Properties

Label 700.5.o.c.649.16
Level $700$
Weight $5$
Character 700.649
Analytic conductor $72.359$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,5,Mod(549,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.549");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 700.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(72.3589741587\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 649.16
Character \(\chi\) \(=\) 700.649
Dual form 700.5.o.c.549.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.90019 + 6.75532i) q^{3} +(-42.4445 - 24.4840i) q^{7} +(10.0771 - 17.4540i) q^{9} +(43.4634 + 75.2808i) q^{11} -96.0363 q^{13} +(-137.604 - 238.338i) q^{17} +(591.243 + 341.355i) q^{19} +(-0.144398 - 382.218i) q^{21} +(564.591 + 325.967i) q^{23} +789.040 q^{27} -1567.32 q^{29} +(-431.771 + 249.283i) q^{31} +(-339.031 + 587.219i) q^{33} +(-2316.59 - 1337.48i) q^{37} +(-374.560 - 648.756i) q^{39} +2424.75i q^{41} +1217.90i q^{43} +(634.569 - 1099.11i) q^{47} +(1202.07 + 2078.42i) q^{49} +(1073.37 - 1859.12i) q^{51} +(2200.20 - 1270.29i) q^{53} +5325.39i q^{57} +(-5499.15 + 3174.93i) q^{59} +(-4319.72 - 2493.99i) q^{61} +(-855.059 + 494.099i) q^{63} +(-2481.53 + 1432.71i) q^{67} +5085.33i q^{69} -3838.27 q^{71} +(1029.26 + 1782.73i) q^{73} +(-1.60917 - 4259.41i) q^{77} +(-1886.38 + 3267.30i) q^{79} +(2261.16 + 3916.45i) q^{81} -9810.30 q^{83} +(-6112.84 - 10587.8i) q^{87} +(-2862.93 - 1652.91i) q^{89} +(4076.21 + 2351.35i) q^{91} +(-3367.98 - 1944.50i) q^{93} -9079.39 q^{97} +1751.93 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 684 q^{9} - 300 q^{11} + 540 q^{19} - 190 q^{21} - 528 q^{29} - 2334 q^{31} - 852 q^{39} + 4092 q^{49} - 3902 q^{51} + 9414 q^{59} - 23598 q^{61} + 32820 q^{71} - 4890 q^{79} - 23710 q^{81} - 37764 q^{89}+ \cdots + 168180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.90019 + 6.75532i 0.433354 + 0.750592i 0.997160 0.0753161i \(-0.0239966\pi\)
−0.563805 + 0.825908i \(0.690663\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −42.4445 24.4840i −0.866214 0.499673i
\(8\) 0 0
\(9\) 10.0771 17.4540i 0.124408 0.215481i
\(10\) 0 0
\(11\) 43.4634 + 75.2808i 0.359202 + 0.622156i 0.987828 0.155552i \(-0.0497157\pi\)
−0.628626 + 0.777708i \(0.716382\pi\)
\(12\) 0 0
\(13\) −96.0363 −0.568262 −0.284131 0.958785i \(-0.591705\pi\)
−0.284131 + 0.958785i \(0.591705\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −137.604 238.338i −0.476140 0.824698i 0.523487 0.852034i \(-0.324631\pi\)
−0.999626 + 0.0273359i \(0.991298\pi\)
\(18\) 0 0
\(19\) 591.243 + 341.355i 1.63779 + 0.945581i 0.981591 + 0.190996i \(0.0611718\pi\)
0.656203 + 0.754585i \(0.272162\pi\)
\(20\) 0 0
\(21\) −0.144398 382.218i −0.000327434 0.866708i
\(22\) 0 0
\(23\) 564.591 + 325.967i 1.06728 + 0.616194i 0.927437 0.373979i \(-0.122007\pi\)
0.139843 + 0.990174i \(0.455340\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 789.040 1.08236
\(28\) 0 0
\(29\) −1567.32 −1.86364 −0.931819 0.362923i \(-0.881779\pi\)
−0.931819 + 0.362923i \(0.881779\pi\)
\(30\) 0 0
\(31\) −431.771 + 249.283i −0.449293 + 0.259400i −0.707532 0.706682i \(-0.750191\pi\)
0.258238 + 0.966081i \(0.416858\pi\)
\(32\) 0 0
\(33\) −339.031 + 587.219i −0.311323 + 0.539228i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2316.59 1337.48i −1.69217 0.976977i −0.952760 0.303725i \(-0.901769\pi\)
−0.739414 0.673251i \(-0.764897\pi\)
\(38\) 0 0
\(39\) −374.560 648.756i −0.246259 0.426533i
\(40\) 0 0
\(41\) 2424.75i 1.44244i 0.692704 + 0.721222i \(0.256419\pi\)
−0.692704 + 0.721222i \(0.743581\pi\)
\(42\) 0 0
\(43\) 1217.90i 0.658679i 0.944212 + 0.329339i \(0.106826\pi\)
−0.944212 + 0.329339i \(0.893174\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 634.569 1099.11i 0.287265 0.497558i −0.685891 0.727705i \(-0.740587\pi\)
0.973156 + 0.230147i \(0.0739205\pi\)
\(48\) 0 0
\(49\) 1202.07 + 2078.42i 0.500654 + 0.865647i
\(50\) 0 0
\(51\) 1073.37 1859.12i 0.412674 0.714773i
\(52\) 0 0
\(53\) 2200.20 1270.29i 0.783269 0.452221i −0.0543185 0.998524i \(-0.517299\pi\)
0.837588 + 0.546303i \(0.183965\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 5325.39i 1.63909i
\(58\) 0 0
\(59\) −5499.15 + 3174.93i −1.57976 + 0.912075i −0.584869 + 0.811127i \(0.698854\pi\)
−0.994892 + 0.100948i \(0.967812\pi\)
\(60\) 0 0
\(61\) −4319.72 2493.99i −1.16090 0.670248i −0.209384 0.977834i \(-0.567146\pi\)
−0.951521 + 0.307585i \(0.900479\pi\)
\(62\) 0 0
\(63\) −855.059 + 494.099i −0.215434 + 0.124490i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −2481.53 + 1432.71i −0.552803 + 0.319161i −0.750252 0.661152i \(-0.770068\pi\)
0.197449 + 0.980313i \(0.436734\pi\)
\(68\) 0 0
\(69\) 5085.33i 1.06812i
\(70\) 0 0
\(71\) −3838.27 −0.761410 −0.380705 0.924696i \(-0.624319\pi\)
−0.380705 + 0.924696i \(0.624319\pi\)
\(72\) 0 0
\(73\) 1029.26 + 1782.73i 0.193144 + 0.334534i 0.946290 0.323318i \(-0.104798\pi\)
−0.753147 + 0.657852i \(0.771465\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.60917 4259.41i −0.000271406 0.718404i
\(78\) 0 0
\(79\) −1886.38 + 3267.30i −0.302256 + 0.523522i −0.976647 0.214852i \(-0.931073\pi\)
0.674391 + 0.738375i \(0.264406\pi\)
\(80\) 0 0
\(81\) 2261.16 + 3916.45i 0.344637 + 0.596929i
\(82\) 0 0
\(83\) −9810.30 −1.42405 −0.712027 0.702152i \(-0.752223\pi\)
−0.712027 + 0.702152i \(0.752223\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −6112.84 10587.8i −0.807615 1.39883i
\(88\) 0 0
\(89\) −2862.93 1652.91i −0.361435 0.208675i 0.308275 0.951297i \(-0.400248\pi\)
−0.669710 + 0.742623i \(0.733582\pi\)
\(90\) 0 0
\(91\) 4076.21 + 2351.35i 0.492237 + 0.283945i
\(92\) 0 0
\(93\) −3367.98 1944.50i −0.389406 0.224824i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −9079.39 −0.964968 −0.482484 0.875905i \(-0.660265\pi\)
−0.482484 + 0.875905i \(0.660265\pi\)
\(98\) 0 0
\(99\) 1751.93 0.178751
\(100\) 0 0
\(101\) 9553.75 5515.86i 0.936550 0.540718i 0.0476730 0.998863i \(-0.484819\pi\)
0.888877 + 0.458145i \(0.151486\pi\)
\(102\) 0 0
\(103\) 1662.25 2879.10i 0.156683 0.271383i −0.776988 0.629516i \(-0.783253\pi\)
0.933671 + 0.358133i \(0.116587\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5122.23 + 2957.32i 0.447395 + 0.258304i 0.706730 0.707484i \(-0.250170\pi\)
−0.259334 + 0.965788i \(0.583503\pi\)
\(108\) 0 0
\(109\) 5832.79 + 10102.7i 0.490934 + 0.850323i 0.999946 0.0104368i \(-0.00332220\pi\)
−0.509011 + 0.860760i \(0.669989\pi\)
\(110\) 0 0
\(111\) 20865.7i 1.69351i
\(112\) 0 0
\(113\) 9410.74i 0.736999i −0.929628 0.368499i \(-0.879872\pi\)
0.929628 0.368499i \(-0.120128\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −967.764 + 1676.22i −0.0706965 + 0.122450i
\(118\) 0 0
\(119\) 5.09459 + 13485.2i 0.000359762 + 0.952279i
\(120\) 0 0
\(121\) 3542.36 6135.55i 0.241948 0.419067i
\(122\) 0 0
\(123\) −16380.0 + 9456.97i −1.08269 + 0.625089i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 29678.9i 1.84009i −0.391809 0.920046i \(-0.628151\pi\)
0.391809 0.920046i \(-0.371849\pi\)
\(128\) 0 0
\(129\) −8227.29 + 4750.03i −0.494399 + 0.285441i
\(130\) 0 0
\(131\) 9188.13 + 5304.77i 0.535408 + 0.309118i 0.743216 0.669052i \(-0.233300\pi\)
−0.207808 + 0.978170i \(0.566633\pi\)
\(132\) 0 0
\(133\) −16737.3 28964.6i −0.946199 1.63744i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −18772.6 + 10838.4i −1.00019 + 0.577461i −0.908305 0.418309i \(-0.862623\pi\)
−0.0918864 + 0.995769i \(0.529290\pi\)
\(138\) 0 0
\(139\) 412.731i 0.0213618i −0.999943 0.0106809i \(-0.996600\pi\)
0.999943 0.0106809i \(-0.00339990\pi\)
\(140\) 0 0
\(141\) 9899.75 0.497950
\(142\) 0 0
\(143\) −4174.07 7229.69i −0.204121 0.353548i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −9352.09 + 16226.6i −0.432787 + 0.750919i
\(148\) 0 0
\(149\) −19021.5 + 32946.2i −0.856786 + 1.48400i 0.0181929 + 0.999834i \(0.494209\pi\)
−0.874979 + 0.484162i \(0.839125\pi\)
\(150\) 0 0
\(151\) 1709.25 + 2960.51i 0.0749639 + 0.129841i 0.901071 0.433673i \(-0.142783\pi\)
−0.826107 + 0.563514i \(0.809449\pi\)
\(152\) 0 0
\(153\) −5546.59 −0.236943
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 17789.0 + 30811.5i 0.721694 + 1.25001i 0.960321 + 0.278899i \(0.0899693\pi\)
−0.238627 + 0.971111i \(0.576697\pi\)
\(158\) 0 0
\(159\) 17162.4 + 9908.72i 0.678866 + 0.391943i
\(160\) 0 0
\(161\) −15982.8 27658.9i −0.616598 1.06705i
\(162\) 0 0
\(163\) −44412.5 25641.6i −1.67159 0.965093i −0.966749 0.255729i \(-0.917685\pi\)
−0.704842 0.709365i \(-0.748982\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −28151.1 −1.00940 −0.504700 0.863295i \(-0.668397\pi\)
−0.504700 + 0.863295i \(0.668397\pi\)
\(168\) 0 0
\(169\) −19338.0 −0.677078
\(170\) 0 0
\(171\) 11916.0 6879.71i 0.407510 0.235276i
\(172\) 0 0
\(173\) −13435.4 + 23270.8i −0.448909 + 0.777533i −0.998315 0.0580223i \(-0.981521\pi\)
0.549406 + 0.835555i \(0.314854\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −42895.4 24765.7i −1.36919 0.790504i
\(178\) 0 0
\(179\) 19587.1 + 33925.9i 0.611315 + 1.05883i 0.991019 + 0.133720i \(0.0426924\pi\)
−0.379704 + 0.925108i \(0.623974\pi\)
\(180\) 0 0
\(181\) 17960.6i 0.548231i −0.961697 0.274115i \(-0.911615\pi\)
0.961697 0.274115i \(-0.0883850\pi\)
\(182\) 0 0
\(183\) 38908.2i 1.16182i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 11961.5 20717.9i 0.342060 0.592466i
\(188\) 0 0
\(189\) −33490.4 19318.8i −0.937555 0.540826i
\(190\) 0 0
\(191\) −6606.98 + 11443.6i −0.181107 + 0.313687i −0.942258 0.334888i \(-0.891301\pi\)
0.761151 + 0.648575i \(0.224635\pi\)
\(192\) 0 0
\(193\) −15888.3 + 9173.09i −0.426542 + 0.246264i −0.697872 0.716222i \(-0.745870\pi\)
0.271331 + 0.962486i \(0.412536\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2088.11i 0.0538048i 0.999638 + 0.0269024i \(0.00856434\pi\)
−0.999638 + 0.0269024i \(0.991436\pi\)
\(198\) 0 0
\(199\) −32781.3 + 18926.3i −0.827790 + 0.477925i −0.853095 0.521755i \(-0.825278\pi\)
0.0253053 + 0.999680i \(0.491944\pi\)
\(200\) 0 0
\(201\) −19356.9 11175.7i −0.479119 0.276620i
\(202\) 0 0
\(203\) 66524.1 + 38374.2i 1.61431 + 0.931209i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 11378.8 6569.58i 0.265557 0.153319i
\(208\) 0 0
\(209\) 59345.7i 1.35862i
\(210\) 0 0
\(211\) −17846.4 −0.400854 −0.200427 0.979709i \(-0.564233\pi\)
−0.200427 + 0.979709i \(0.564233\pi\)
\(212\) 0 0
\(213\) −14970.0 25928.8i −0.329960 0.571508i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 24429.7 9.22932i 0.518799 0.000195997i
\(218\) 0 0
\(219\) −8028.63 + 13906.0i −0.167399 + 0.289944i
\(220\) 0 0
\(221\) 13215.0 + 22889.1i 0.270572 + 0.468645i
\(222\) 0 0
\(223\) −40705.2 −0.818541 −0.409270 0.912413i \(-0.634217\pi\)
−0.409270 + 0.912413i \(0.634217\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −22255.9 38548.3i −0.431910 0.748090i 0.565128 0.825003i \(-0.308827\pi\)
−0.997038 + 0.0769134i \(0.975493\pi\)
\(228\) 0 0
\(229\) −12311.4 7107.98i −0.234766 0.135542i 0.378003 0.925805i \(-0.376611\pi\)
−0.612769 + 0.790262i \(0.709944\pi\)
\(230\) 0 0
\(231\) 28767.4 16623.4i 0.539110 0.311527i
\(232\) 0 0
\(233\) 32267.0 + 18629.3i 0.594355 + 0.343151i 0.766818 0.641865i \(-0.221839\pi\)
−0.172462 + 0.985016i \(0.555172\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −29428.9 −0.523935
\(238\) 0 0
\(239\) 15939.9 0.279055 0.139527 0.990218i \(-0.455442\pi\)
0.139527 + 0.990218i \(0.455442\pi\)
\(240\) 0 0
\(241\) 55441.8 32009.3i 0.954560 0.551115i 0.0600654 0.998194i \(-0.480869\pi\)
0.894494 + 0.447079i \(0.147536\pi\)
\(242\) 0 0
\(243\) 14318.2 24799.9i 0.242480 0.419988i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −56780.8 32782.4i −0.930696 0.537338i
\(248\) 0 0
\(249\) −38262.0 66271.8i −0.617120 1.06888i
\(250\) 0 0
\(251\) 93024.3i 1.47655i 0.674499 + 0.738276i \(0.264360\pi\)
−0.674499 + 0.738276i \(0.735640\pi\)
\(252\) 0 0
\(253\) 56670.5i 0.885353i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7125.99 + 12342.6i −0.107890 + 0.186870i −0.914915 0.403646i \(-0.867743\pi\)
0.807026 + 0.590517i \(0.201076\pi\)
\(258\) 0 0
\(259\) 65579.5 + 113488.i 0.977616 + 1.69180i
\(260\) 0 0
\(261\) −15794.0 + 27356.0i −0.231852 + 0.401579i
\(262\) 0 0
\(263\) −42188.6 + 24357.6i −0.609935 + 0.352146i −0.772940 0.634479i \(-0.781215\pi\)
0.163005 + 0.986625i \(0.447881\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 25786.7i 0.361720i
\(268\) 0 0
\(269\) 7995.48 4616.19i 0.110494 0.0637939i −0.443734 0.896158i \(-0.646347\pi\)
0.554229 + 0.832364i \(0.313013\pi\)
\(270\) 0 0
\(271\) −25894.9 14950.4i −0.352595 0.203571i 0.313233 0.949676i \(-0.398588\pi\)
−0.665828 + 0.746106i \(0.731921\pi\)
\(272\) 0 0
\(273\) 13.8675 + 36706.8i 0.000186068 + 0.492518i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −71484.0 + 41271.3i −0.931643 + 0.537884i −0.887331 0.461133i \(-0.847443\pi\)
−0.0443122 + 0.999018i \(0.514110\pi\)
\(278\) 0 0
\(279\) 10048.2i 0.129086i
\(280\) 0 0
\(281\) −99980.5 −1.26620 −0.633101 0.774069i \(-0.718218\pi\)
−0.633101 + 0.774069i \(0.718218\pi\)
\(282\) 0 0
\(283\) 52882.1 + 91594.4i 0.660291 + 1.14366i 0.980539 + 0.196324i \(0.0629004\pi\)
−0.320248 + 0.947334i \(0.603766\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 59367.5 102917.i 0.720750 1.24947i
\(288\) 0 0
\(289\) 3890.59 6738.70i 0.0465822 0.0806828i
\(290\) 0 0
\(291\) −35411.3 61334.2i −0.418173 0.724297i
\(292\) 0 0
\(293\) 44148.4 0.514256 0.257128 0.966377i \(-0.417224\pi\)
0.257128 + 0.966377i \(0.417224\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 34294.4 + 59399.6i 0.388786 + 0.673396i
\(298\) 0 0
\(299\) −54221.3 31304.7i −0.606495 0.350160i
\(300\) 0 0
\(301\) 29819.0 51693.0i 0.329124 0.570557i
\(302\) 0 0
\(303\) 74522.8 + 43025.8i 0.811716 + 0.468644i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 127957. 1.35765 0.678824 0.734301i \(-0.262490\pi\)
0.678824 + 0.734301i \(0.262490\pi\)
\(308\) 0 0
\(309\) 25932.3 0.271597
\(310\) 0 0
\(311\) 77050.7 44485.2i 0.796628 0.459934i −0.0456624 0.998957i \(-0.514540\pi\)
0.842291 + 0.539023i \(0.181207\pi\)
\(312\) 0 0
\(313\) 8978.22 15550.7i 0.0916435 0.158731i −0.816559 0.577262i \(-0.804121\pi\)
0.908203 + 0.418530i \(0.137455\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 81549.8 + 47082.8i 0.811530 + 0.468537i 0.847487 0.530816i \(-0.178115\pi\)
−0.0359570 + 0.999353i \(0.511448\pi\)
\(318\) 0 0
\(319\) −68121.1 117989.i −0.669422 1.15947i
\(320\) 0 0
\(321\) 46136.4i 0.447748i
\(322\) 0 0
\(323\) 187887.i 1.80091i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −45498.0 + 78804.8i −0.425497 + 0.736982i
\(328\) 0 0
\(329\) −53844.4 + 31114.2i −0.497449 + 0.287453i
\(330\) 0 0
\(331\) −104990. + 181848.i −0.958276 + 1.65978i −0.231590 + 0.972813i \(0.574393\pi\)
−0.726686 + 0.686970i \(0.758940\pi\)
\(332\) 0 0
\(333\) −46688.8 + 26955.8i −0.421041 + 0.243088i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 85225.8i 0.750432i 0.926937 + 0.375216i \(0.122431\pi\)
−0.926937 + 0.375216i \(0.877569\pi\)
\(338\) 0 0
\(339\) 63572.6 36703.6i 0.553185 0.319382i
\(340\) 0 0
\(341\) −37532.5 21669.4i −0.322774 0.186354i
\(342\) 0 0
\(343\) −133.340 117649.i −0.00113337 0.999999i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12700.9 7332.85i 0.105481 0.0608995i −0.446331 0.894868i \(-0.647270\pi\)
0.551812 + 0.833968i \(0.313936\pi\)
\(348\) 0 0
\(349\) 184573.i 1.51537i −0.652622 0.757684i \(-0.726331\pi\)
0.652622 0.757684i \(-0.273669\pi\)
\(350\) 0 0
\(351\) −75776.5 −0.615064
\(352\) 0 0
\(353\) −34274.1 59364.5i −0.275053 0.476406i 0.695095 0.718917i \(-0.255362\pi\)
−0.970149 + 0.242512i \(0.922029\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −91077.2 + 52629.3i −0.714617 + 0.412944i
\(358\) 0 0
\(359\) 102011. 176688.i 0.791511 1.37094i −0.133521 0.991046i \(-0.542628\pi\)
0.925031 0.379891i \(-0.124038\pi\)
\(360\) 0 0
\(361\) 167885. + 290786.i 1.28825 + 2.23131i
\(362\) 0 0
\(363\) 55263.5 0.419397
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 78767.7 + 136430.i 0.584812 + 1.01292i 0.994899 + 0.100877i \(0.0321650\pi\)
−0.410087 + 0.912046i \(0.634502\pi\)
\(368\) 0 0
\(369\) 42321.5 + 24434.3i 0.310820 + 0.179452i
\(370\) 0 0
\(371\) −124488. + 47.0305i −0.904441 + 0.000341689i
\(372\) 0 0
\(373\) 79861.1 + 46107.8i 0.574007 + 0.331403i 0.758748 0.651384i \(-0.225811\pi\)
−0.184741 + 0.982787i \(0.559145\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 150520. 1.05904
\(378\) 0 0
\(379\) 202448. 1.40940 0.704702 0.709503i \(-0.251081\pi\)
0.704702 + 0.709503i \(0.251081\pi\)
\(380\) 0 0
\(381\) 200490. 115753.i 1.38116 0.797412i
\(382\) 0 0
\(383\) −69653.8 + 120644.i −0.474840 + 0.822446i −0.999585 0.0288130i \(-0.990827\pi\)
0.524745 + 0.851259i \(0.324161\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 21257.2 + 12272.8i 0.141933 + 0.0819451i
\(388\) 0 0
\(389\) 2378.96 + 4120.48i 0.0157213 + 0.0272301i 0.873779 0.486323i \(-0.161662\pi\)
−0.858058 + 0.513553i \(0.828329\pi\)
\(390\) 0 0
\(391\) 179418.i 1.17358i
\(392\) 0 0
\(393\) 82758.4i 0.535830i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 138638. 240128.i 0.879633 1.52357i 0.0278883 0.999611i \(-0.491122\pi\)
0.851744 0.523957i \(-0.175545\pi\)
\(398\) 0 0
\(399\) 130387. 226033.i 0.819006 1.41980i
\(400\) 0 0
\(401\) 93734.3 162353.i 0.582921 1.00965i −0.412210 0.911089i \(-0.635243\pi\)
0.995131 0.0985602i \(-0.0314237\pi\)
\(402\) 0 0
\(403\) 41465.7 23940.2i 0.255316 0.147407i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 232526.i 1.40373i
\(408\) 0 0
\(409\) 1786.30 1031.32i 0.0106784 0.00616521i −0.494651 0.869092i \(-0.664704\pi\)
0.505330 + 0.862926i \(0.331371\pi\)
\(410\) 0 0
\(411\) −146433. 84543.3i −0.866874 0.500490i
\(412\) 0 0
\(413\) 311144. 117.547i 1.82415 0.000689147i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 2788.13 1609.73i 0.0160340 0.00925721i
\(418\) 0 0
\(419\) 109818.i 0.625524i −0.949832 0.312762i \(-0.898746\pi\)
0.949832 0.312762i \(-0.101254\pi\)
\(420\) 0 0
\(421\) 85459.4 0.482165 0.241083 0.970505i \(-0.422498\pi\)
0.241083 + 0.970505i \(0.422498\pi\)
\(422\) 0 0
\(423\) −12789.2 22151.5i −0.0714763 0.123801i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 122286. + 211620.i 0.670687 + 1.16065i
\(428\) 0 0
\(429\) 32559.3 56394.3i 0.176913 0.306423i
\(430\) 0 0
\(431\) 116210. + 201281.i 0.625588 + 1.08355i 0.988427 + 0.151698i \(0.0484740\pi\)
−0.362839 + 0.931852i \(0.618193\pi\)
\(432\) 0 0
\(433\) −106205. −0.566462 −0.283231 0.959052i \(-0.591406\pi\)
−0.283231 + 0.959052i \(0.591406\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 222541. + 385452.i 1.16532 + 2.01840i
\(438\) 0 0
\(439\) −38310.0 22118.3i −0.198785 0.114768i 0.397304 0.917687i \(-0.369946\pi\)
−0.596088 + 0.802919i \(0.703279\pi\)
\(440\) 0 0
\(441\) 48390.1 36.5626i 0.248816 0.000188001i
\(442\) 0 0
\(443\) −97622.4 56362.3i −0.497442 0.287198i 0.230215 0.973140i \(-0.426057\pi\)
−0.727656 + 0.685942i \(0.759390\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −296750. −1.48517
\(448\) 0 0
\(449\) 196030. 0.972368 0.486184 0.873857i \(-0.338389\pi\)
0.486184 + 0.873857i \(0.338389\pi\)
\(450\) 0 0
\(451\) −182537. + 105388.i −0.897425 + 0.518128i
\(452\) 0 0
\(453\) −13332.8 + 23093.1i −0.0649718 + 0.112534i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −14191.0 8193.15i −0.0679484 0.0392300i 0.465641 0.884974i \(-0.345824\pi\)
−0.533589 + 0.845744i \(0.679157\pi\)
\(458\) 0 0
\(459\) −108575. 188058.i −0.515354 0.892620i
\(460\) 0 0
\(461\) 103435.i 0.486704i 0.969938 + 0.243352i \(0.0782469\pi\)
−0.969938 + 0.243352i \(0.921753\pi\)
\(462\) 0 0
\(463\) 3367.13i 0.0157072i −0.999969 0.00785359i \(-0.997500\pi\)
0.999969 0.00785359i \(-0.00249990\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 122371. 211953.i 0.561108 0.971867i −0.436293 0.899805i \(-0.643709\pi\)
0.997400 0.0720619i \(-0.0229579\pi\)
\(468\) 0 0
\(469\) 140406. 53.0441i 0.638322 0.000241152i
\(470\) 0 0
\(471\) −138761. + 240341.i −0.625498 + 1.08339i
\(472\) 0 0
\(473\) −91684.3 + 52934.0i −0.409801 + 0.236599i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 51203.1i 0.225040i
\(478\) 0 0
\(479\) 257514. 148676.i 1.12235 0.647992i 0.180354 0.983602i \(-0.442276\pi\)
0.942001 + 0.335610i \(0.108942\pi\)
\(480\) 0 0
\(481\) 222476. + 128447.i 0.961598 + 0.555179i
\(482\) 0 0
\(483\) 124509. 215844.i 0.533711 0.925222i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 41016.9 23681.1i 0.172944 0.0998492i −0.411029 0.911622i \(-0.634831\pi\)
0.583973 + 0.811773i \(0.301497\pi\)
\(488\) 0 0
\(489\) 400028.i 1.67291i
\(490\) 0 0
\(491\) −98500.3 −0.408578 −0.204289 0.978911i \(-0.565488\pi\)
−0.204289 + 0.978911i \(0.565488\pi\)
\(492\) 0 0
\(493\) 215670. + 373551.i 0.887352 + 1.53694i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 162913. + 93976.1i 0.659545 + 0.380456i
\(498\) 0 0
\(499\) −200380. + 347069.i −0.804737 + 1.39385i 0.111732 + 0.993738i \(0.464360\pi\)
−0.916468 + 0.400107i \(0.868973\pi\)
\(500\) 0 0
\(501\) −109795. 190170.i −0.437427 0.757647i
\(502\) 0 0
\(503\) −88425.6 −0.349496 −0.174748 0.984613i \(-0.555911\pi\)
−0.174748 + 0.984613i \(0.555911\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −75421.9 130635.i −0.293415 0.508209i
\(508\) 0 0
\(509\) −153664. 88717.7i −0.593110 0.342432i 0.173216 0.984884i \(-0.444584\pi\)
−0.766326 + 0.642451i \(0.777917\pi\)
\(510\) 0 0
\(511\) −38.1068 100868.i −0.000145936 0.386287i
\(512\) 0 0
\(513\) 466515. + 269343.i 1.77268 + 1.02346i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 110322. 0.412745
\(518\) 0 0
\(519\) −209602. −0.778146
\(520\) 0 0
\(521\) 198162. 114409.i 0.730038 0.421488i −0.0883980 0.996085i \(-0.528175\pi\)
0.818436 + 0.574597i \(0.194841\pi\)
\(522\) 0 0
\(523\) −2206.18 + 3821.22i −0.00806563 + 0.0139701i −0.870030 0.492999i \(-0.835901\pi\)
0.861964 + 0.506969i \(0.169234\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 118827. + 68604.9i 0.427853 + 0.247021i
\(528\) 0 0
\(529\) 72588.3 + 125727.i 0.259391 + 0.449279i
\(530\) 0 0
\(531\) 127976.i 0.453879i
\(532\) 0 0
\(533\) 232864.i 0.819686i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −152787. + 264635.i −0.529832 + 0.917695i
\(538\) 0 0
\(539\) −104219. + 180828.i −0.358732 + 0.622427i
\(540\) 0 0
\(541\) −242415. + 419876.i −0.828258 + 1.43459i 0.0711453 + 0.997466i \(0.477335\pi\)
−0.899404 + 0.437119i \(0.855999\pi\)
\(542\) 0 0
\(543\) 121330. 70049.7i 0.411497 0.237578i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 208361.i 0.696374i 0.937425 + 0.348187i \(0.113203\pi\)
−0.937425 + 0.348187i \(0.886797\pi\)
\(548\) 0 0
\(549\) −87060.3 + 50264.3i −0.288852 + 0.166769i
\(550\) 0 0
\(551\) −926668. 535012.i −3.05225 1.76222i
\(552\) 0 0
\(553\) 160063. 92493.0i 0.523408 0.302454i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −113052. + 65270.3i −0.364390 + 0.210381i −0.671005 0.741453i \(-0.734137\pi\)
0.306615 + 0.951834i \(0.400804\pi\)
\(558\) 0 0
\(559\) 116962.i 0.374302i
\(560\) 0 0
\(561\) 186609. 0.592933
\(562\) 0 0
\(563\) −82840.9 143485.i −0.261353 0.452677i 0.705249 0.708960i \(-0.250835\pi\)
−0.966602 + 0.256283i \(0.917502\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −83.7161 221594.i −0.000260401 0.689274i
\(568\) 0 0
\(569\) 53514.5 92689.8i 0.165290 0.286291i −0.771468 0.636268i \(-0.780477\pi\)
0.936758 + 0.349977i \(0.113811\pi\)
\(570\) 0 0
\(571\) 81007.0 + 140308.i 0.248456 + 0.430339i 0.963098 0.269152i \(-0.0867434\pi\)
−0.714641 + 0.699491i \(0.753410\pi\)
\(572\) 0 0
\(573\) −103074. −0.313935
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −161769. 280192.i −0.485896 0.841597i 0.513973 0.857807i \(-0.328173\pi\)
−0.999869 + 0.0162099i \(0.994840\pi\)
\(578\) 0 0
\(579\) −123934. 71553.5i −0.369687 0.213439i
\(580\) 0 0
\(581\) 416393. + 240195.i 1.23354 + 0.711561i
\(582\) 0 0
\(583\) 191257. + 110422.i 0.562703 + 0.324877i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 268042. 0.777905 0.388952 0.921258i \(-0.372837\pi\)
0.388952 + 0.921258i \(0.372837\pi\)
\(588\) 0 0
\(589\) −340376. −0.981133
\(590\) 0 0
\(591\) −14105.9 + 8144.03i −0.0403854 + 0.0233165i
\(592\) 0 0
\(593\) −308934. + 535089.i −0.878529 + 1.52166i −0.0255734 + 0.999673i \(0.508141\pi\)
−0.852955 + 0.521984i \(0.825192\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −255707. 147632.i −0.717453 0.414222i
\(598\) 0 0
\(599\) 132826. + 230062.i 0.370194 + 0.641196i 0.989595 0.143879i \(-0.0459577\pi\)
−0.619401 + 0.785075i \(0.712624\pi\)
\(600\) 0 0
\(601\) 86658.3i 0.239917i −0.992779 0.119959i \(-0.961724\pi\)
0.992779 0.119959i \(-0.0382762\pi\)
\(602\) 0 0
\(603\) 57750.2i 0.158825i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 13808.7 23917.4i 0.0374780 0.0649137i −0.846678 0.532106i \(-0.821401\pi\)
0.884156 + 0.467192i \(0.154734\pi\)
\(608\) 0 0
\(609\) 226.319 + 599058.i 0.000610219 + 1.61523i
\(610\) 0 0
\(611\) −60941.7 + 105554.i −0.163242 + 0.282743i
\(612\) 0 0
\(613\) −498966. + 288078.i −1.32785 + 0.766636i −0.984967 0.172741i \(-0.944737\pi\)
−0.342885 + 0.939377i \(0.611404\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 177703.i 0.466794i 0.972382 + 0.233397i \(0.0749841\pi\)
−0.972382 + 0.233397i \(0.925016\pi\)
\(618\) 0 0
\(619\) 245526. 141755.i 0.640792 0.369961i −0.144128 0.989559i \(-0.546038\pi\)
0.784919 + 0.619598i \(0.212704\pi\)
\(620\) 0 0
\(621\) 445485. + 257201.i 1.15518 + 0.666944i
\(622\) 0 0
\(623\) 81045.7 + 140253.i 0.208811 + 0.361356i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −400900. + 231460.i −1.01977 + 0.588762i
\(628\) 0 0
\(629\) 736173.i 1.86071i
\(630\) 0 0
\(631\) −635329. −1.59566 −0.797829 0.602884i \(-0.794018\pi\)
−0.797829 + 0.602884i \(0.794018\pi\)
\(632\) 0 0
\(633\) −69604.3 120558.i −0.173712 0.300877i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −115442. 199604.i −0.284503 0.491915i
\(638\) 0 0
\(639\) −38678.5 + 66993.1i −0.0947257 + 0.164070i
\(640\) 0 0
\(641\) −246063. 426194.i −0.598867 1.03727i −0.992989 0.118210i \(-0.962284\pi\)
0.394122 0.919058i \(-0.371049\pi\)
\(642\) 0 0
\(643\) −2134.72 −0.00516321 −0.00258161 0.999997i \(-0.500822\pi\)
−0.00258161 + 0.999997i \(0.500822\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 90738.2 + 157163.i 0.216761 + 0.375441i 0.953816 0.300392i \(-0.0971174\pi\)
−0.737055 + 0.675833i \(0.763784\pi\)
\(648\) 0 0
\(649\) −478024. 275987.i −1.13491 0.655238i
\(650\) 0 0
\(651\) 95342.9 + 164995.i 0.224971 + 0.389321i
\(652\) 0 0
\(653\) −30672.6 17708.8i −0.0719323 0.0415302i 0.463602 0.886043i \(-0.346557\pi\)
−0.535535 + 0.844513i \(0.679890\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 41487.8 0.0961146
\(658\) 0 0
\(659\) 220647. 0.508075 0.254037 0.967194i \(-0.418241\pi\)
0.254037 + 0.967194i \(0.418241\pi\)
\(660\) 0 0
\(661\) 532676. 307541.i 1.21916 0.703881i 0.254420 0.967094i \(-0.418115\pi\)
0.964738 + 0.263212i \(0.0847820\pi\)
\(662\) 0 0
\(663\) −103082. + 178543.i −0.234507 + 0.406178i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −884895. 510894.i −1.98902 1.14836i
\(668\) 0 0
\(669\) −158758. 274977.i −0.354718 0.614390i
\(670\) 0 0
\(671\) 433590.i 0.963018i
\(672\) 0 0
\(673\) 94530.9i 0.208710i −0.994540 0.104355i \(-0.966722\pi\)
0.994540 0.104355i \(-0.0332778\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 343590. 595116.i 0.749659 1.29845i −0.198328 0.980136i \(-0.563551\pi\)
0.947986 0.318311i \(-0.103116\pi\)
\(678\) 0 0
\(679\) 385370. + 222299.i 0.835869 + 0.482168i
\(680\) 0 0
\(681\) 173604. 300691.i 0.374340 0.648376i
\(682\) 0 0
\(683\) 721857. 416764.i 1.54743 0.893406i 0.549088 0.835765i \(-0.314975\pi\)
0.998337 0.0576419i \(-0.0183582\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 110890.i 0.234951i
\(688\) 0 0
\(689\) −211299. + 121994.i −0.445102 + 0.256980i
\(690\) 0 0
\(691\) 307473. + 177520.i 0.643949 + 0.371784i 0.786134 0.618056i \(-0.212079\pi\)
−0.142185 + 0.989840i \(0.545413\pi\)
\(692\) 0 0
\(693\) −74360.0 42894.3i −0.154836 0.0893168i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 577909. 333656.i 1.18958 0.686805i
\(698\) 0 0
\(699\) 290632.i 0.594824i
\(700\) 0 0
\(701\) 498723. 1.01490 0.507451 0.861681i \(-0.330588\pi\)
0.507451 + 0.861681i \(0.330588\pi\)
\(702\) 0 0
\(703\) −913111. 1.58155e6i −1.84762 3.20017i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −540554. + 204.216i −1.08144 + 0.000408556i
\(708\) 0 0
\(709\) −215894. + 373939.i −0.429485 + 0.743890i −0.996828 0.0795922i \(-0.974638\pi\)
0.567343 + 0.823482i \(0.307972\pi\)
\(710\) 0 0
\(711\) 38018.3 + 65849.7i 0.0752062 + 0.130261i
\(712\) 0 0
\(713\) −325032. −0.639363
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 62168.5 + 107679.i 0.120929 + 0.209456i
\(718\) 0 0
\(719\) 237052. + 136862.i 0.458549 + 0.264743i 0.711434 0.702753i \(-0.248046\pi\)
−0.252885 + 0.967496i \(0.581379\pi\)
\(720\) 0 0
\(721\) −141045. + 81503.5i −0.271324 + 0.156785i
\(722\) 0 0
\(723\) 432467. + 249685.i 0.827325 + 0.477656i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −119072. −0.225289 −0.112644 0.993635i \(-0.535932\pi\)
−0.112644 + 0.993635i \(0.535932\pi\)
\(728\) 0 0
\(729\) 589683. 1.10959
\(730\) 0 0
\(731\) 290271. 167588.i 0.543211 0.313623i
\(732\) 0 0
\(733\) −460056. + 796840.i −0.856253 + 1.48307i 0.0192238 + 0.999815i \(0.493881\pi\)
−0.875477 + 0.483259i \(0.839453\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −215712. 124541.i −0.397136 0.229287i
\(738\) 0 0
\(739\) −134271. 232564.i −0.245863 0.425846i 0.716511 0.697576i \(-0.245738\pi\)
−0.962374 + 0.271729i \(0.912405\pi\)
\(740\) 0 0
\(741\) 511431.i 0.931430i
\(742\) 0 0
\(743\) 731118.i 1.32437i −0.749340 0.662185i \(-0.769629\pi\)
0.749340 0.662185i \(-0.230371\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −98859.1 + 171229.i −0.177164 + 0.306857i
\(748\) 0 0
\(749\) −145004. 250935.i −0.258473 0.447298i
\(750\) 0 0
\(751\) 48233.3 83542.6i 0.0855200 0.148125i −0.820093 0.572231i \(-0.806078\pi\)
0.905613 + 0.424106i \(0.139412\pi\)
\(752\) 0 0
\(753\) −628409. + 362812.i −1.10829 + 0.639870i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 932641.i 1.62751i 0.581211 + 0.813753i \(0.302579\pi\)
−0.581211 + 0.813753i \(0.697421\pi\)
\(758\) 0 0
\(759\) −382828. + 221026.i −0.664538 + 0.383671i
\(760\) 0 0
\(761\) −344258. 198757.i −0.594448 0.343205i 0.172406 0.985026i \(-0.444846\pi\)
−0.766855 + 0.641821i \(0.778179\pi\)
\(762\) 0 0
\(763\) −215.950 571613.i −0.000370941 0.981868i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 528118. 304909.i 0.897719 0.518298i
\(768\) 0 0
\(769\) 334165.i 0.565078i 0.959256 + 0.282539i \(0.0911766\pi\)
−0.959256 + 0.282539i \(0.908823\pi\)
\(770\) 0 0
\(771\) −111171. −0.187018
\(772\) 0 0
\(773\) −360380. 624197.i −0.603118 1.04463i −0.992346 0.123490i \(-0.960591\pi\)
0.389228 0.921141i \(-0.372742\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −510875. + 885635.i −0.846200 + 1.46694i
\(778\) 0 0
\(779\) −827699. + 1.43362e6i −1.36395 + 2.36243i
\(780\) 0 0
\(781\) −166824. 288948.i −0.273500 0.473716i
\(782\) 0 0
\(783\) −1.23668e6 −2.01713
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −162620. 281667.i −0.262558 0.454764i 0.704363 0.709840i \(-0.251233\pi\)
−0.966921 + 0.255076i \(0.917899\pi\)
\(788\) 0 0
\(789\) −329087. 189998.i −0.528636 0.305208i
\(790\) 0 0
\(791\) −230412. + 399434.i −0.368258 + 0.638399i
\(792\) 0 0
\(793\) 414850. + 239514.i 0.659698 + 0.380877i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −425576. −0.669978 −0.334989 0.942222i \(-0.608733\pi\)
−0.334989 + 0.942222i \(0.608733\pi\)
\(798\) 0 0
\(799\) −349278. −0.547113
\(800\) 0 0
\(801\) −57699.8 + 33313.0i −0.0899310 + 0.0519217i
\(802\) 0 0
\(803\) −89470.5 + 154967.i −0.138755 + 0.240331i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 62367.7 + 36008.0i 0.0957664 + 0.0552907i
\(808\) 0 0
\(809\) 340716. + 590138.i 0.520590 + 0.901688i 0.999713 + 0.0239405i \(0.00762123\pi\)
−0.479124 + 0.877747i \(0.659045\pi\)
\(810\) 0 0
\(811\) 316445.i 0.481123i 0.970634 + 0.240562i \(0.0773316\pi\)
−0.970634 + 0.240562i \(0.922668\pi\)
\(812\) 0 0
\(813\) 233238.i 0.352873i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −415735. + 720074.i −0.622834 + 1.07878i
\(818\) 0 0
\(819\) 82116.7 47451.5i 0.122423 0.0707427i
\(820\) 0 0
\(821\) −238713. + 413463.i −0.354152 + 0.613409i −0.986972 0.160889i \(-0.948564\pi\)
0.632821 + 0.774298i \(0.281897\pi\)
\(822\) 0 0
\(823\) −983486. + 567816.i −1.45201 + 0.838317i −0.998595 0.0529848i \(-0.983127\pi\)
−0.453412 + 0.891301i \(0.649793\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.14924e6i 1.68034i −0.542321 0.840171i \(-0.682454\pi\)
0.542321 0.840171i \(-0.317546\pi\)
\(828\) 0 0
\(829\) 605000. 349297.i 0.880332 0.508260i 0.00956421 0.999954i \(-0.496956\pi\)
0.870768 + 0.491694i \(0.163622\pi\)
\(830\) 0 0
\(831\) −557602. 321932.i −0.807463 0.466189i
\(832\) 0 0
\(833\) 329956. 572498.i 0.475516 0.825057i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −340685. + 196694.i −0.486297 + 0.280764i
\(838\) 0 0
\(839\) 918115.i 1.30429i −0.758095 0.652144i \(-0.773870\pi\)
0.758095 0.652144i \(-0.226130\pi\)
\(840\) 0 0
\(841\) 1.74921e6 2.47315
\(842\) 0 0
\(843\) −389943. 675401.i −0.548714 0.950400i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −300576. + 173689.i −0.418975 + 0.242106i
\(848\) 0 0
\(849\) −412500. + 714471.i −0.572280 + 0.991218i
\(850\) 0 0
\(851\) −871949. 1.51026e6i −1.20402 2.08542i
\(852\) 0 0
\(853\) 622696. 0.855811 0.427906 0.903823i \(-0.359252\pi\)
0.427906 + 0.903823i \(0.359252\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 28588.2 + 49516.2i 0.0389247 + 0.0674195i 0.884831 0.465911i \(-0.154273\pi\)
−0.845907 + 0.533331i \(0.820940\pi\)
\(858\) 0 0
\(859\) 690265. + 398525.i 0.935469 + 0.540093i 0.888537 0.458805i \(-0.151722\pi\)
0.0469321 + 0.998898i \(0.485056\pi\)
\(860\) 0 0
\(861\) 926783. 350.130i 1.25018 0.000472305i
\(862\) 0 0
\(863\) −1105.47 638.243i −0.00148431 0.000856967i 0.499258 0.866454i \(-0.333606\pi\)
−0.500742 + 0.865597i \(0.666939\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 60696.2 0.0807464
\(868\) 0 0
\(869\) −327954. −0.434283
\(870\) 0 0
\(871\) 238317. 137593.i 0.314137 0.181367i
\(872\) 0 0
\(873\) −91493.6 + 158472.i −0.120050 + 0.207933i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 880872. + 508572.i 1.14529 + 0.661231i 0.947734 0.319062i \(-0.103368\pi\)
0.197551 + 0.980293i \(0.436701\pi\)
\(878\) 0 0
\(879\) 172187. + 298237.i 0.222855 + 0.385996i
\(880\) 0 0
\(881\) 1.22607e6i 1.57966i −0.613323 0.789832i \(-0.710168\pi\)
0.613323 0.789832i \(-0.289832\pi\)
\(882\) 0 0
\(883\) 454065.i 0.582367i 0.956667 + 0.291184i \(0.0940490\pi\)
−0.956667 + 0.291184i \(0.905951\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 462093. 800369.i 0.587330 1.01729i −0.407250 0.913317i \(-0.633512\pi\)
0.994581 0.103969i \(-0.0331544\pi\)
\(888\) 0 0
\(889\) −726656. + 1.25970e6i −0.919444 + 1.59391i
\(890\) 0 0
\(891\) −196556. + 340445.i −0.247588 + 0.428836i
\(892\) 0 0
\(893\) 750370. 433226.i 0.940962 0.543265i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 488376.i 0.606973i
\(898\) 0 0
\(899\) 676723. 390706.i 0.837320 0.483427i
\(900\) 0 0
\(901\) −605515. 349594.i −0.745891 0.430640i
\(902\) 0 0
\(903\) 465503. 175.862i 0.570882 0.000215674i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 67656.5 39061.5i 0.0822422 0.0474826i −0.458315 0.888790i \(-0.651547\pi\)
0.540557 + 0.841307i \(0.318213\pi\)
\(908\) 0 0
\(909\) 222335.i 0.269079i
\(910\) 0 0
\(911\) 1.27606e6 1.53756 0.768781 0.639512i \(-0.220863\pi\)
0.768781 + 0.639512i \(0.220863\pi\)
\(912\) 0 0
\(913\) −426389. 738528.i −0.511523 0.885983i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −260104. 450120.i −0.309320 0.535291i
\(918\) 0 0
\(919\) −203067. + 351722.i −0.240441 + 0.416455i −0.960840 0.277104i \(-0.910625\pi\)
0.720399 + 0.693560i \(0.243959\pi\)
\(920\) 0 0
\(921\) 499056. + 864391.i 0.588342 + 1.01904i
\(922\) 0 0
\(923\) 368613. 0.432681
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −33501.2 58025.8i −0.0389853 0.0675245i
\(928\) 0 0
\(929\) −1.42047e6 820109.i −1.64589 0.950255i −0.978681 0.205385i \(-0.934155\pi\)
−0.667209 0.744870i \(-0.732511\pi\)
\(930\) 0 0
\(931\) 1238.54 + 1.63918e6i 0.00142893 + 1.89116i
\(932\) 0 0
\(933\) 601024. + 347002.i 0.690445 + 0.398628i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −1.32405e6 −1.50809 −0.754044 0.656824i \(-0.771900\pi\)
−0.754044 + 0.656824i \(0.771900\pi\)
\(938\) 0 0
\(939\) 140067. 0.158856
\(940\) 0 0
\(941\) −893873. + 516078.i −1.00948 + 0.582822i −0.911039 0.412321i \(-0.864718\pi\)
−0.0984387 + 0.995143i \(0.531385\pi\)
\(942\) 0 0
\(943\) −790388. + 1.36899e6i −0.888826 + 1.53949i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −549121. 317035.i −0.612306 0.353515i 0.161561 0.986863i \(-0.448347\pi\)
−0.773867 + 0.633348i \(0.781680\pi\)
\(948\) 0 0
\(949\) −98846.5 171207.i −0.109756 0.190103i
\(950\) 0 0
\(951\) 734527.i 0.812170i
\(952\) 0 0
\(953\) 1.12638e6i 1.24022i 0.784516 + 0.620108i \(0.212911\pi\)
−0.784516 + 0.620108i \(0.787089\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 531370. 920360.i 0.580194 1.00493i
\(958\) 0 0
\(959\) 1.06216e6 401.274i 1.15492 0.000436318i
\(960\) 0 0
\(961\) −337476. + 584526.i −0.365424 + 0.632932i
\(962\) 0 0
\(963\) 103234. 59602.2i 0.111319 0.0642703i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 629660.i 0.673369i 0.941618 + 0.336684i \(0.109306\pi\)
−0.941618 + 0.336684i \(0.890694\pi\)
\(968\) 0 0
\(969\) 1.26924e6 732797.i 1.35175 0.780433i
\(970\) 0 0
\(971\) −1.18846e6 686157.i −1.26051 0.727755i −0.287336 0.957830i \(-0.592770\pi\)
−0.973173 + 0.230075i \(0.926103\pi\)
\(972\) 0 0
\(973\) −10105.3 + 17518.2i −0.0106739 + 0.0185039i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −259439. + 149787.i −0.271797 + 0.156922i −0.629704 0.776835i \(-0.716824\pi\)
0.357907 + 0.933757i \(0.383491\pi\)
\(978\) 0 0
\(979\) 287365.i 0.299825i
\(980\) 0 0
\(981\) 235110. 0.244305
\(982\) 0 0
\(983\) 392753. + 680268.i 0.406455 + 0.704001i 0.994490 0.104835i \(-0.0334315\pi\)
−0.588035 + 0.808836i \(0.700098\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −420190. 242385.i −0.431332 0.248812i
\(988\) 0 0
\(989\) −396994. + 687614.i −0.405874 + 0.702995i
\(990\) 0 0
\(991\) −350582. 607225.i −0.356978 0.618304i 0.630476 0.776209i \(-0.282860\pi\)
−0.987454 + 0.157904i \(0.949526\pi\)
\(992\) 0 0
\(993\) −1.63792e6 −1.66109
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 118236. + 204790.i 0.118948 + 0.206025i 0.919351 0.393438i \(-0.128714\pi\)
−0.800403 + 0.599463i \(0.795381\pi\)
\(998\) 0 0
\(999\) −1.82788e6 1.05533e6i −1.83154 1.05744i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.5.o.c.649.16 44
5.2 odd 4 700.5.s.d.201.8 yes 22
5.3 odd 4 700.5.s.c.201.4 yes 22
5.4 even 2 inner 700.5.o.c.649.7 44
7.3 odd 6 inner 700.5.o.c.549.7 44
35.3 even 12 700.5.s.c.101.4 22
35.17 even 12 700.5.s.d.101.8 yes 22
35.24 odd 6 inner 700.5.o.c.549.16 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
700.5.o.c.549.7 44 7.3 odd 6 inner
700.5.o.c.549.16 44 35.24 odd 6 inner
700.5.o.c.649.7 44 5.4 even 2 inner
700.5.o.c.649.16 44 1.1 even 1 trivial
700.5.s.c.101.4 22 35.3 even 12
700.5.s.c.201.4 yes 22 5.3 odd 4
700.5.s.d.101.8 yes 22 35.17 even 12
700.5.s.d.201.8 yes 22 5.2 odd 4