Properties

Label 700.5.o.c.649.3
Level $700$
Weight $5$
Character 700.649
Analytic conductor $72.359$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,5,Mod(549,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.549");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 700.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(72.3589741587\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 649.3
Character \(\chi\) \(=\) 700.649
Dual form 700.5.o.c.549.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-6.85023 - 11.8650i) q^{3} +(-45.7788 + 17.4728i) q^{7} +(-53.3514 + 92.4073i) q^{9} +(57.7250 + 99.9826i) q^{11} -84.0756 q^{13} +(117.198 + 202.993i) q^{17} +(159.006 + 91.8023i) q^{19} +(520.910 + 423.470i) q^{21} +(-281.615 - 162.590i) q^{23} +352.140 q^{27} +254.642 q^{29} +(355.041 - 204.983i) q^{31} +(790.859 - 1369.81i) q^{33} +(64.0352 + 36.9707i) q^{37} +(575.937 + 997.553i) q^{39} +586.885i q^{41} -3340.46i q^{43} +(-805.694 + 1395.50i) q^{47} +(1790.40 - 1599.77i) q^{49} +(1605.67 - 2781.10i) q^{51} +(3106.46 - 1793.51i) q^{53} -2515.47i q^{57} +(-225.232 + 130.038i) q^{59} +(801.042 + 462.482i) q^{61} +(827.746 - 5162.50i) q^{63} +(-5117.03 + 2954.32i) q^{67} +4455.12i q^{69} +8572.53 q^{71} +(-1180.22 - 2044.20i) q^{73} +(-4389.56 - 3568.47i) q^{77} +(-2574.66 + 4459.44i) q^{79} +(1909.22 + 3306.87i) q^{81} -7546.38 q^{83} +(-1744.35 - 3021.31i) q^{87} +(-10498.9 - 6061.52i) q^{89} +(3848.88 - 1469.04i) q^{91} +(-4864.22 - 2808.36i) q^{93} +14875.4 q^{97} -12318.8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 684 q^{9} - 300 q^{11} + 540 q^{19} - 190 q^{21} - 528 q^{29} - 2334 q^{31} - 852 q^{39} + 4092 q^{49} - 3902 q^{51} + 9414 q^{59} - 23598 q^{61} + 32820 q^{71} - 4890 q^{79} - 23710 q^{81} - 37764 q^{89}+ \cdots + 168180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −6.85023 11.8650i −0.761137 1.31833i −0.942265 0.334868i \(-0.891308\pi\)
0.181128 0.983460i \(-0.442025\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −45.7788 + 17.4728i −0.934262 + 0.356588i
\(8\) 0 0
\(9\) −53.3514 + 92.4073i −0.658659 + 1.14083i
\(10\) 0 0
\(11\) 57.7250 + 99.9826i 0.477066 + 0.826303i 0.999655 0.0262824i \(-0.00836690\pi\)
−0.522588 + 0.852585i \(0.675034\pi\)
\(12\) 0 0
\(13\) −84.0756 −0.497489 −0.248744 0.968569i \(-0.580018\pi\)
−0.248744 + 0.968569i \(0.580018\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 117.198 + 202.993i 0.405530 + 0.702398i 0.994383 0.105842i \(-0.0337537\pi\)
−0.588853 + 0.808240i \(0.700420\pi\)
\(18\) 0 0
\(19\) 159.006 + 91.8023i 0.440460 + 0.254300i 0.703793 0.710405i \(-0.251488\pi\)
−0.263333 + 0.964705i \(0.584822\pi\)
\(20\) 0 0
\(21\) 520.910 + 423.470i 1.18120 + 0.960250i
\(22\) 0 0
\(23\) −281.615 162.590i −0.532353 0.307354i 0.209621 0.977783i \(-0.432777\pi\)
−0.741974 + 0.670429i \(0.766110\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 352.140 0.483045
\(28\) 0 0
\(29\) 254.642 0.302784 0.151392 0.988474i \(-0.451624\pi\)
0.151392 + 0.988474i \(0.451624\pi\)
\(30\) 0 0
\(31\) 355.041 204.983i 0.369449 0.213302i −0.303769 0.952746i \(-0.598245\pi\)
0.673218 + 0.739444i \(0.264912\pi\)
\(32\) 0 0
\(33\) 790.859 1369.81i 0.726225 1.25786i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 64.0352 + 36.9707i 0.0467752 + 0.0270057i 0.523205 0.852207i \(-0.324736\pi\)
−0.476430 + 0.879212i \(0.658069\pi\)
\(38\) 0 0
\(39\) 575.937 + 997.553i 0.378657 + 0.655853i
\(40\) 0 0
\(41\) 586.885i 0.349128i 0.984646 + 0.174564i \(0.0558516\pi\)
−0.984646 + 0.174564i \(0.944148\pi\)
\(42\) 0 0
\(43\) 3340.46i 1.80663i −0.428976 0.903316i \(-0.641125\pi\)
0.428976 0.903316i \(-0.358875\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −805.694 + 1395.50i −0.364732 + 0.631735i −0.988733 0.149689i \(-0.952173\pi\)
0.624001 + 0.781424i \(0.285506\pi\)
\(48\) 0 0
\(49\) 1790.40 1599.77i 0.745689 0.666294i
\(50\) 0 0
\(51\) 1605.67 2781.10i 0.617328 1.06924i
\(52\) 0 0
\(53\) 3106.46 1793.51i 1.10589 0.638489i 0.168132 0.985765i \(-0.446227\pi\)
0.937763 + 0.347276i \(0.112893\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2515.47i 0.774228i
\(58\) 0 0
\(59\) −225.232 + 130.038i −0.0647033 + 0.0373564i −0.532003 0.846743i \(-0.678560\pi\)
0.467299 + 0.884099i \(0.345227\pi\)
\(60\) 0 0
\(61\) 801.042 + 462.482i 0.215276 + 0.124290i 0.603761 0.797165i \(-0.293668\pi\)
−0.388485 + 0.921455i \(0.627001\pi\)
\(62\) 0 0
\(63\) 827.746 5162.50i 0.208553 1.30070i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −5117.03 + 2954.32i −1.13990 + 0.658124i −0.946407 0.322977i \(-0.895316\pi\)
−0.193497 + 0.981101i \(0.561983\pi\)
\(68\) 0 0
\(69\) 4455.12i 0.935754i
\(70\) 0 0
\(71\) 8572.53 1.70056 0.850280 0.526330i \(-0.176432\pi\)
0.850280 + 0.526330i \(0.176432\pi\)
\(72\) 0 0
\(73\) −1180.22 2044.20i −0.221471 0.383599i 0.733784 0.679383i \(-0.237752\pi\)
−0.955255 + 0.295784i \(0.904419\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −4389.56 3568.47i −0.740355 0.601867i
\(78\) 0 0
\(79\) −2574.66 + 4459.44i −0.412539 + 0.714539i −0.995167 0.0982004i \(-0.968691\pi\)
0.582627 + 0.812739i \(0.302025\pi\)
\(80\) 0 0
\(81\) 1909.22 + 3306.87i 0.290995 + 0.504019i
\(82\) 0 0
\(83\) −7546.38 −1.09542 −0.547712 0.836667i \(-0.684501\pi\)
−0.547712 + 0.836667i \(0.684501\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −1744.35 3021.31i −0.230460 0.399169i
\(88\) 0 0
\(89\) −10498.9 6061.52i −1.32545 0.765247i −0.340855 0.940116i \(-0.610716\pi\)
−0.984592 + 0.174869i \(0.944050\pi\)
\(90\) 0 0
\(91\) 3848.88 1469.04i 0.464785 0.177399i
\(92\) 0 0
\(93\) −4864.22 2808.36i −0.562403 0.324704i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 14875.4 1.58097 0.790487 0.612479i \(-0.209827\pi\)
0.790487 + 0.612479i \(0.209827\pi\)
\(98\) 0 0
\(99\) −12318.8 −1.25690
\(100\) 0 0
\(101\) −9645.68 + 5568.94i −0.945562 + 0.545921i −0.891700 0.452628i \(-0.850487\pi\)
−0.0538628 + 0.998548i \(0.517153\pi\)
\(102\) 0 0
\(103\) 2912.09 5043.89i 0.274493 0.475435i −0.695514 0.718512i \(-0.744823\pi\)
0.970007 + 0.243077i \(0.0781567\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1767.65 1020.55i −0.154393 0.0891389i 0.420813 0.907147i \(-0.361745\pi\)
−0.575206 + 0.818008i \(0.695078\pi\)
\(108\) 0 0
\(109\) 1362.91 + 2360.63i 0.114713 + 0.198689i 0.917665 0.397355i \(-0.130072\pi\)
−0.802952 + 0.596044i \(0.796738\pi\)
\(110\) 0 0
\(111\) 1013.03i 0.0822200i
\(112\) 0 0
\(113\) 18326.3i 1.43522i 0.696445 + 0.717610i \(0.254764\pi\)
−0.696445 + 0.717610i \(0.745236\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 4485.55 7769.20i 0.327675 0.567551i
\(118\) 0 0
\(119\) −8912.06 7245.00i −0.629338 0.511616i
\(120\) 0 0
\(121\) 656.150 1136.48i 0.0448159 0.0776235i
\(122\) 0 0
\(123\) 6963.36 4020.30i 0.460266 0.265734i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 30138.9i 1.86861i −0.356471 0.934306i \(-0.616020\pi\)
0.356471 0.934306i \(-0.383980\pi\)
\(128\) 0 0
\(129\) −39634.4 + 22882.9i −2.38173 + 1.37509i
\(130\) 0 0
\(131\) −22213.6 12825.0i −1.29442 0.747335i −0.314988 0.949096i \(-0.602001\pi\)
−0.979435 + 0.201760i \(0.935334\pi\)
\(132\) 0 0
\(133\) −8883.16 1424.31i −0.502186 0.0805195i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 19199.4 11084.8i 1.02293 0.590590i 0.107980 0.994153i \(-0.465562\pi\)
0.914952 + 0.403563i \(0.132228\pi\)
\(138\) 0 0
\(139\) 3866.98i 0.200144i 0.994980 + 0.100072i \(0.0319073\pi\)
−0.994980 + 0.100072i \(0.968093\pi\)
\(140\) 0 0
\(141\) 22076.8 1.11045
\(142\) 0 0
\(143\) −4853.26 8406.10i −0.237335 0.411076i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −31245.9 10284.2i −1.44597 0.475922i
\(148\) 0 0
\(149\) −14945.8 + 25886.8i −0.673202 + 1.16602i 0.303789 + 0.952739i \(0.401748\pi\)
−0.976991 + 0.213281i \(0.931585\pi\)
\(150\) 0 0
\(151\) −19053.4 33001.5i −0.835639 1.44737i −0.893509 0.449045i \(-0.851764\pi\)
0.0578701 0.998324i \(-0.481569\pi\)
\(152\) 0 0
\(153\) −25010.7 −1.06842
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −18873.8 32690.4i −0.765703 1.32624i −0.939874 0.341521i \(-0.889058\pi\)
0.174171 0.984715i \(-0.444275\pi\)
\(158\) 0 0
\(159\) −42559.9 24572.0i −1.68347 0.971955i
\(160\) 0 0
\(161\) 15732.9 + 2522.58i 0.606956 + 0.0973182i
\(162\) 0 0
\(163\) 7591.32 + 4382.85i 0.285721 + 0.164961i 0.636011 0.771680i \(-0.280583\pi\)
−0.350290 + 0.936641i \(0.613917\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −19123.9 −0.685714 −0.342857 0.939388i \(-0.611395\pi\)
−0.342857 + 0.939388i \(0.611395\pi\)
\(168\) 0 0
\(169\) −21492.3 −0.752505
\(170\) 0 0
\(171\) −16966.4 + 9795.56i −0.580226 + 0.334994i
\(172\) 0 0
\(173\) −14573.2 + 25241.6i −0.486926 + 0.843381i −0.999887 0.0150309i \(-0.995215\pi\)
0.512961 + 0.858412i \(0.328549\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 3085.78 + 1781.58i 0.0984961 + 0.0568668i
\(178\) 0 0
\(179\) −19220.2 33290.3i −0.599861 1.03899i −0.992841 0.119443i \(-0.961889\pi\)
0.392980 0.919547i \(-0.371444\pi\)
\(180\) 0 0
\(181\) 9245.61i 0.282214i 0.989994 + 0.141107i \(0.0450661\pi\)
−0.989994 + 0.141107i \(0.954934\pi\)
\(182\) 0 0
\(183\) 12672.4i 0.378406i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −13530.5 + 23435.6i −0.386929 + 0.670181i
\(188\) 0 0
\(189\) −16120.6 + 6152.89i −0.451291 + 0.172248i
\(190\) 0 0
\(191\) 17059.5 29548.0i 0.467628 0.809955i −0.531688 0.846940i \(-0.678442\pi\)
0.999316 + 0.0369852i \(0.0117754\pi\)
\(192\) 0 0
\(193\) 32770.5 18920.0i 0.879768 0.507934i 0.00918593 0.999958i \(-0.497076\pi\)
0.870582 + 0.492024i \(0.163743\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5128.01i 0.132135i −0.997815 0.0660673i \(-0.978955\pi\)
0.997815 0.0660673i \(-0.0210452\pi\)
\(198\) 0 0
\(199\) 12391.4 7154.17i 0.312906 0.180656i −0.335320 0.942104i \(-0.608845\pi\)
0.648226 + 0.761448i \(0.275511\pi\)
\(200\) 0 0
\(201\) 70105.7 + 40475.5i 1.73525 + 1.00184i
\(202\) 0 0
\(203\) −11657.2 + 4449.31i −0.282880 + 0.107969i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 30049.1 17348.8i 0.701278 0.404883i
\(208\) 0 0
\(209\) 21197.1i 0.485271i
\(210\) 0 0
\(211\) 49201.5 1.10513 0.552566 0.833469i \(-0.313649\pi\)
0.552566 + 0.833469i \(0.313649\pi\)
\(212\) 0 0
\(213\) −58723.8 101713.i −1.29436 2.24190i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −12671.7 + 15587.4i −0.269101 + 0.331021i
\(218\) 0 0
\(219\) −16169.5 + 28006.4i −0.337139 + 0.583942i
\(220\) 0 0
\(221\) −9853.50 17066.8i −0.201746 0.349435i
\(222\) 0 0
\(223\) 68066.0 1.36874 0.684369 0.729136i \(-0.260078\pi\)
0.684369 + 0.729136i \(0.260078\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −26245.4 45458.4i −0.509333 0.882190i −0.999942 0.0108100i \(-0.996559\pi\)
0.490609 0.871380i \(-0.336774\pi\)
\(228\) 0 0
\(229\) 28295.0 + 16336.1i 0.539559 + 0.311515i 0.744900 0.667176i \(-0.232497\pi\)
−0.205341 + 0.978690i \(0.565830\pi\)
\(230\) 0 0
\(231\) −12270.2 + 76526.8i −0.229946 + 1.43413i
\(232\) 0 0
\(233\) −20250.3 11691.5i −0.373010 0.215357i 0.301763 0.953383i \(-0.402425\pi\)
−0.674772 + 0.738026i \(0.735758\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 70548.0 1.25600
\(238\) 0 0
\(239\) −18183.9 −0.318340 −0.159170 0.987251i \(-0.550882\pi\)
−0.159170 + 0.987251i \(0.550882\pi\)
\(240\) 0 0
\(241\) −13051.0 + 7534.99i −0.224703 + 0.129732i −0.608126 0.793840i \(-0.708078\pi\)
0.383423 + 0.923573i \(0.374745\pi\)
\(242\) 0 0
\(243\) 40418.9 70007.6i 0.684497 1.18558i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −13368.5 7718.33i −0.219124 0.126511i
\(248\) 0 0
\(249\) 51694.5 + 89537.4i 0.833768 + 1.44413i
\(250\) 0 0
\(251\) 84203.4i 1.33654i −0.743919 0.668270i \(-0.767035\pi\)
0.743919 0.668270i \(-0.232965\pi\)
\(252\) 0 0
\(253\) 37542.1i 0.586513i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6634.61 11491.5i 0.100450 0.173984i −0.811420 0.584463i \(-0.801305\pi\)
0.911870 + 0.410479i \(0.134638\pi\)
\(258\) 0 0
\(259\) −3577.44 573.600i −0.0533302 0.00855086i
\(260\) 0 0
\(261\) −13585.5 + 23530.7i −0.199432 + 0.345426i
\(262\) 0 0
\(263\) 33534.6 19361.2i 0.484821 0.279912i −0.237602 0.971363i \(-0.576362\pi\)
0.722423 + 0.691451i \(0.243028\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 166091.i 2.32983i
\(268\) 0 0
\(269\) 105667. 61006.6i 1.46027 0.843087i 0.461247 0.887272i \(-0.347402\pi\)
0.999023 + 0.0441847i \(0.0140690\pi\)
\(270\) 0 0
\(271\) 36617.3 + 21141.0i 0.498594 + 0.287864i 0.728133 0.685436i \(-0.240388\pi\)
−0.229539 + 0.973300i \(0.573722\pi\)
\(272\) 0 0
\(273\) −43795.8 35603.5i −0.587634 0.477714i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 57086.9 32959.1i 0.744007 0.429553i −0.0795174 0.996833i \(-0.525338\pi\)
0.823524 + 0.567281i \(0.192005\pi\)
\(278\) 0 0
\(279\) 43744.5i 0.561972i
\(280\) 0 0
\(281\) 103798. 1.31455 0.657276 0.753650i \(-0.271709\pi\)
0.657276 + 0.753650i \(0.271709\pi\)
\(282\) 0 0
\(283\) −63652.1 110249.i −0.794767 1.37658i −0.922987 0.384831i \(-0.874260\pi\)
0.128220 0.991746i \(-0.459074\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −10254.5 26866.9i −0.124495 0.326177i
\(288\) 0 0
\(289\) 14289.7 24750.5i 0.171091 0.296338i
\(290\) 0 0
\(291\) −101900. 176496.i −1.20334 2.08424i
\(292\) 0 0
\(293\) 41164.2 0.479496 0.239748 0.970835i \(-0.422935\pi\)
0.239748 + 0.970835i \(0.422935\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 20327.3 + 35207.9i 0.230445 + 0.399142i
\(298\) 0 0
\(299\) 23676.9 + 13669.9i 0.264839 + 0.152905i
\(300\) 0 0
\(301\) 58367.4 + 152922.i 0.644224 + 1.68787i
\(302\) 0 0
\(303\) 132150. + 76297.0i 1.43941 + 0.831041i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −172731. −1.83270 −0.916352 0.400374i \(-0.868880\pi\)
−0.916352 + 0.400374i \(0.868880\pi\)
\(308\) 0 0
\(309\) −79794.1 −0.835706
\(310\) 0 0
\(311\) −62526.6 + 36099.7i −0.646463 + 0.373236i −0.787100 0.616826i \(-0.788418\pi\)
0.140637 + 0.990061i \(0.455085\pi\)
\(312\) 0 0
\(313\) −88093.6 + 152583.i −0.899198 + 1.55746i −0.0706772 + 0.997499i \(0.522516\pi\)
−0.828521 + 0.559958i \(0.810817\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −47855.8 27629.6i −0.476230 0.274951i 0.242614 0.970123i \(-0.421995\pi\)
−0.718844 + 0.695172i \(0.755328\pi\)
\(318\) 0 0
\(319\) 14699.2 + 25459.7i 0.144448 + 0.250191i
\(320\) 0 0
\(321\) 27964.1i 0.271388i
\(322\) 0 0
\(323\) 43036.2i 0.412505i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 18672.5 32341.7i 0.174625 0.302459i
\(328\) 0 0
\(329\) 12500.3 77962.2i 0.115486 0.720265i
\(330\) 0 0
\(331\) 39669.5 68709.5i 0.362077 0.627135i −0.626226 0.779642i \(-0.715401\pi\)
0.988302 + 0.152507i \(0.0487345\pi\)
\(332\) 0 0
\(333\) −6832.74 + 3944.88i −0.0616178 + 0.0355750i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 187217.i 1.64849i 0.566233 + 0.824245i \(0.308400\pi\)
−0.566233 + 0.824245i \(0.691600\pi\)
\(338\) 0 0
\(339\) 217441. 125540.i 1.89209 1.09240i
\(340\) 0 0
\(341\) 40989.5 + 23665.3i 0.352504 + 0.203518i
\(342\) 0 0
\(343\) −54009.8 + 104519.i −0.459076 + 0.888397i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 107946. 62322.7i 0.896494 0.517591i 0.0204332 0.999791i \(-0.493495\pi\)
0.876061 + 0.482200i \(0.160162\pi\)
\(348\) 0 0
\(349\) 202080.i 1.65910i −0.558433 0.829550i \(-0.688597\pi\)
0.558433 0.829550i \(-0.311403\pi\)
\(350\) 0 0
\(351\) −29606.4 −0.240310
\(352\) 0 0
\(353\) 67949.5 + 117692.i 0.545302 + 0.944490i 0.998588 + 0.0531253i \(0.0169183\pi\)
−0.453286 + 0.891365i \(0.649748\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −24911.9 + 155371.i −0.195466 + 1.21908i
\(358\) 0 0
\(359\) −4598.65 + 7965.09i −0.0356813 + 0.0618019i −0.883315 0.468781i \(-0.844693\pi\)
0.847633 + 0.530583i \(0.178027\pi\)
\(360\) 0 0
\(361\) −48305.2 83667.0i −0.370663 0.642007i
\(362\) 0 0
\(363\) −17979.1 −0.136444
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −96089.5 166432.i −0.713418 1.23568i −0.963567 0.267469i \(-0.913813\pi\)
0.250149 0.968207i \(-0.419521\pi\)
\(368\) 0 0
\(369\) −54232.4 31311.1i −0.398296 0.229957i
\(370\) 0 0
\(371\) −110872. + 136384.i −0.805517 + 0.990865i
\(372\) 0 0
\(373\) 180100. + 103981.i 1.29448 + 0.747371i 0.979446 0.201708i \(-0.0646491\pi\)
0.315039 + 0.949079i \(0.397982\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −21409.1 −0.150632
\(378\) 0 0
\(379\) 28606.8 0.199155 0.0995775 0.995030i \(-0.468251\pi\)
0.0995775 + 0.995030i \(0.468251\pi\)
\(380\) 0 0
\(381\) −357596. + 206458.i −2.46344 + 1.42227i
\(382\) 0 0
\(383\) −73689.5 + 127634.i −0.502352 + 0.870099i 0.497644 + 0.867381i \(0.334199\pi\)
−0.999996 + 0.00271817i \(0.999135\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 308683. + 178218.i 2.06106 + 1.18995i
\(388\) 0 0
\(389\) 42740.4 + 74028.6i 0.282449 + 0.489216i 0.971987 0.235033i \(-0.0755199\pi\)
−0.689538 + 0.724249i \(0.742187\pi\)
\(390\) 0 0
\(391\) 76221.1i 0.498565i
\(392\) 0 0
\(393\) 351418.i 2.27530i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 13665.2 23668.9i 0.0867033 0.150175i −0.819412 0.573204i \(-0.805700\pi\)
0.906116 + 0.423030i \(0.139033\pi\)
\(398\) 0 0
\(399\) 43952.4 + 115155.i 0.276081 + 0.723332i
\(400\) 0 0
\(401\) 86434.4 149709.i 0.537524 0.931019i −0.461512 0.887134i \(-0.652693\pi\)
0.999037 0.0438855i \(-0.0139737\pi\)
\(402\) 0 0
\(403\) −29850.3 + 17234.1i −0.183797 + 0.106115i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8536.54i 0.0515339i
\(408\) 0 0
\(409\) 32575.4 18807.4i 0.194734 0.112430i −0.399463 0.916749i \(-0.630803\pi\)
0.594197 + 0.804320i \(0.297470\pi\)
\(410\) 0 0
\(411\) −263041. 151867.i −1.55718 0.899040i
\(412\) 0 0
\(413\) 8038.73 9888.42i 0.0471289 0.0579731i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 45881.6 26489.7i 0.263855 0.152337i
\(418\) 0 0
\(419\) 38894.4i 0.221544i −0.993846 0.110772i \(-0.964668\pi\)
0.993846 0.110772i \(-0.0353323\pi\)
\(420\) 0 0
\(421\) 25003.0 0.141068 0.0705340 0.997509i \(-0.477530\pi\)
0.0705340 + 0.997509i \(0.477530\pi\)
\(422\) 0 0
\(423\) −85969.8 148904.i −0.480469 0.832196i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −44751.6 7175.40i −0.245444 0.0393541i
\(428\) 0 0
\(429\) −66492.0 + 115167.i −0.361289 + 0.625771i
\(430\) 0 0
\(431\) −152326. 263836.i −0.820008 1.42030i −0.905675 0.423972i \(-0.860636\pi\)
0.0856672 0.996324i \(-0.472698\pi\)
\(432\) 0 0
\(433\) −198456. −1.05849 −0.529246 0.848468i \(-0.677525\pi\)
−0.529246 + 0.848468i \(0.677525\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −29852.3 51705.7i −0.156320 0.270754i
\(438\) 0 0
\(439\) 115497. + 66682.1i 0.599295 + 0.346003i 0.768764 0.639532i \(-0.220872\pi\)
−0.169469 + 0.985535i \(0.554205\pi\)
\(440\) 0 0
\(441\) 52310.3 + 250796.i 0.268974 + 1.28957i
\(442\) 0 0
\(443\) 154408. + 89147.4i 0.786795 + 0.454256i 0.838833 0.544389i \(-0.183238\pi\)
−0.0520380 + 0.998645i \(0.516572\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 409528. 2.04960
\(448\) 0 0
\(449\) 82383.4 0.408646 0.204323 0.978904i \(-0.434501\pi\)
0.204323 + 0.978904i \(0.434501\pi\)
\(450\) 0 0
\(451\) −58678.3 + 33877.9i −0.288486 + 0.166557i
\(452\) 0 0
\(453\) −261041. + 452135.i −1.27207 + 2.20329i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −137001. 79097.8i −0.655983 0.378732i 0.134762 0.990878i \(-0.456973\pi\)
−0.790745 + 0.612146i \(0.790306\pi\)
\(458\) 0 0
\(459\) 41270.2 + 71482.0i 0.195889 + 0.339290i
\(460\) 0 0
\(461\) 215810.i 1.01548i −0.861511 0.507739i \(-0.830481\pi\)
0.861511 0.507739i \(-0.169519\pi\)
\(462\) 0 0
\(463\) 200095.i 0.933415i 0.884412 + 0.466708i \(0.154560\pi\)
−0.884412 + 0.466708i \(0.845440\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3718.76 6441.08i 0.0170516 0.0295342i −0.857374 0.514694i \(-0.827905\pi\)
0.874425 + 0.485160i \(0.161239\pi\)
\(468\) 0 0
\(469\) 182631. 224654.i 0.830289 1.02134i
\(470\) 0 0
\(471\) −258580. + 447874.i −1.16561 + 2.01890i
\(472\) 0 0
\(473\) 333988. 192828.i 1.49282 0.861883i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 382746.i 1.68219i
\(478\) 0 0
\(479\) 185843. 107296.i 0.809981 0.467643i −0.0369682 0.999316i \(-0.511770\pi\)
0.846949 + 0.531674i \(0.178437\pi\)
\(480\) 0 0
\(481\) −5383.80 3108.34i −0.0232701 0.0134350i
\(482\) 0 0
\(483\) −77843.7 203950.i −0.333679 0.874239i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 199761. 115332.i 0.842273 0.486286i −0.0157633 0.999876i \(-0.505018\pi\)
0.858036 + 0.513589i \(0.171684\pi\)
\(488\) 0 0
\(489\) 120094.i 0.502232i
\(490\) 0 0
\(491\) 370672. 1.53754 0.768772 0.639524i \(-0.220868\pi\)
0.768772 + 0.639524i \(0.220868\pi\)
\(492\) 0 0
\(493\) 29843.5 + 51690.5i 0.122788 + 0.212675i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −392440. + 149786.i −1.58877 + 0.606400i
\(498\) 0 0
\(499\) 77084.8 133515.i 0.309576 0.536202i −0.668694 0.743538i \(-0.733146\pi\)
0.978270 + 0.207337i \(0.0664795\pi\)
\(500\) 0 0
\(501\) 131003. + 226904.i 0.521922 + 0.903996i
\(502\) 0 0
\(503\) 303483. 1.19950 0.599748 0.800189i \(-0.295267\pi\)
0.599748 + 0.800189i \(0.295267\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 147227. + 255005.i 0.572759 + 0.992048i
\(508\) 0 0
\(509\) −96738.5 55852.0i −0.373391 0.215577i 0.301548 0.953451i \(-0.402497\pi\)
−0.674939 + 0.737874i \(0.735830\pi\)
\(510\) 0 0
\(511\) 89746.9 + 72959.1i 0.343698 + 0.279407i
\(512\) 0 0
\(513\) 55992.5 + 32327.3i 0.212762 + 0.122838i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −186035. −0.696006
\(518\) 0 0
\(519\) 399320. 1.48247
\(520\) 0 0
\(521\) 21518.1 12423.5i 0.0792737 0.0457687i −0.459839 0.888002i \(-0.652093\pi\)
0.539113 + 0.842234i \(0.318760\pi\)
\(522\) 0 0
\(523\) 93223.4 161468.i 0.340817 0.590313i −0.643767 0.765221i \(-0.722630\pi\)
0.984585 + 0.174908i \(0.0559629\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 83220.2 + 48047.2i 0.299645 + 0.173000i
\(528\) 0 0
\(529\) −87049.3 150774.i −0.311067 0.538784i
\(530\) 0 0
\(531\) 27750.8i 0.0984207i
\(532\) 0 0
\(533\) 49342.7i 0.173687i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −263325. + 456093.i −0.913153 + 1.58163i
\(538\) 0 0
\(539\) 263300. + 86662.1i 0.906303 + 0.298299i
\(540\) 0 0
\(541\) 119924. 207715.i 0.409745 0.709699i −0.585116 0.810949i \(-0.698951\pi\)
0.994861 + 0.101251i \(0.0322844\pi\)
\(542\) 0 0
\(543\) 109699. 63334.6i 0.372050 0.214803i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 251032.i 0.838987i −0.907758 0.419493i \(-0.862208\pi\)
0.907758 0.419493i \(-0.137792\pi\)
\(548\) 0 0
\(549\) −85473.5 + 49348.1i −0.283587 + 0.163729i
\(550\) 0 0
\(551\) 40489.6 + 23376.7i 0.133364 + 0.0769980i
\(552\) 0 0
\(553\) 39945.8 249134.i 0.130623 0.814673i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −384536. + 222012.i −1.23944 + 0.715592i −0.968980 0.247138i \(-0.920510\pi\)
−0.270462 + 0.962731i \(0.587177\pi\)
\(558\) 0 0
\(559\) 280851.i 0.898779i
\(560\) 0 0
\(561\) 370749. 1.17802
\(562\) 0 0
\(563\) −303557. 525776.i −0.957686 1.65876i −0.728098 0.685473i \(-0.759595\pi\)
−0.229588 0.973288i \(-0.573738\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −145182. 118025.i −0.451593 0.367120i
\(568\) 0 0
\(569\) 32647.7 56547.5i 0.100839 0.174658i −0.811192 0.584780i \(-0.801181\pi\)
0.912031 + 0.410122i \(0.134514\pi\)
\(570\) 0 0
\(571\) −136687. 236748.i −0.419231 0.726130i 0.576631 0.817005i \(-0.304367\pi\)
−0.995862 + 0.0908746i \(0.971034\pi\)
\(572\) 0 0
\(573\) −467447. −1.42372
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −75358.6 130525.i −0.226350 0.392050i 0.730373 0.683048i \(-0.239346\pi\)
−0.956724 + 0.290998i \(0.906013\pi\)
\(578\) 0 0
\(579\) −448971. 259213.i −1.33925 0.773215i
\(580\) 0 0
\(581\) 345464. 131857.i 1.02341 0.390616i
\(582\) 0 0
\(583\) 358641. + 207061.i 1.05517 + 0.609202i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 555555. 1.61232 0.806159 0.591699i \(-0.201543\pi\)
0.806159 + 0.591699i \(0.201543\pi\)
\(588\) 0 0
\(589\) 75271.6 0.216970
\(590\) 0 0
\(591\) −60843.6 + 35128.1i −0.174197 + 0.100572i
\(592\) 0 0
\(593\) 30216.6 52336.7i 0.0859283 0.148832i −0.819858 0.572567i \(-0.805948\pi\)
0.905786 + 0.423735i \(0.139281\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −169768. 98015.5i −0.476328 0.275008i
\(598\) 0 0
\(599\) 340752. + 590201.i 0.949698 + 1.64492i 0.746060 + 0.665878i \(0.231943\pi\)
0.203637 + 0.979046i \(0.434724\pi\)
\(600\) 0 0
\(601\) 271491.i 0.751634i 0.926694 + 0.375817i \(0.122638\pi\)
−0.926694 + 0.375817i \(0.877362\pi\)
\(602\) 0 0
\(603\) 630468.i 1.73392i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 154906. 268305.i 0.420426 0.728200i −0.575555 0.817763i \(-0.695214\pi\)
0.995981 + 0.0895633i \(0.0285471\pi\)
\(608\) 0 0
\(609\) 132645. + 107833.i 0.357649 + 0.290749i
\(610\) 0 0
\(611\) 67739.2 117328.i 0.181450 0.314281i
\(612\) 0 0
\(613\) 156332. 90258.5i 0.416033 0.240197i −0.277346 0.960770i \(-0.589455\pi\)
0.693379 + 0.720573i \(0.256121\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 273351.i 0.718042i −0.933330 0.359021i \(-0.883111\pi\)
0.933330 0.359021i \(-0.116889\pi\)
\(618\) 0 0
\(619\) 381531. 220277.i 0.995747 0.574895i 0.0887596 0.996053i \(-0.471710\pi\)
0.906987 + 0.421158i \(0.138376\pi\)
\(620\) 0 0
\(621\) −99167.8 57254.6i −0.257151 0.148466i
\(622\) 0 0
\(623\) 586537. + 94044.4i 1.51119 + 0.242302i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 251503. 145205.i 0.639747 0.369358i
\(628\) 0 0
\(629\) 17331.6i 0.0438064i
\(630\) 0 0
\(631\) −468914. −1.17770 −0.588850 0.808242i \(-0.700419\pi\)
−0.588850 + 0.808242i \(0.700419\pi\)
\(632\) 0 0
\(633\) −337042. 583774.i −0.841156 1.45693i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −150529. + 134502.i −0.370972 + 0.331474i
\(638\) 0 0
\(639\) −457356. + 792164.i −1.12009 + 1.94005i
\(640\) 0 0
\(641\) −17539.6 30379.5i −0.0426879 0.0739376i 0.843892 0.536513i \(-0.180259\pi\)
−0.886580 + 0.462575i \(0.846925\pi\)
\(642\) 0 0
\(643\) −399854. −0.967117 −0.483559 0.875312i \(-0.660656\pi\)
−0.483559 + 0.875312i \(0.660656\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 128249. + 222134.i 0.306370 + 0.530649i 0.977565 0.210632i \(-0.0675521\pi\)
−0.671195 + 0.741281i \(0.734219\pi\)
\(648\) 0 0
\(649\) −26003.0 15012.9i −0.0617355 0.0356430i
\(650\) 0 0
\(651\) 271749. + 43571.7i 0.641217 + 0.102812i
\(652\) 0 0
\(653\) 42156.1 + 24338.8i 0.0988630 + 0.0570786i 0.548616 0.836074i \(-0.315155\pi\)
−0.449753 + 0.893153i \(0.648488\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 251865. 0.583495
\(658\) 0 0
\(659\) −22126.0 −0.0509487 −0.0254743 0.999675i \(-0.508110\pi\)
−0.0254743 + 0.999675i \(0.508110\pi\)
\(660\) 0 0
\(661\) 406573. 234735.i 0.930541 0.537248i 0.0435586 0.999051i \(-0.486130\pi\)
0.886983 + 0.461803i \(0.152797\pi\)
\(662\) 0 0
\(663\) −134998. + 233823.i −0.307113 + 0.531936i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −71710.8 41402.2i −0.161188 0.0930620i
\(668\) 0 0
\(669\) −466268. 807600.i −1.04180 1.80445i
\(670\) 0 0
\(671\) 106787.i 0.237178i
\(672\) 0 0
\(673\) 307662.i 0.679272i −0.940557 0.339636i \(-0.889696\pi\)
0.940557 0.339636i \(-0.110304\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 24910.8 43146.8i 0.0543514 0.0941394i −0.837570 0.546331i \(-0.816024\pi\)
0.891921 + 0.452191i \(0.149358\pi\)
\(678\) 0 0
\(679\) −680978. + 259915.i −1.47704 + 0.563757i
\(680\) 0 0
\(681\) −359574. + 622801.i −0.775344 + 1.34293i
\(682\) 0 0
\(683\) −446877. + 258004.i −0.957958 + 0.553077i −0.895544 0.444973i \(-0.853213\pi\)
−0.0624138 + 0.998050i \(0.519880\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 447626.i 0.948422i
\(688\) 0 0
\(689\) −261177. + 150791.i −0.550170 + 0.317641i
\(690\) 0 0
\(691\) −177161. 102284.i −0.371034 0.214216i 0.302876 0.953030i \(-0.402053\pi\)
−0.673910 + 0.738814i \(0.735386\pi\)
\(692\) 0 0
\(693\) 563942. 215245.i 1.17427 0.448195i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −119134. + 68781.8i −0.245227 + 0.141582i
\(698\) 0 0
\(699\) 320359.i 0.655665i
\(700\) 0 0
\(701\) 666111. 1.35553 0.677767 0.735276i \(-0.262948\pi\)
0.677767 + 0.735276i \(0.262948\pi\)
\(702\) 0 0
\(703\) 6788.00 + 11757.2i 0.0137351 + 0.0237898i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 344263. 423477.i 0.688734 0.847209i
\(708\) 0 0
\(709\) −227965. + 394847.i −0.453498 + 0.785482i −0.998600 0.0528874i \(-0.983158\pi\)
0.545102 + 0.838370i \(0.316491\pi\)
\(710\) 0 0
\(711\) −274723. 475834.i −0.543446 0.941275i
\(712\) 0 0
\(713\) −133313. −0.262236
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 124564. + 215751.i 0.242300 + 0.419676i
\(718\) 0 0
\(719\) −830790. 479657.i −1.60706 0.927839i −0.990023 0.140909i \(-0.954998\pi\)
−0.617042 0.786930i \(-0.711669\pi\)
\(720\) 0 0
\(721\) −45181.1 + 281786.i −0.0869132 + 0.542062i
\(722\) 0 0
\(723\) 178805. + 103233.i 0.342060 + 0.197488i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −631745. −1.19529 −0.597645 0.801761i \(-0.703897\pi\)
−0.597645 + 0.801761i \(0.703897\pi\)
\(728\) 0 0
\(729\) −798222. −1.50199
\(730\) 0 0
\(731\) 678091. 391496.i 1.26898 0.732643i
\(732\) 0 0
\(733\) −383825. + 664804.i −0.714373 + 1.23733i 0.248828 + 0.968548i \(0.419954\pi\)
−0.963201 + 0.268782i \(0.913379\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −590761. 341076.i −1.08762 0.627937i
\(738\) 0 0
\(739\) −97266.2 168470.i −0.178104 0.308485i 0.763127 0.646248i \(-0.223663\pi\)
−0.941231 + 0.337763i \(0.890330\pi\)
\(740\) 0 0
\(741\) 211489.i 0.385170i
\(742\) 0 0
\(743\) 175567.i 0.318028i 0.987276 + 0.159014i \(0.0508315\pi\)
−0.987276 + 0.159014i \(0.949168\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 402610. 697341.i 0.721511 1.24969i
\(748\) 0 0
\(749\) 98752.7 + 15833.8i 0.176029 + 0.0282243i
\(750\) 0 0
\(751\) −411668. + 713030.i −0.729907 + 1.26424i 0.227015 + 0.973891i \(0.427103\pi\)
−0.956922 + 0.290345i \(0.906230\pi\)
\(752\) 0 0
\(753\) −999069. + 576813.i −1.76200 + 1.01729i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 189062.i 0.329923i −0.986300 0.164961i \(-0.947250\pi\)
0.986300 0.164961i \(-0.0527499\pi\)
\(758\) 0 0
\(759\) −445435. + 257172.i −0.773216 + 0.446416i
\(760\) 0 0
\(761\) −686765. 396504.i −1.18588 0.684666i −0.228509 0.973542i \(-0.573385\pi\)
−0.957366 + 0.288876i \(0.906718\pi\)
\(762\) 0 0
\(763\) −103639. 84252.8i −0.178022 0.144722i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 18936.5 10933.0i 0.0321891 0.0185844i
\(768\) 0 0
\(769\) 745465.i 1.26059i −0.776355 0.630296i \(-0.782934\pi\)
0.776355 0.630296i \(-0.217066\pi\)
\(770\) 0 0
\(771\) −181795. −0.305824
\(772\) 0 0
\(773\) 228288. + 395406.i 0.382053 + 0.661735i 0.991356 0.131203i \(-0.0418838\pi\)
−0.609303 + 0.792938i \(0.708551\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 17700.6 + 46375.4i 0.0293187 + 0.0768150i
\(778\) 0 0
\(779\) −53877.3 + 93318.3i −0.0887833 + 0.153777i
\(780\) 0 0
\(781\) 494849. + 857104.i 0.811280 + 1.40518i
\(782\) 0 0
\(783\) 89669.5 0.146259
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −96039.4 166345.i −0.155060 0.268572i 0.778021 0.628238i \(-0.216224\pi\)
−0.933081 + 0.359667i \(0.882890\pi\)
\(788\) 0 0
\(789\) −459440. 265258.i −0.738031 0.426102i
\(790\) 0 0
\(791\) −320213. 838957.i −0.511783 1.34087i
\(792\) 0 0
\(793\) −67348.1 38883.4i −0.107097 0.0618327i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −89958.3 −0.141620 −0.0708100 0.997490i \(-0.522558\pi\)
−0.0708100 + 0.997490i \(0.522558\pi\)
\(798\) 0 0
\(799\) −377703. −0.591640
\(800\) 0 0
\(801\) 1.12026e6 646781.i 1.74604 1.00807i
\(802\) 0 0
\(803\) 136256. 236002.i 0.211312 0.366004i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.44768e6 835819.i −2.22293 1.28341i
\(808\) 0 0
\(809\) −324104. 561365.i −0.495208 0.857725i 0.504777 0.863250i \(-0.331575\pi\)
−0.999985 + 0.00552475i \(0.998241\pi\)
\(810\) 0 0
\(811\) 988449.i 1.50284i −0.659824 0.751420i \(-0.729369\pi\)
0.659824 0.751420i \(-0.270631\pi\)
\(812\) 0 0
\(813\) 579283.i 0.876414i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 306662. 531154.i 0.459426 0.795750i
\(818\) 0 0
\(819\) −69593.2 + 434040.i −0.103753 + 0.647086i
\(820\) 0 0
\(821\) −78251.6 + 135536.i −0.116093 + 0.201079i −0.918216 0.396080i \(-0.870370\pi\)
0.802123 + 0.597159i \(0.203704\pi\)
\(822\) 0 0
\(823\) −558679. + 322553.i −0.824826 + 0.476214i −0.852078 0.523415i \(-0.824658\pi\)
0.0272517 + 0.999629i \(0.491324\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 246758.i 0.360795i −0.983594 0.180398i \(-0.942262\pi\)
0.983594 0.180398i \(-0.0577385\pi\)
\(828\) 0 0
\(829\) −62262.5 + 35947.3i −0.0905978 + 0.0523067i −0.544614 0.838687i \(-0.683324\pi\)
0.454017 + 0.890993i \(0.349991\pi\)
\(830\) 0 0
\(831\) −782117. 451556.i −1.13258 0.653897i
\(832\) 0 0
\(833\) 534574. + 175949.i 0.770403 + 0.253569i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 125024. 72182.7i 0.178461 0.103034i
\(838\) 0 0
\(839\) 528527.i 0.750833i 0.926856 + 0.375416i \(0.122500\pi\)
−0.926856 + 0.375416i \(0.877500\pi\)
\(840\) 0 0
\(841\) −642439. −0.908322
\(842\) 0 0
\(843\) −711043. 1.23156e6i −1.00055 1.73301i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −10180.2 + 63491.7i −0.0141902 + 0.0885014i
\(848\) 0 0
\(849\) −872063. + 1.51046e6i −1.20985 + 2.09553i
\(850\) 0 0
\(851\) −12022.2 20823.0i −0.0166006 0.0287531i
\(852\) 0 0
\(853\) 151069. 0.207624 0.103812 0.994597i \(-0.466896\pi\)
0.103812 + 0.994597i \(0.466896\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 290582. + 503303.i 0.395646 + 0.685280i 0.993183 0.116562i \(-0.0371873\pi\)
−0.597537 + 0.801841i \(0.703854\pi\)
\(858\) 0 0
\(859\) −295935. 170858.i −0.401061 0.231553i 0.285881 0.958265i \(-0.407714\pi\)
−0.686942 + 0.726712i \(0.741047\pi\)
\(860\) 0 0
\(861\) −248528. + 305714.i −0.335251 + 0.412391i
\(862\) 0 0
\(863\) 1.14349e6 + 660195.i 1.53536 + 0.886443i 0.999101 + 0.0423920i \(0.0134978\pi\)
0.536263 + 0.844051i \(0.319836\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −391551. −0.520895
\(868\) 0 0
\(869\) −594488. −0.787234
\(870\) 0 0
\(871\) 430217. 248386.i 0.567089 0.327409i
\(872\) 0 0
\(873\) −793623. + 1.37459e6i −1.04132 + 1.80362i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 197974. + 114301.i 0.257401 + 0.148610i 0.623148 0.782104i \(-0.285853\pi\)
−0.365748 + 0.930714i \(0.619187\pi\)
\(878\) 0 0
\(879\) −281985. 488412.i −0.364962 0.632133i
\(880\) 0 0
\(881\) 1.08126e6i 1.39309i −0.717514 0.696544i \(-0.754720\pi\)
0.717514 0.696544i \(-0.245280\pi\)
\(882\) 0 0
\(883\) 1.23295e6i 1.58133i −0.612246 0.790667i \(-0.709734\pi\)
0.612246 0.790667i \(-0.290266\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 535072. 926773.i 0.680088 1.17795i −0.294865 0.955539i \(-0.595275\pi\)
0.974954 0.222409i \(-0.0713919\pi\)
\(888\) 0 0
\(889\) 526611. + 1.37972e6i 0.666326 + 1.74577i
\(890\) 0 0
\(891\) −220420. + 381778.i −0.277648 + 0.480901i
\(892\) 0 0
\(893\) −256221. + 147929.i −0.321300 + 0.185503i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 374567.i 0.465527i
\(898\) 0 0
\(899\) 90408.2 52197.2i 0.111863 0.0645844i
\(900\) 0 0
\(901\) 728142. + 420393.i 0.896947 + 0.517852i
\(902\) 0 0
\(903\) 1.41459e6 1.74008e6i 1.73482 2.13400i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −634840. + 366525.i −0.771702 + 0.445542i −0.833481 0.552548i \(-0.813656\pi\)
0.0617795 + 0.998090i \(0.480322\pi\)
\(908\) 0 0
\(909\) 1.18844e6i 1.43830i
\(910\) 0 0
\(911\) −1.42804e6 −1.72069 −0.860345 0.509713i \(-0.829752\pi\)
−0.860345 + 0.509713i \(0.829752\pi\)
\(912\) 0 0
\(913\) −435615. 754507.i −0.522590 0.905152i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.24100e6 + 198980.i 1.47582 + 0.236630i
\(918\) 0 0
\(919\) 572769. 992065.i 0.678186 1.17465i −0.297341 0.954771i \(-0.596100\pi\)
0.975527 0.219881i \(-0.0705668\pi\)
\(920\) 0 0
\(921\) 1.18324e6 + 2.04944e6i 1.39494 + 2.41611i
\(922\) 0 0
\(923\) −720740. −0.846010
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 310728. + 538197.i 0.361594 + 0.626300i
\(928\) 0 0
\(929\) 662079. + 382251.i 0.767146 + 0.442912i 0.831856 0.554992i \(-0.187279\pi\)
−0.0647092 + 0.997904i \(0.520612\pi\)
\(930\) 0 0
\(931\) 431547. 90010.8i 0.497885 0.103847i
\(932\) 0 0
\(933\) 856643. + 494583.i 0.984094 + 0.568167i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −885472. −1.00855 −0.504273 0.863544i \(-0.668240\pi\)
−0.504273 + 0.863544i \(0.668240\pi\)
\(938\) 0 0
\(939\) 2.41385e6 2.73765
\(940\) 0 0
\(941\) 1.44718e6 835532.i 1.63435 0.943591i 0.651618 0.758548i \(-0.274091\pi\)
0.982730 0.185043i \(-0.0592426\pi\)
\(942\) 0 0
\(943\) 95421.7 165275.i 0.107306 0.185859i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.41490e6 + 816891.i 1.57770 + 0.910886i 0.995179 + 0.0980707i \(0.0312671\pi\)
0.582521 + 0.812815i \(0.302066\pi\)
\(948\) 0 0
\(949\) 99227.5 + 171867.i 0.110179 + 0.190836i
\(950\) 0 0
\(951\) 757076.i 0.837102i
\(952\) 0 0
\(953\) 1.14167e6i 1.25706i −0.777785 0.628531i \(-0.783657\pi\)
0.777785 0.628531i \(-0.216343\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 201386. 348810.i 0.219890 0.380860i
\(958\) 0 0
\(959\) −685244. + 842917.i −0.745089 + 0.916531i
\(960\) 0 0
\(961\) −377725. + 654238.i −0.409005 + 0.708417i
\(962\) 0 0
\(963\) 188613. 108896.i 0.203385 0.117424i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1.47251e6i 1.57473i 0.616487 + 0.787365i \(0.288555\pi\)
−0.616487 + 0.787365i \(0.711445\pi\)
\(968\) 0 0
\(969\) 510623. 294808.i 0.543817 0.313973i
\(970\) 0 0
\(971\) −250048. 144366.i −0.265207 0.153118i 0.361500 0.932372i \(-0.382265\pi\)
−0.626708 + 0.779254i \(0.715598\pi\)
\(972\) 0 0
\(973\) −67567.2 177026.i −0.0713691 0.186987i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 385218. 222406.i 0.403568 0.233000i −0.284454 0.958690i \(-0.591812\pi\)
0.688022 + 0.725689i \(0.258479\pi\)
\(978\) 0 0
\(979\) 1.39961e6i 1.46029i
\(980\) 0 0
\(981\) −290852. −0.302228
\(982\) 0 0
\(983\) 752776. + 1.30385e6i 0.779038 + 1.34933i 0.932496 + 0.361179i \(0.117626\pi\)
−0.153458 + 0.988155i \(0.549041\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −1.01065e6 + 385744.i −1.03745 + 0.395972i
\(988\) 0 0
\(989\) −543127. + 940723.i −0.555276 + 0.961766i
\(990\) 0 0
\(991\) 736806. + 1.27619e6i 0.750250 + 1.29947i 0.947702 + 0.319158i \(0.103400\pi\)
−0.197452 + 0.980313i \(0.563267\pi\)
\(992\) 0 0
\(993\) −1.08698e6 −1.10236
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 289881. + 502088.i 0.291628 + 0.505114i 0.974195 0.225709i \(-0.0724698\pi\)
−0.682567 + 0.730823i \(0.739136\pi\)
\(998\) 0 0
\(999\) 22549.4 + 13018.9i 0.0225945 + 0.0130450i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.5.o.c.649.3 44
5.2 odd 4 700.5.s.d.201.2 yes 22
5.3 odd 4 700.5.s.c.201.10 yes 22
5.4 even 2 inner 700.5.o.c.649.20 44
7.3 odd 6 inner 700.5.o.c.549.20 44
35.3 even 12 700.5.s.c.101.10 22
35.17 even 12 700.5.s.d.101.2 yes 22
35.24 odd 6 inner 700.5.o.c.549.3 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
700.5.o.c.549.3 44 35.24 odd 6 inner
700.5.o.c.549.20 44 7.3 odd 6 inner
700.5.o.c.649.3 44 1.1 even 1 trivial
700.5.o.c.649.20 44 5.4 even 2 inner
700.5.s.c.101.10 22 35.3 even 12
700.5.s.c.201.10 yes 22 5.3 odd 4
700.5.s.d.101.2 yes 22 35.17 even 12
700.5.s.d.201.2 yes 22 5.2 odd 4