Properties

Label 700.6.a.k.1.3
Level $700$
Weight $6$
Character 700.1
Self dual yes
Analytic conductor $112.269$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,6,Mod(1,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 700.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(112.268673869\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 393x^{2} - 1002x + 16596 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(5.45426\) of defining polynomial
Character \(\chi\) \(=\) 700.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.545745 q^{3} -49.0000 q^{7} -242.702 q^{9} +151.850 q^{11} -174.069 q^{13} -30.2562 q^{17} +1357.30 q^{19} +26.7415 q^{21} +4538.39 q^{23} +265.069 q^{27} -3112.43 q^{29} +8409.35 q^{31} -82.8715 q^{33} -9394.61 q^{37} +94.9973 q^{39} -9093.67 q^{41} -16911.3 q^{43} +27542.3 q^{47} +2401.00 q^{49} +16.5121 q^{51} +11364.1 q^{53} -740.740 q^{57} -18160.6 q^{59} -30788.8 q^{61} +11892.4 q^{63} -42283.7 q^{67} -2476.80 q^{69} -25775.3 q^{71} +14938.3 q^{73} -7440.67 q^{77} +53908.3 q^{79} +58832.0 q^{81} -18023.9 q^{83} +1698.59 q^{87} -132078. q^{89} +8529.38 q^{91} -4589.36 q^{93} -31392.1 q^{97} -36854.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 22 q^{3} - 196 q^{7} - 62 q^{9} + 48 q^{11} + 430 q^{13} + 1286 q^{17} - 384 q^{19} + 1078 q^{21} - 1256 q^{23} + 1196 q^{27} - 4994 q^{29} + 4618 q^{31} + 15268 q^{33} + 16922 q^{37} + 3200 q^{39}+ \cdots - 170416 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.545745 −0.0350096 −0.0175048 0.999847i \(-0.505572\pi\)
−0.0175048 + 0.999847i \(0.505572\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −49.0000 −0.377964
\(8\) 0 0
\(9\) −242.702 −0.998774
\(10\) 0 0
\(11\) 151.850 0.378385 0.189193 0.981940i \(-0.439413\pi\)
0.189193 + 0.981940i \(0.439413\pi\)
\(12\) 0 0
\(13\) −174.069 −0.285669 −0.142834 0.989747i \(-0.545622\pi\)
−0.142834 + 0.989747i \(0.545622\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −30.2562 −0.0253917 −0.0126958 0.999919i \(-0.504041\pi\)
−0.0126958 + 0.999919i \(0.504041\pi\)
\(18\) 0 0
\(19\) 1357.30 0.862565 0.431283 0.902217i \(-0.358061\pi\)
0.431283 + 0.902217i \(0.358061\pi\)
\(20\) 0 0
\(21\) 26.7415 0.0132324
\(22\) 0 0
\(23\) 4538.39 1.78888 0.894442 0.447184i \(-0.147573\pi\)
0.894442 + 0.447184i \(0.147573\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 265.069 0.0699762
\(28\) 0 0
\(29\) −3112.43 −0.687233 −0.343617 0.939110i \(-0.611652\pi\)
−0.343617 + 0.939110i \(0.611652\pi\)
\(30\) 0 0
\(31\) 8409.35 1.57166 0.785829 0.618444i \(-0.212237\pi\)
0.785829 + 0.618444i \(0.212237\pi\)
\(32\) 0 0
\(33\) −82.8715 −0.0132471
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −9394.61 −1.12817 −0.564085 0.825717i \(-0.690771\pi\)
−0.564085 + 0.825717i \(0.690771\pi\)
\(38\) 0 0
\(39\) 94.9973 0.0100011
\(40\) 0 0
\(41\) −9093.67 −0.844849 −0.422425 0.906398i \(-0.638821\pi\)
−0.422425 + 0.906398i \(0.638821\pi\)
\(42\) 0 0
\(43\) −16911.3 −1.39478 −0.697389 0.716693i \(-0.745655\pi\)
−0.697389 + 0.716693i \(0.745655\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 27542.3 1.81868 0.909338 0.416058i \(-0.136589\pi\)
0.909338 + 0.416058i \(0.136589\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) 16.5121 0.000888951 0
\(52\) 0 0
\(53\) 11364.1 0.555704 0.277852 0.960624i \(-0.410377\pi\)
0.277852 + 0.960624i \(0.410377\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −740.740 −0.0301980
\(58\) 0 0
\(59\) −18160.6 −0.679202 −0.339601 0.940570i \(-0.610292\pi\)
−0.339601 + 0.940570i \(0.610292\pi\)
\(60\) 0 0
\(61\) −30788.8 −1.05942 −0.529711 0.848178i \(-0.677699\pi\)
−0.529711 + 0.848178i \(0.677699\pi\)
\(62\) 0 0
\(63\) 11892.4 0.377501
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −42283.7 −1.15076 −0.575381 0.817885i \(-0.695146\pi\)
−0.575381 + 0.817885i \(0.695146\pi\)
\(68\) 0 0
\(69\) −2476.80 −0.0626280
\(70\) 0 0
\(71\) −25775.3 −0.606817 −0.303408 0.952861i \(-0.598125\pi\)
−0.303408 + 0.952861i \(0.598125\pi\)
\(72\) 0 0
\(73\) 14938.3 0.328091 0.164046 0.986453i \(-0.447546\pi\)
0.164046 + 0.986453i \(0.447546\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −7440.67 −0.143016
\(78\) 0 0
\(79\) 53908.3 0.971826 0.485913 0.874007i \(-0.338487\pi\)
0.485913 + 0.874007i \(0.338487\pi\)
\(80\) 0 0
\(81\) 58832.0 0.996324
\(82\) 0 0
\(83\) −18023.9 −0.287180 −0.143590 0.989637i \(-0.545865\pi\)
−0.143590 + 0.989637i \(0.545865\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1698.59 0.0240597
\(88\) 0 0
\(89\) −132078. −1.76749 −0.883743 0.467973i \(-0.844984\pi\)
−0.883743 + 0.467973i \(0.844984\pi\)
\(90\) 0 0
\(91\) 8529.38 0.107973
\(92\) 0 0
\(93\) −4589.36 −0.0550230
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −31392.1 −0.338759 −0.169380 0.985551i \(-0.554176\pi\)
−0.169380 + 0.985551i \(0.554176\pi\)
\(98\) 0 0
\(99\) −36854.4 −0.377921
\(100\) 0 0
\(101\) −50890.2 −0.496399 −0.248199 0.968709i \(-0.579839\pi\)
−0.248199 + 0.968709i \(0.579839\pi\)
\(102\) 0 0
\(103\) 56577.6 0.525474 0.262737 0.964868i \(-0.415375\pi\)
0.262737 + 0.964868i \(0.415375\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −159424. −1.34615 −0.673077 0.739572i \(-0.735028\pi\)
−0.673077 + 0.739572i \(0.735028\pi\)
\(108\) 0 0
\(109\) −1000.73 −0.00806771 −0.00403385 0.999992i \(-0.501284\pi\)
−0.00403385 + 0.999992i \(0.501284\pi\)
\(110\) 0 0
\(111\) 5127.06 0.0394967
\(112\) 0 0
\(113\) 220151. 1.62190 0.810952 0.585113i \(-0.198950\pi\)
0.810952 + 0.585113i \(0.198950\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 42246.9 0.285319
\(118\) 0 0
\(119\) 1482.55 0.00959715
\(120\) 0 0
\(121\) −137992. −0.856825
\(122\) 0 0
\(123\) 4962.82 0.0295778
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 107554. 0.591723 0.295862 0.955231i \(-0.404393\pi\)
0.295862 + 0.955231i \(0.404393\pi\)
\(128\) 0 0
\(129\) 9229.24 0.0488306
\(130\) 0 0
\(131\) 300017. 1.52745 0.763727 0.645539i \(-0.223367\pi\)
0.763727 + 0.645539i \(0.223367\pi\)
\(132\) 0 0
\(133\) −66507.7 −0.326019
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −83510.4 −0.380136 −0.190068 0.981771i \(-0.560871\pi\)
−0.190068 + 0.981771i \(0.560871\pi\)
\(138\) 0 0
\(139\) −415785. −1.82529 −0.912645 0.408754i \(-0.865963\pi\)
−0.912645 + 0.408754i \(0.865963\pi\)
\(140\) 0 0
\(141\) −15031.1 −0.0636710
\(142\) 0 0
\(143\) −26432.4 −0.108093
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1310.33 −0.00500136
\(148\) 0 0
\(149\) −298108. −1.10004 −0.550020 0.835151i \(-0.685380\pi\)
−0.550020 + 0.835151i \(0.685380\pi\)
\(150\) 0 0
\(151\) −453998. −1.62036 −0.810180 0.586181i \(-0.800631\pi\)
−0.810180 + 0.586181i \(0.800631\pi\)
\(152\) 0 0
\(153\) 7343.23 0.0253606
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −390947. −1.26581 −0.632905 0.774229i \(-0.718138\pi\)
−0.632905 + 0.774229i \(0.718138\pi\)
\(158\) 0 0
\(159\) −6201.88 −0.0194550
\(160\) 0 0
\(161\) −222381. −0.676135
\(162\) 0 0
\(163\) 161033. 0.474728 0.237364 0.971421i \(-0.423717\pi\)
0.237364 + 0.971421i \(0.423717\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −47355.4 −0.131395 −0.0656974 0.997840i \(-0.520927\pi\)
−0.0656974 + 0.997840i \(0.520927\pi\)
\(168\) 0 0
\(169\) −340993. −0.918393
\(170\) 0 0
\(171\) −329420. −0.861508
\(172\) 0 0
\(173\) 643520. 1.63473 0.817367 0.576118i \(-0.195433\pi\)
0.817367 + 0.576118i \(0.195433\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 9911.03 0.0237786
\(178\) 0 0
\(179\) −347904. −0.811570 −0.405785 0.913968i \(-0.633002\pi\)
−0.405785 + 0.913968i \(0.633002\pi\)
\(180\) 0 0
\(181\) 214485. 0.486632 0.243316 0.969947i \(-0.421765\pi\)
0.243316 + 0.969947i \(0.421765\pi\)
\(182\) 0 0
\(183\) 16802.8 0.0370899
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −4594.41 −0.00960783
\(188\) 0 0
\(189\) −12988.4 −0.0264485
\(190\) 0 0
\(191\) −401879. −0.797098 −0.398549 0.917147i \(-0.630486\pi\)
−0.398549 + 0.917147i \(0.630486\pi\)
\(192\) 0 0
\(193\) −38300.7 −0.0740139 −0.0370070 0.999315i \(-0.511782\pi\)
−0.0370070 + 0.999315i \(0.511782\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −345600. −0.634466 −0.317233 0.948348i \(-0.602754\pi\)
−0.317233 + 0.948348i \(0.602754\pi\)
\(198\) 0 0
\(199\) −733756. −1.31347 −0.656733 0.754123i \(-0.728062\pi\)
−0.656733 + 0.754123i \(0.728062\pi\)
\(200\) 0 0
\(201\) 23076.1 0.0402877
\(202\) 0 0
\(203\) 152509. 0.259750
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1.10148e6 −1.78669
\(208\) 0 0
\(209\) 206106. 0.326382
\(210\) 0 0
\(211\) 537383. 0.830955 0.415477 0.909603i \(-0.363615\pi\)
0.415477 + 0.909603i \(0.363615\pi\)
\(212\) 0 0
\(213\) 14066.7 0.0212444
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −412058. −0.594031
\(218\) 0 0
\(219\) −8152.51 −0.0114863
\(220\) 0 0
\(221\) 5266.66 0.00725361
\(222\) 0 0
\(223\) 913530. 1.23016 0.615078 0.788466i \(-0.289124\pi\)
0.615078 + 0.788466i \(0.289124\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −384996. −0.495898 −0.247949 0.968773i \(-0.579756\pi\)
−0.247949 + 0.968773i \(0.579756\pi\)
\(228\) 0 0
\(229\) −1.30305e6 −1.64199 −0.820996 0.570934i \(-0.806581\pi\)
−0.820996 + 0.570934i \(0.806581\pi\)
\(230\) 0 0
\(231\) 4060.71 0.00500693
\(232\) 0 0
\(233\) 329721. 0.397884 0.198942 0.980011i \(-0.436249\pi\)
0.198942 + 0.980011i \(0.436249\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −29420.2 −0.0340232
\(238\) 0 0
\(239\) −793186. −0.898215 −0.449107 0.893478i \(-0.648258\pi\)
−0.449107 + 0.893478i \(0.648258\pi\)
\(240\) 0 0
\(241\) 26163.1 0.0290166 0.0145083 0.999895i \(-0.495382\pi\)
0.0145083 + 0.999895i \(0.495382\pi\)
\(242\) 0 0
\(243\) −96519.1 −0.104857
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −236264. −0.246408
\(248\) 0 0
\(249\) 9836.47 0.0100540
\(250\) 0 0
\(251\) −909018. −0.910727 −0.455363 0.890306i \(-0.650491\pi\)
−0.455363 + 0.890306i \(0.650491\pi\)
\(252\) 0 0
\(253\) 689156. 0.676887
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 268481. 0.253560 0.126780 0.991931i \(-0.459536\pi\)
0.126780 + 0.991931i \(0.459536\pi\)
\(258\) 0 0
\(259\) 460336. 0.426408
\(260\) 0 0
\(261\) 755393. 0.686391
\(262\) 0 0
\(263\) 405970. 0.361914 0.180957 0.983491i \(-0.442081\pi\)
0.180957 + 0.983491i \(0.442081\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 72081.0 0.0618789
\(268\) 0 0
\(269\) 270513. 0.227933 0.113966 0.993485i \(-0.463644\pi\)
0.113966 + 0.993485i \(0.463644\pi\)
\(270\) 0 0
\(271\) −1.76528e6 −1.46013 −0.730063 0.683380i \(-0.760509\pi\)
−0.730063 + 0.683380i \(0.760509\pi\)
\(272\) 0 0
\(273\) −4654.87 −0.00378008
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 509279. 0.398801 0.199400 0.979918i \(-0.436101\pi\)
0.199400 + 0.979918i \(0.436101\pi\)
\(278\) 0 0
\(279\) −2.04097e6 −1.56973
\(280\) 0 0
\(281\) −1.93287e6 −1.46029 −0.730143 0.683295i \(-0.760546\pi\)
−0.730143 + 0.683295i \(0.760546\pi\)
\(282\) 0 0
\(283\) 840394. 0.623759 0.311880 0.950122i \(-0.399041\pi\)
0.311880 + 0.950122i \(0.399041\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 445590. 0.319323
\(288\) 0 0
\(289\) −1.41894e6 −0.999355
\(290\) 0 0
\(291\) 17132.1 0.0118598
\(292\) 0 0
\(293\) −388615. −0.264454 −0.132227 0.991219i \(-0.542213\pi\)
−0.132227 + 0.991219i \(0.542213\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 40250.9 0.0264779
\(298\) 0 0
\(299\) −789993. −0.511029
\(300\) 0 0
\(301\) 828652. 0.527177
\(302\) 0 0
\(303\) 27773.1 0.0173787
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −921196. −0.557836 −0.278918 0.960315i \(-0.589976\pi\)
−0.278918 + 0.960315i \(0.589976\pi\)
\(308\) 0 0
\(309\) −30876.9 −0.0183966
\(310\) 0 0
\(311\) 1.18654e6 0.695638 0.347819 0.937562i \(-0.386922\pi\)
0.347819 + 0.937562i \(0.386922\pi\)
\(312\) 0 0
\(313\) −1.49842e6 −0.864516 −0.432258 0.901750i \(-0.642283\pi\)
−0.432258 + 0.901750i \(0.642283\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.78562e6 −1.55695 −0.778474 0.627676i \(-0.784006\pi\)
−0.778474 + 0.627676i \(0.784006\pi\)
\(318\) 0 0
\(319\) −472623. −0.260039
\(320\) 0 0
\(321\) 87005.0 0.0471283
\(322\) 0 0
\(323\) −41066.7 −0.0219020
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 546.143 0.000282447 0
\(328\) 0 0
\(329\) −1.34957e6 −0.687395
\(330\) 0 0
\(331\) −576838. −0.289390 −0.144695 0.989476i \(-0.546220\pi\)
−0.144695 + 0.989476i \(0.546220\pi\)
\(332\) 0 0
\(333\) 2.28009e6 1.12679
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −261511. −0.125434 −0.0627171 0.998031i \(-0.519977\pi\)
−0.0627171 + 0.998031i \(0.519977\pi\)
\(338\) 0 0
\(339\) −120146. −0.0567821
\(340\) 0 0
\(341\) 1.27696e6 0.594692
\(342\) 0 0
\(343\) −117649. −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.10913e6 0.940330 0.470165 0.882578i \(-0.344194\pi\)
0.470165 + 0.882578i \(0.344194\pi\)
\(348\) 0 0
\(349\) 3.12887e6 1.37507 0.687534 0.726152i \(-0.258693\pi\)
0.687534 + 0.726152i \(0.258693\pi\)
\(350\) 0 0
\(351\) −46140.4 −0.0199900
\(352\) 0 0
\(353\) 1.18006e6 0.504043 0.252021 0.967722i \(-0.418905\pi\)
0.252021 + 0.967722i \(0.418905\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −809.095 −0.000335992 0
\(358\) 0 0
\(359\) 1.17557e6 0.481405 0.240703 0.970599i \(-0.422622\pi\)
0.240703 + 0.970599i \(0.422622\pi\)
\(360\) 0 0
\(361\) −633835. −0.255981
\(362\) 0 0
\(363\) 75308.7 0.0299970
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −932760. −0.361497 −0.180748 0.983529i \(-0.557852\pi\)
−0.180748 + 0.983529i \(0.557852\pi\)
\(368\) 0 0
\(369\) 2.20705e6 0.843814
\(370\) 0 0
\(371\) −556839. −0.210037
\(372\) 0 0
\(373\) −1.66637e6 −0.620152 −0.310076 0.950712i \(-0.600355\pi\)
−0.310076 + 0.950712i \(0.600355\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 541777. 0.196321
\(378\) 0 0
\(379\) 2.39950e6 0.858071 0.429035 0.903288i \(-0.358854\pi\)
0.429035 + 0.903288i \(0.358854\pi\)
\(380\) 0 0
\(381\) −58697.2 −0.0207160
\(382\) 0 0
\(383\) 314459. 0.109539 0.0547693 0.998499i \(-0.482558\pi\)
0.0547693 + 0.998499i \(0.482558\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.10440e6 1.39307
\(388\) 0 0
\(389\) −786882. −0.263655 −0.131827 0.991273i \(-0.542084\pi\)
−0.131827 + 0.991273i \(0.542084\pi\)
\(390\) 0 0
\(391\) −137314. −0.0454228
\(392\) 0 0
\(393\) −163733. −0.0534755
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −5.13754e6 −1.63598 −0.817992 0.575229i \(-0.804913\pi\)
−0.817992 + 0.575229i \(0.804913\pi\)
\(398\) 0 0
\(399\) 36296.2 0.0114138
\(400\) 0 0
\(401\) 529007. 0.164286 0.0821429 0.996621i \(-0.473824\pi\)
0.0821429 + 0.996621i \(0.473824\pi\)
\(402\) 0 0
\(403\) −1.46381e6 −0.448974
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.42657e6 −0.426882
\(408\) 0 0
\(409\) −4.02850e6 −1.19079 −0.595395 0.803433i \(-0.703004\pi\)
−0.595395 + 0.803433i \(0.703004\pi\)
\(410\) 0 0
\(411\) 45575.4 0.0133084
\(412\) 0 0
\(413\) 889867. 0.256714
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 226912. 0.0639026
\(418\) 0 0
\(419\) 2.13674e6 0.594589 0.297294 0.954786i \(-0.403916\pi\)
0.297294 + 0.954786i \(0.403916\pi\)
\(420\) 0 0
\(421\) 5.32374e6 1.46390 0.731950 0.681358i \(-0.238610\pi\)
0.731950 + 0.681358i \(0.238610\pi\)
\(422\) 0 0
\(423\) −6.68457e6 −1.81645
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.50865e6 0.400424
\(428\) 0 0
\(429\) 14425.4 0.00378428
\(430\) 0 0
\(431\) 1.92677e6 0.499615 0.249808 0.968296i \(-0.419633\pi\)
0.249808 + 0.968296i \(0.419633\pi\)
\(432\) 0 0
\(433\) 2.79031e6 0.715209 0.357604 0.933873i \(-0.383594\pi\)
0.357604 + 0.933873i \(0.383594\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.15996e6 1.54303
\(438\) 0 0
\(439\) 5.51339e6 1.36539 0.682695 0.730703i \(-0.260808\pi\)
0.682695 + 0.730703i \(0.260808\pi\)
\(440\) 0 0
\(441\) −582728. −0.142682
\(442\) 0 0
\(443\) −1.28906e6 −0.312078 −0.156039 0.987751i \(-0.549873\pi\)
−0.156039 + 0.987751i \(0.549873\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 162691. 0.0385119
\(448\) 0 0
\(449\) 2.66556e6 0.623983 0.311992 0.950085i \(-0.399004\pi\)
0.311992 + 0.950085i \(0.399004\pi\)
\(450\) 0 0
\(451\) −1.38088e6 −0.319678
\(452\) 0 0
\(453\) 247767. 0.0567281
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.93520e6 1.10539 0.552694 0.833384i \(-0.313600\pi\)
0.552694 + 0.833384i \(0.313600\pi\)
\(458\) 0 0
\(459\) −8019.98 −0.00177681
\(460\) 0 0
\(461\) −2.29552e6 −0.503071 −0.251535 0.967848i \(-0.580936\pi\)
−0.251535 + 0.967848i \(0.580936\pi\)
\(462\) 0 0
\(463\) −2.84800e6 −0.617430 −0.308715 0.951155i \(-0.599899\pi\)
−0.308715 + 0.951155i \(0.599899\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 596639. 0.126596 0.0632979 0.997995i \(-0.479838\pi\)
0.0632979 + 0.997995i \(0.479838\pi\)
\(468\) 0 0
\(469\) 2.07190e6 0.434947
\(470\) 0 0
\(471\) 213357. 0.0443154
\(472\) 0 0
\(473\) −2.56798e6 −0.527763
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −2.75808e6 −0.555023
\(478\) 0 0
\(479\) 4.37534e6 0.871310 0.435655 0.900114i \(-0.356517\pi\)
0.435655 + 0.900114i \(0.356517\pi\)
\(480\) 0 0
\(481\) 1.63531e6 0.322283
\(482\) 0 0
\(483\) 121363. 0.0236712
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 6.10280e6 1.16602 0.583011 0.812464i \(-0.301875\pi\)
0.583011 + 0.812464i \(0.301875\pi\)
\(488\) 0 0
\(489\) −87882.7 −0.0166200
\(490\) 0 0
\(491\) −6.65964e6 −1.24666 −0.623329 0.781960i \(-0.714220\pi\)
−0.623329 + 0.781960i \(0.714220\pi\)
\(492\) 0 0
\(493\) 94170.1 0.0174500
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.26299e6 0.229355
\(498\) 0 0
\(499\) −4.73748e6 −0.851719 −0.425859 0.904789i \(-0.640028\pi\)
−0.425859 + 0.904789i \(0.640028\pi\)
\(500\) 0 0
\(501\) 25843.9 0.00460007
\(502\) 0 0
\(503\) −5.98106e6 −1.05404 −0.527021 0.849852i \(-0.676691\pi\)
−0.527021 + 0.849852i \(0.676691\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 186095. 0.0321525
\(508\) 0 0
\(509\) 369411. 0.0631998 0.0315999 0.999501i \(-0.489940\pi\)
0.0315999 + 0.999501i \(0.489940\pi\)
\(510\) 0 0
\(511\) −731977. −0.124007
\(512\) 0 0
\(513\) 359779. 0.0603590
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 4.18230e6 0.688160
\(518\) 0 0
\(519\) −351198. −0.0572313
\(520\) 0 0
\(521\) 1.04526e7 1.68706 0.843531 0.537080i \(-0.180473\pi\)
0.843531 + 0.537080i \(0.180473\pi\)
\(522\) 0 0
\(523\) −2.74533e6 −0.438875 −0.219437 0.975627i \(-0.570422\pi\)
−0.219437 + 0.975627i \(0.570422\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −254434. −0.0399070
\(528\) 0 0
\(529\) 1.41606e7 2.20011
\(530\) 0 0
\(531\) 4.40761e6 0.678370
\(532\) 0 0
\(533\) 1.58292e6 0.241347
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 189867. 0.0284127
\(538\) 0 0
\(539\) 364593. 0.0540550
\(540\) 0 0
\(541\) 1.15164e7 1.69171 0.845853 0.533416i \(-0.179092\pi\)
0.845853 + 0.533416i \(0.179092\pi\)
\(542\) 0 0
\(543\) −117054. −0.0170368
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.12929e7 1.61376 0.806878 0.590718i \(-0.201155\pi\)
0.806878 + 0.590718i \(0.201155\pi\)
\(548\) 0 0
\(549\) 7.47252e6 1.05812
\(550\) 0 0
\(551\) −4.22450e6 −0.592784
\(552\) 0 0
\(553\) −2.64151e6 −0.367316
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.58505e6 −0.762763 −0.381381 0.924418i \(-0.624551\pi\)
−0.381381 + 0.924418i \(0.624551\pi\)
\(558\) 0 0
\(559\) 2.94373e6 0.398445
\(560\) 0 0
\(561\) 2507.37 0.000336366 0
\(562\) 0 0
\(563\) −8.31797e6 −1.10598 −0.552989 0.833189i \(-0.686513\pi\)
−0.552989 + 0.833189i \(0.686513\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −2.88277e6 −0.376575
\(568\) 0 0
\(569\) 1.12407e7 1.45550 0.727748 0.685844i \(-0.240567\pi\)
0.727748 + 0.685844i \(0.240567\pi\)
\(570\) 0 0
\(571\) 2.87087e6 0.368487 0.184244 0.982881i \(-0.441016\pi\)
0.184244 + 0.982881i \(0.441016\pi\)
\(572\) 0 0
\(573\) 219323. 0.0279061
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −1.24646e7 −1.55861 −0.779307 0.626642i \(-0.784429\pi\)
−0.779307 + 0.626642i \(0.784429\pi\)
\(578\) 0 0
\(579\) 20902.4 0.00259119
\(580\) 0 0
\(581\) 883173. 0.108544
\(582\) 0 0
\(583\) 1.72564e6 0.210270
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.89583e6 0.466665 0.233333 0.972397i \(-0.425037\pi\)
0.233333 + 0.972397i \(0.425037\pi\)
\(588\) 0 0
\(589\) 1.14140e7 1.35566
\(590\) 0 0
\(591\) 188609. 0.0222124
\(592\) 0 0
\(593\) −1.26763e7 −1.48032 −0.740162 0.672429i \(-0.765251\pi\)
−0.740162 + 0.672429i \(0.765251\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 400444. 0.0459839
\(598\) 0 0
\(599\) −3.33879e6 −0.380208 −0.190104 0.981764i \(-0.560883\pi\)
−0.190104 + 0.981764i \(0.560883\pi\)
\(600\) 0 0
\(601\) 1.72769e6 0.195110 0.0975548 0.995230i \(-0.468898\pi\)
0.0975548 + 0.995230i \(0.468898\pi\)
\(602\) 0 0
\(603\) 1.02623e7 1.14935
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 9.39823e6 1.03532 0.517660 0.855587i \(-0.326803\pi\)
0.517660 + 0.855587i \(0.326803\pi\)
\(608\) 0 0
\(609\) −83231.0 −0.00909372
\(610\) 0 0
\(611\) −4.79426e6 −0.519539
\(612\) 0 0
\(613\) 1.54893e7 1.66487 0.832437 0.554119i \(-0.186945\pi\)
0.832437 + 0.554119i \(0.186945\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.28160e6 0.981545 0.490772 0.871288i \(-0.336715\pi\)
0.490772 + 0.871288i \(0.336715\pi\)
\(618\) 0 0
\(619\) −1.07700e7 −1.12977 −0.564884 0.825171i \(-0.691079\pi\)
−0.564884 + 0.825171i \(0.691079\pi\)
\(620\) 0 0
\(621\) 1.20299e6 0.125179
\(622\) 0 0
\(623\) 6.47183e6 0.668047
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −112482. −0.0114265
\(628\) 0 0
\(629\) 284245. 0.0286461
\(630\) 0 0
\(631\) −6.65740e6 −0.665628 −0.332814 0.942993i \(-0.607998\pi\)
−0.332814 + 0.942993i \(0.607998\pi\)
\(632\) 0 0
\(633\) −293274. −0.0290914
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −417940. −0.0408098
\(638\) 0 0
\(639\) 6.25571e6 0.606073
\(640\) 0 0
\(641\) −680.688 −6.54340e−5 0 −3.27170e−5 1.00000i \(-0.500010\pi\)
−3.27170e−5 1.00000i \(0.500010\pi\)
\(642\) 0 0
\(643\) −1.68280e7 −1.60511 −0.802556 0.596576i \(-0.796527\pi\)
−0.802556 + 0.596576i \(0.796527\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.14869e6 0.295712 0.147856 0.989009i \(-0.452763\pi\)
0.147856 + 0.989009i \(0.452763\pi\)
\(648\) 0 0
\(649\) −2.75769e6 −0.257000
\(650\) 0 0
\(651\) 224879. 0.0207968
\(652\) 0 0
\(653\) −1.78640e7 −1.63944 −0.819722 0.572761i \(-0.805872\pi\)
−0.819722 + 0.572761i \(0.805872\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −3.62556e6 −0.327689
\(658\) 0 0
\(659\) 4.25078e6 0.381290 0.190645 0.981659i \(-0.438942\pi\)
0.190645 + 0.981659i \(0.438942\pi\)
\(660\) 0 0
\(661\) −1.47601e6 −0.131397 −0.0656984 0.997840i \(-0.520928\pi\)
−0.0656984 + 0.997840i \(0.520928\pi\)
\(662\) 0 0
\(663\) −2874.25 −0.000253946 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.41254e7 −1.22938
\(668\) 0 0
\(669\) −498554. −0.0430672
\(670\) 0 0
\(671\) −4.67529e6 −0.400869
\(672\) 0 0
\(673\) −5.98979e6 −0.509769 −0.254885 0.966971i \(-0.582037\pi\)
−0.254885 + 0.966971i \(0.582037\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.42251e7 1.19284 0.596421 0.802672i \(-0.296589\pi\)
0.596421 + 0.802672i \(0.296589\pi\)
\(678\) 0 0
\(679\) 1.53821e6 0.128039
\(680\) 0 0
\(681\) 210110. 0.0173612
\(682\) 0 0
\(683\) −1.38904e7 −1.13937 −0.569683 0.821865i \(-0.692934\pi\)
−0.569683 + 0.821865i \(0.692934\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 711131. 0.0574854
\(688\) 0 0
\(689\) −1.97813e6 −0.158747
\(690\) 0 0
\(691\) 4.58886e6 0.365603 0.182801 0.983150i \(-0.441483\pi\)
0.182801 + 0.983150i \(0.441483\pi\)
\(692\) 0 0
\(693\) 1.80587e6 0.142841
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 275139. 0.0214521
\(698\) 0 0
\(699\) −179943. −0.0139297
\(700\) 0 0
\(701\) 1.22396e7 0.940749 0.470375 0.882467i \(-0.344119\pi\)
0.470375 + 0.882467i \(0.344119\pi\)
\(702\) 0 0
\(703\) −1.27513e7 −0.973120
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.49362e6 0.187621
\(708\) 0 0
\(709\) −9.27736e6 −0.693121 −0.346560 0.938028i \(-0.612650\pi\)
−0.346560 + 0.938028i \(0.612650\pi\)
\(710\) 0 0
\(711\) −1.30837e7 −0.970634
\(712\) 0 0
\(713\) 3.81649e7 2.81151
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 432877. 0.0314461
\(718\) 0 0
\(719\) −1.34945e7 −0.973494 −0.486747 0.873543i \(-0.661817\pi\)
−0.486747 + 0.873543i \(0.661817\pi\)
\(720\) 0 0
\(721\) −2.77230e6 −0.198610
\(722\) 0 0
\(723\) −14278.4 −0.00101586
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1.24916e7 0.876563 0.438281 0.898838i \(-0.355587\pi\)
0.438281 + 0.898838i \(0.355587\pi\)
\(728\) 0 0
\(729\) −1.42435e7 −0.992653
\(730\) 0 0
\(731\) 511670. 0.0354158
\(732\) 0 0
\(733\) 2.28106e7 1.56811 0.784056 0.620690i \(-0.213147\pi\)
0.784056 + 0.620690i \(0.213147\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.42079e6 −0.435431
\(738\) 0 0
\(739\) 1.49101e7 1.00431 0.502156 0.864777i \(-0.332540\pi\)
0.502156 + 0.864777i \(0.332540\pi\)
\(740\) 0 0
\(741\) 128940. 0.00862664
\(742\) 0 0
\(743\) 1.88035e7 1.24959 0.624794 0.780790i \(-0.285183\pi\)
0.624794 + 0.780790i \(0.285183\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 4.37445e6 0.286828
\(748\) 0 0
\(749\) 7.81179e6 0.508799
\(750\) 0 0
\(751\) −1.95078e7 −1.26214 −0.631070 0.775726i \(-0.717384\pi\)
−0.631070 + 0.775726i \(0.717384\pi\)
\(752\) 0 0
\(753\) 496092. 0.0318841
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.92282e7 −1.21955 −0.609773 0.792576i \(-0.708739\pi\)
−0.609773 + 0.792576i \(0.708739\pi\)
\(758\) 0 0
\(759\) −376103. −0.0236975
\(760\) 0 0
\(761\) 2.52863e7 1.58279 0.791397 0.611303i \(-0.209354\pi\)
0.791397 + 0.611303i \(0.209354\pi\)
\(762\) 0 0
\(763\) 49035.7 0.00304931
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.16119e6 0.194027
\(768\) 0 0
\(769\) 1.47943e7 0.902151 0.451075 0.892486i \(-0.351041\pi\)
0.451075 + 0.892486i \(0.351041\pi\)
\(770\) 0 0
\(771\) −146522. −0.00887701
\(772\) 0 0
\(773\) −2.24891e7 −1.35370 −0.676852 0.736119i \(-0.736656\pi\)
−0.676852 + 0.736119i \(0.736656\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −251226. −0.0149284
\(778\) 0 0
\(779\) −1.23428e7 −0.728738
\(780\) 0 0
\(781\) −3.91398e6 −0.229610
\(782\) 0 0
\(783\) −825010. −0.0480900
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −7.68992e6 −0.442573 −0.221287 0.975209i \(-0.571026\pi\)
−0.221287 + 0.975209i \(0.571026\pi\)
\(788\) 0 0
\(789\) −221556. −0.0126704
\(790\) 0 0
\(791\) −1.07874e7 −0.613022
\(792\) 0 0
\(793\) 5.35938e6 0.302644
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.14602e7 −1.19671 −0.598354 0.801232i \(-0.704178\pi\)
−0.598354 + 0.801232i \(0.704178\pi\)
\(798\) 0 0
\(799\) −833324. −0.0461792
\(800\) 0 0
\(801\) 3.20556e7 1.76532
\(802\) 0 0
\(803\) 2.26839e6 0.124145
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −147631. −0.00797983
\(808\) 0 0
\(809\) −1.18026e7 −0.634026 −0.317013 0.948421i \(-0.602680\pi\)
−0.317013 + 0.948421i \(0.602680\pi\)
\(810\) 0 0
\(811\) −5.44831e6 −0.290877 −0.145439 0.989367i \(-0.546459\pi\)
−0.145439 + 0.989367i \(0.546459\pi\)
\(812\) 0 0
\(813\) 963393. 0.0511184
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −2.29537e7 −1.20309
\(818\) 0 0
\(819\) −2.07010e6 −0.107840
\(820\) 0 0
\(821\) 7.53753e6 0.390275 0.195138 0.980776i \(-0.437485\pi\)
0.195138 + 0.980776i \(0.437485\pi\)
\(822\) 0 0
\(823\) 7.89571e6 0.406342 0.203171 0.979143i \(-0.434875\pi\)
0.203171 + 0.979143i \(0.434875\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.11093e7 0.564836 0.282418 0.959291i \(-0.408864\pi\)
0.282418 + 0.959291i \(0.408864\pi\)
\(828\) 0 0
\(829\) −3.51531e7 −1.77655 −0.888276 0.459311i \(-0.848096\pi\)
−0.888276 + 0.459311i \(0.848096\pi\)
\(830\) 0 0
\(831\) −277936. −0.0139618
\(832\) 0 0
\(833\) −72645.0 −0.00362738
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 2.22906e6 0.109979
\(838\) 0 0
\(839\) −2.39689e7 −1.17555 −0.587777 0.809023i \(-0.699997\pi\)
−0.587777 + 0.809023i \(0.699997\pi\)
\(840\) 0 0
\(841\) −1.08239e7 −0.527710
\(842\) 0 0
\(843\) 1.05486e6 0.0511239
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 6.76163e6 0.323849
\(848\) 0 0
\(849\) −458641. −0.0218375
\(850\) 0 0
\(851\) −4.26364e7 −2.01816
\(852\) 0 0
\(853\) 1.77178e7 0.833754 0.416877 0.908963i \(-0.363125\pi\)
0.416877 + 0.908963i \(0.363125\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.13278e7 −0.991959 −0.495979 0.868334i \(-0.665191\pi\)
−0.495979 + 0.868334i \(0.665191\pi\)
\(858\) 0 0
\(859\) −2.06255e7 −0.953723 −0.476861 0.878978i \(-0.658226\pi\)
−0.476861 + 0.878978i \(0.658226\pi\)
\(860\) 0 0
\(861\) −243178. −0.0111794
\(862\) 0 0
\(863\) −2.66276e7 −1.21704 −0.608519 0.793539i \(-0.708236\pi\)
−0.608519 + 0.793539i \(0.708236\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 774380. 0.0349870
\(868\) 0 0
\(869\) 8.18600e6 0.367724
\(870\) 0 0
\(871\) 7.36028e6 0.328737
\(872\) 0 0
\(873\) 7.61893e6 0.338344
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.67155e7 −0.733873 −0.366937 0.930246i \(-0.619593\pi\)
−0.366937 + 0.930246i \(0.619593\pi\)
\(878\) 0 0
\(879\) 212084. 0.00925842
\(880\) 0 0
\(881\) −1.79274e7 −0.778174 −0.389087 0.921201i \(-0.627209\pi\)
−0.389087 + 0.921201i \(0.627209\pi\)
\(882\) 0 0
\(883\) 2.35062e7 1.01457 0.507284 0.861779i \(-0.330649\pi\)
0.507284 + 0.861779i \(0.330649\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −2.03067e7 −0.866624 −0.433312 0.901244i \(-0.642655\pi\)
−0.433312 + 0.901244i \(0.642655\pi\)
\(888\) 0 0
\(889\) −5.27016e6 −0.223650
\(890\) 0 0
\(891\) 8.93365e6 0.376994
\(892\) 0 0
\(893\) 3.73831e7 1.56873
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 431135. 0.0178909
\(898\) 0 0
\(899\) −2.61735e7 −1.08010
\(900\) 0 0
\(901\) −343833. −0.0141103
\(902\) 0 0
\(903\) −452233. −0.0184562
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −6.51170e6 −0.262831 −0.131415 0.991327i \(-0.541952\pi\)
−0.131415 + 0.991327i \(0.541952\pi\)
\(908\) 0 0
\(909\) 1.23512e7 0.495790
\(910\) 0 0
\(911\) −2.90005e7 −1.15774 −0.578869 0.815421i \(-0.696506\pi\)
−0.578869 + 0.815421i \(0.696506\pi\)
\(912\) 0 0
\(913\) −2.73694e6 −0.108665
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.47009e7 −0.577324
\(918\) 0 0
\(919\) −1.60353e7 −0.626309 −0.313154 0.949702i \(-0.601386\pi\)
−0.313154 + 0.949702i \(0.601386\pi\)
\(920\) 0 0
\(921\) 502738. 0.0195296
\(922\) 0 0
\(923\) 4.48667e6 0.173349
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −1.37315e7 −0.524830
\(928\) 0 0
\(929\) −9.08140e6 −0.345234 −0.172617 0.984989i \(-0.555222\pi\)
−0.172617 + 0.984989i \(0.555222\pi\)
\(930\) 0 0
\(931\) 3.25888e6 0.123224
\(932\) 0 0
\(933\) −647551. −0.0243540
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1.35342e7 0.503596 0.251798 0.967780i \(-0.418978\pi\)
0.251798 + 0.967780i \(0.418978\pi\)
\(938\) 0 0
\(939\) 817756. 0.0302663
\(940\) 0 0
\(941\) −3.60708e7 −1.32795 −0.663975 0.747755i \(-0.731132\pi\)
−0.663975 + 0.747755i \(0.731132\pi\)
\(942\) 0 0
\(943\) −4.12706e7 −1.51134
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.26133e7 1.18173 0.590867 0.806769i \(-0.298786\pi\)
0.590867 + 0.806769i \(0.298786\pi\)
\(948\) 0 0
\(949\) −2.60030e6 −0.0937254
\(950\) 0 0
\(951\) 1.52024e6 0.0545081
\(952\) 0 0
\(953\) 3.44202e7 1.22767 0.613834 0.789435i \(-0.289627\pi\)
0.613834 + 0.789435i \(0.289627\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 257932. 0.00910384
\(958\) 0 0
\(959\) 4.09201e6 0.143678
\(960\) 0 0
\(961\) 4.20879e7 1.47011
\(962\) 0 0
\(963\) 3.86926e7 1.34450
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1.11368e7 0.382995 0.191498 0.981493i \(-0.438666\pi\)
0.191498 + 0.981493i \(0.438666\pi\)
\(968\) 0 0
\(969\) 22411.9 0.000766778 0
\(970\) 0 0
\(971\) −4.43758e7 −1.51042 −0.755211 0.655481i \(-0.772466\pi\)
−0.755211 + 0.655481i \(0.772466\pi\)
\(972\) 0 0
\(973\) 2.03735e7 0.689894
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −5.66921e6 −0.190014 −0.0950070 0.995477i \(-0.530287\pi\)
−0.0950070 + 0.995477i \(0.530287\pi\)
\(978\) 0 0
\(979\) −2.00561e7 −0.668790
\(980\) 0 0
\(981\) 242879. 0.00805782
\(982\) 0 0
\(983\) −4.46329e7 −1.47323 −0.736616 0.676311i \(-0.763578\pi\)
−0.736616 + 0.676311i \(0.763578\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 736522. 0.0240654
\(988\) 0 0
\(989\) −7.67500e7 −2.49510
\(990\) 0 0
\(991\) 1.59365e7 0.515475 0.257738 0.966215i \(-0.417023\pi\)
0.257738 + 0.966215i \(0.417023\pi\)
\(992\) 0 0
\(993\) 314806. 0.0101314
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −2.48778e7 −0.792636 −0.396318 0.918113i \(-0.629712\pi\)
−0.396318 + 0.918113i \(0.629712\pi\)
\(998\) 0 0
\(999\) −2.49022e6 −0.0789450
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.6.a.k.1.3 4
5.2 odd 4 700.6.e.j.449.5 8
5.3 odd 4 700.6.e.j.449.4 8
5.4 even 2 700.6.a.n.1.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
700.6.a.k.1.3 4 1.1 even 1 trivial
700.6.a.n.1.2 yes 4 5.4 even 2
700.6.e.j.449.4 8 5.3 odd 4
700.6.e.j.449.5 8 5.2 odd 4