0.538343i \(0.180949\pi\)
\(948\) 0 0
\(949\) −418240. + 724413.i −0.464401 + 0.804366i
\(950\) 0 0
\(951\) 2.47653e6i 2.73831i
\(952\) 0 0
\(953\) 553288.i 0.609208i −0.952479 0.304604i \(-0.901476\pi\)
0.952479 0.304604i \(-0.0985241\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1.16843e6 + 2.02378e6i 1.27579 + 2.20973i
\(958\) 0 0
\(959\) −646050. 1.38786e6i −0.702472 1.50906i
\(960\) 0 0
\(961\) −351616. 609016.i −0.380734 0.659451i
\(962\) 0 0
\(963\) −3.71549e6 2.14514e6i −4.00648 2.31314i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 113775.i 0.121673i 0.998148 + 0.0608366i \(0.0193769\pi\)
−0.998148 + 0.0608366i \(0.980623\pi\)
\(968\) 0 0
\(969\) −424172. 244896.i −0.451746 0.260816i
\(970\) 0 0
\(971\) −309016. + 178411.i −0.327750 + 0.189227i −0.654842 0.755766i \(-0.727265\pi\)
0.327092 + 0.944993i \(0.393931\pi\)
\(972\) 0 0
\(973\) 993134. 1.41635e6i 1.04902 1.49604i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 812051. + 468838.i 0.850735 + 0.491172i 0.860899 0.508776i \(-0.169902\pi\)
−0.0101640 + 0.999948i \(0.503235\pi\)
\(978\) 0 0
\(979\) 1.89863e6i 1.98096i
\(980\) 0 0
\(981\) −2.90628e6 −3.01994
\(982\) 0 0
\(983\) −140607. + 243538.i −0.145512 + 0.252035i −0.929564 0.368661i \(-0.879816\pi\)
0.784052 + 0.620696i \(0.213150\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 2.93385e6 + 2.05720e6i 3.01165 + 2.11175i
\(988\) 0 0
\(989\) 611179. + 1.05859e6i 0.624850 + 1.08227i
\(990\) 0 0
\(991\) −58992.2 + 102178.i −0.0600686 + 0.104042i −0.894496 0.447076i \(-0.852465\pi\)
0.834427 + 0.551118i \(0.185799\pi\)
\(992\) 0 0
\(993\) 1.96509e6 1.99289
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 258634. 447967.i 0.260193 0.450667i −0.706100 0.708112i \(-0.749547\pi\)
0.966293 + 0.257445i \(0.0828806\pi\)
\(998\) 0 0
\(999\) −3.81733e6 + 2.20394e6i −3.82497 + 2.20835i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.5.o.c.549.1 44
5.2 odd 4 700.5.s.c.101.11 22
5.3 odd 4 700.5.s.d.101.1 yes 22
5.4 even 2 inner 700.5.o.c.549.22 44
7.5 odd 6 inner 700.5.o.c.649.22 44
35.12 even 12 700.5.s.c.201.11 yes 22
35.19 odd 6 inner 700.5.o.c.649.1 44
35.33 even 12 700.5.s.d.201.1 yes 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
700.5.o.c.549.1 44 1.1 even 1 trivial
700.5.o.c.549.22 44 5.4 even 2 inner
700.5.o.c.649.1 44 35.19 odd 6 inner
700.5.o.c.649.22 44 7.5 odd 6 inner
700.5.s.c.101.11 22 5.2 odd 4
700.5.s.c.201.11 yes 22 35.12 even 12
700.5.s.d.101.1 yes 22 5.3 odd 4
700.5.s.d.201.1 yes 22 35.33 even 12