Properties

Label 700.6.a.g
Level $700$
Weight $6$
Character orbit 700.a
Self dual yes
Analytic conductor $112.269$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,6,Mod(1,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 700.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(112.268673869\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1009}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 252 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{1009})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 9) q^{3} + 49 q^{7} + ( - 17 \beta + 90) q^{9} + ( - 9 \beta - 79) q^{11} + (41 \beta - 243) q^{13} + (23 \beta - 61) q^{17} + (46 \beta - 690) q^{19} + ( - 49 \beta + 441) q^{21} + (62 \beta + 114) q^{23}+ \cdots + (686 \beta + 31446) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 17 q^{3} + 98 q^{7} + 163 q^{9} - 167 q^{11} - 445 q^{13} - 99 q^{17} - 1334 q^{19} + 833 q^{21} + 290 q^{23} + 5831 q^{27} - 6959 q^{29} - 10480 q^{31} + 3121 q^{33} + 1588 q^{37} - 24467 q^{39}+ \cdots + 63578 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
16.3824
−15.3824
0 −7.38238 0 0 0 49.0000 0 −188.500 0
1.2 0 24.3824 0 0 0 49.0000 0 351.500 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 700.6.a.g 2
5.b even 2 1 140.6.a.b 2
5.c odd 4 2 700.6.e.f 4
20.d odd 2 1 560.6.a.o 2
35.c odd 2 1 980.6.a.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.6.a.b 2 5.b even 2 1
560.6.a.o 2 20.d odd 2 1
700.6.a.g 2 1.a even 1 1 trivial
700.6.e.f 4 5.c odd 4 2
980.6.a.f 2 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 17T_{3} - 180 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(700))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 17T - 180 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T - 49)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 167T - 13460 \) Copy content Toggle raw display
$13$ \( T^{2} + 445T - 374526 \) Copy content Toggle raw display
$17$ \( T^{2} + 99T - 130990 \) Copy content Toggle raw display
$19$ \( T^{2} + 1334T - 88872 \) Copy content Toggle raw display
$23$ \( T^{2} - 290T - 948624 \) Copy content Toggle raw display
$29$ \( T^{2} + 6959 T - 4814262 \) Copy content Toggle raw display
$31$ \( T^{2} + 10480 T + 24293376 \) Copy content Toggle raw display
$37$ \( T^{2} - 1588 T - 12026460 \) Copy content Toggle raw display
$41$ \( T^{2} + 24110 T + 139946064 \) Copy content Toggle raw display
$43$ \( T^{2} - 20406 T - 43907992 \) Copy content Toggle raw display
$47$ \( T^{2} + 619 T - 137663232 \) Copy content Toggle raw display
$53$ \( T^{2} - 21794 T + 106312720 \) Copy content Toggle raw display
$59$ \( T^{2} - 1976 T - 247254000 \) Copy content Toggle raw display
$61$ \( T^{2} - 22614 T - 379356880 \) Copy content Toggle raw display
$67$ \( T^{2} + 4068 T - 97896960 \) Copy content Toggle raw display
$71$ \( T^{2} + 46528 T + 117530560 \) Copy content Toggle raw display
$73$ \( T^{2} + 27096 T - 211854580 \) Copy content Toggle raw display
$79$ \( T^{2} + 12481 T - 899688752 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 1661783280 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 5444221000 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 3603178714 \) Copy content Toggle raw display
show more
show less