Properties

Label 700.6.a.k.1.4
Level $700$
Weight $6$
Character 700.1
Self dual yes
Analytic conductor $112.269$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,6,Mod(1,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 700.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(112.268673869\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 393x^{2} - 1002x + 16596 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(21.1052\) of defining polynomial
Character \(\chi\) \(=\) 700.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+15.1052 q^{3} -49.0000 q^{7} -14.8337 q^{9} +332.519 q^{11} +395.417 q^{13} -15.8479 q^{17} -1508.76 q^{19} -740.153 q^{21} -3178.50 q^{23} -3894.62 q^{27} -4488.23 q^{29} +3120.60 q^{31} +5022.76 q^{33} +15890.5 q^{37} +5972.84 q^{39} +3364.92 q^{41} -102.425 q^{43} -15905.5 q^{47} +2401.00 q^{49} -239.385 q^{51} -40865.2 q^{53} -22790.1 q^{57} -22450.3 q^{59} +24435.9 q^{61} +726.853 q^{63} +2260.27 q^{67} -48011.8 q^{69} +25552.6 q^{71} -25552.9 q^{73} -16293.4 q^{77} -66958.4 q^{79} -55224.4 q^{81} -26284.5 q^{83} -67795.5 q^{87} +40585.1 q^{89} -19375.4 q^{91} +47137.2 q^{93} -57800.0 q^{97} -4932.50 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 22 q^{3} - 196 q^{7} - 62 q^{9} + 48 q^{11} + 430 q^{13} + 1286 q^{17} - 384 q^{19} + 1078 q^{21} - 1256 q^{23} + 1196 q^{27} - 4994 q^{29} + 4618 q^{31} + 15268 q^{33} + 16922 q^{37} + 3200 q^{39}+ \cdots - 170416 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 15.1052 0.968997 0.484499 0.874792i \(-0.339002\pi\)
0.484499 + 0.874792i \(0.339002\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −49.0000 −0.377964
\(8\) 0 0
\(9\) −14.8337 −0.0610442
\(10\) 0 0
\(11\) 332.519 0.828581 0.414290 0.910145i \(-0.364030\pi\)
0.414290 + 0.910145i \(0.364030\pi\)
\(12\) 0 0
\(13\) 395.417 0.648928 0.324464 0.945898i \(-0.394816\pi\)
0.324464 + 0.945898i \(0.394816\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −15.8479 −0.0132999 −0.00664996 0.999978i \(-0.502117\pi\)
−0.00664996 + 0.999978i \(0.502117\pi\)
\(18\) 0 0
\(19\) −1508.76 −0.958817 −0.479409 0.877592i \(-0.659149\pi\)
−0.479409 + 0.877592i \(0.659149\pi\)
\(20\) 0 0
\(21\) −740.153 −0.366247
\(22\) 0 0
\(23\) −3178.50 −1.25286 −0.626431 0.779477i \(-0.715485\pi\)
−0.626431 + 0.779477i \(0.715485\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −3894.62 −1.02815
\(28\) 0 0
\(29\) −4488.23 −0.991015 −0.495508 0.868604i \(-0.665018\pi\)
−0.495508 + 0.868604i \(0.665018\pi\)
\(30\) 0 0
\(31\) 3120.60 0.583222 0.291611 0.956537i \(-0.405809\pi\)
0.291611 + 0.956537i \(0.405809\pi\)
\(32\) 0 0
\(33\) 5022.76 0.802892
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 15890.5 1.90824 0.954118 0.299431i \(-0.0967967\pi\)
0.954118 + 0.299431i \(0.0967967\pi\)
\(38\) 0 0
\(39\) 5972.84 0.628810
\(40\) 0 0
\(41\) 3364.92 0.312619 0.156309 0.987708i \(-0.450040\pi\)
0.156309 + 0.987708i \(0.450040\pi\)
\(42\) 0 0
\(43\) −102.425 −0.00844763 −0.00422381 0.999991i \(-0.501344\pi\)
−0.00422381 + 0.999991i \(0.501344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −15905.5 −1.05027 −0.525137 0.851018i \(-0.675986\pi\)
−0.525137 + 0.851018i \(0.675986\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) −239.385 −0.0128876
\(52\) 0 0
\(53\) −40865.2 −1.99832 −0.999158 0.0410244i \(-0.986938\pi\)
−0.999158 + 0.0410244i \(0.986938\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −22790.1 −0.929091
\(58\) 0 0
\(59\) −22450.3 −0.839638 −0.419819 0.907608i \(-0.637906\pi\)
−0.419819 + 0.907608i \(0.637906\pi\)
\(60\) 0 0
\(61\) 24435.9 0.840821 0.420411 0.907334i \(-0.361886\pi\)
0.420411 + 0.907334i \(0.361886\pi\)
\(62\) 0 0
\(63\) 726.853 0.0230725
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2260.27 0.0615139 0.0307569 0.999527i \(-0.490208\pi\)
0.0307569 + 0.999527i \(0.490208\pi\)
\(68\) 0 0
\(69\) −48011.8 −1.21402
\(70\) 0 0
\(71\) 25552.6 0.601575 0.300788 0.953691i \(-0.402750\pi\)
0.300788 + 0.953691i \(0.402750\pi\)
\(72\) 0 0
\(73\) −25552.9 −0.561219 −0.280610 0.959822i \(-0.590537\pi\)
−0.280610 + 0.959822i \(0.590537\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −16293.4 −0.313174
\(78\) 0 0
\(79\) −66958.4 −1.20708 −0.603541 0.797332i \(-0.706244\pi\)
−0.603541 + 0.797332i \(0.706244\pi\)
\(80\) 0 0
\(81\) −55224.4 −0.935229
\(82\) 0 0
\(83\) −26284.5 −0.418798 −0.209399 0.977830i \(-0.567151\pi\)
−0.209399 + 0.977830i \(0.567151\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −67795.5 −0.960291
\(88\) 0 0
\(89\) 40585.1 0.543114 0.271557 0.962422i \(-0.412461\pi\)
0.271557 + 0.962422i \(0.412461\pi\)
\(90\) 0 0
\(91\) −19375.4 −0.245272
\(92\) 0 0
\(93\) 47137.2 0.565141
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −57800.0 −0.623732 −0.311866 0.950126i \(-0.600954\pi\)
−0.311866 + 0.950126i \(0.600954\pi\)
\(98\) 0 0
\(99\) −4932.50 −0.0505800
\(100\) 0 0
\(101\) −21958.1 −0.214186 −0.107093 0.994249i \(-0.534154\pi\)
−0.107093 + 0.994249i \(0.534154\pi\)
\(102\) 0 0
\(103\) −39562.2 −0.367441 −0.183720 0.982979i \(-0.558814\pi\)
−0.183720 + 0.982979i \(0.558814\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −21102.7 −0.178188 −0.0890941 0.996023i \(-0.528397\pi\)
−0.0890941 + 0.996023i \(0.528397\pi\)
\(108\) 0 0
\(109\) −221229. −1.78351 −0.891756 0.452517i \(-0.850526\pi\)
−0.891756 + 0.452517i \(0.850526\pi\)
\(110\) 0 0
\(111\) 240028. 1.84908
\(112\) 0 0
\(113\) 110973. 0.817562 0.408781 0.912633i \(-0.365954\pi\)
0.408781 + 0.912633i \(0.365954\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −5865.51 −0.0396133
\(118\) 0 0
\(119\) 776.547 0.00502690
\(120\) 0 0
\(121\) −50482.1 −0.313454
\(122\) 0 0
\(123\) 50827.7 0.302927
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 144389. 0.794376 0.397188 0.917737i \(-0.369986\pi\)
0.397188 + 0.917737i \(0.369986\pi\)
\(128\) 0 0
\(129\) −1547.15 −0.00818573
\(130\) 0 0
\(131\) −275842. −1.40437 −0.702186 0.711994i \(-0.747792\pi\)
−0.702186 + 0.711994i \(0.747792\pi\)
\(132\) 0 0
\(133\) 73929.2 0.362399
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −120194. −0.547118 −0.273559 0.961855i \(-0.588201\pi\)
−0.273559 + 0.961855i \(0.588201\pi\)
\(138\) 0 0
\(139\) −110020. −0.482986 −0.241493 0.970403i \(-0.577637\pi\)
−0.241493 + 0.970403i \(0.577637\pi\)
\(140\) 0 0
\(141\) −240255. −1.01771
\(142\) 0 0
\(143\) 131484. 0.537689
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 36267.5 0.138428
\(148\) 0 0
\(149\) 138049. 0.509412 0.254706 0.967019i \(-0.418021\pi\)
0.254706 + 0.967019i \(0.418021\pi\)
\(150\) 0 0
\(151\) −73709.8 −0.263077 −0.131538 0.991311i \(-0.541992\pi\)
−0.131538 + 0.991311i \(0.541992\pi\)
\(152\) 0 0
\(153\) 235.084 0.000811883 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −156298. −0.506062 −0.253031 0.967458i \(-0.581427\pi\)
−0.253031 + 0.967458i \(0.581427\pi\)
\(158\) 0 0
\(159\) −617276. −1.93636
\(160\) 0 0
\(161\) 155747. 0.473537
\(162\) 0 0
\(163\) 437524. 1.28983 0.644916 0.764253i \(-0.276892\pi\)
0.644916 + 0.764253i \(0.276892\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −229449. −0.636642 −0.318321 0.947983i \(-0.603119\pi\)
−0.318321 + 0.947983i \(0.603119\pi\)
\(168\) 0 0
\(169\) −214939. −0.578892
\(170\) 0 0
\(171\) 22380.5 0.0585302
\(172\) 0 0
\(173\) 690255. 1.75345 0.876727 0.480988i \(-0.159722\pi\)
0.876727 + 0.480988i \(0.159722\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −339116. −0.813607
\(178\) 0 0
\(179\) −48336.8 −0.112757 −0.0563787 0.998409i \(-0.517955\pi\)
−0.0563787 + 0.998409i \(0.517955\pi\)
\(180\) 0 0
\(181\) −645264. −1.46400 −0.732000 0.681305i \(-0.761413\pi\)
−0.732000 + 0.681305i \(0.761413\pi\)
\(182\) 0 0
\(183\) 369108. 0.814754
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −5269.72 −0.0110201
\(188\) 0 0
\(189\) 190837. 0.388604
\(190\) 0 0
\(191\) −361005. −0.716028 −0.358014 0.933716i \(-0.616546\pi\)
−0.358014 + 0.933716i \(0.616546\pi\)
\(192\) 0 0
\(193\) 187639. 0.362601 0.181301 0.983428i \(-0.441969\pi\)
0.181301 + 0.983428i \(0.441969\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −461114. −0.846531 −0.423265 0.906006i \(-0.639116\pi\)
−0.423265 + 0.906006i \(0.639116\pi\)
\(198\) 0 0
\(199\) −567995. −1.01675 −0.508373 0.861137i \(-0.669753\pi\)
−0.508373 + 0.861137i \(0.669753\pi\)
\(200\) 0 0
\(201\) 34141.7 0.0596068
\(202\) 0 0
\(203\) 219923. 0.374569
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 47149.1 0.0764799
\(208\) 0 0
\(209\) −501691. −0.794457
\(210\) 0 0
\(211\) −891786. −1.37897 −0.689484 0.724301i \(-0.742163\pi\)
−0.689484 + 0.724301i \(0.742163\pi\)
\(212\) 0 0
\(213\) 385977. 0.582925
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −152910. −0.220437
\(218\) 0 0
\(219\) −385981. −0.543820
\(220\) 0 0
\(221\) −6266.52 −0.00863070
\(222\) 0 0
\(223\) 530560. 0.714451 0.357225 0.934018i \(-0.383723\pi\)
0.357225 + 0.934018i \(0.383723\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 593649. 0.764655 0.382327 0.924027i \(-0.375123\pi\)
0.382327 + 0.924027i \(0.375123\pi\)
\(228\) 0 0
\(229\) 757698. 0.954789 0.477394 0.878689i \(-0.341581\pi\)
0.477394 + 0.878689i \(0.341581\pi\)
\(230\) 0 0
\(231\) −246115. −0.303465
\(232\) 0 0
\(233\) 59250.9 0.0714999 0.0357499 0.999361i \(-0.488618\pi\)
0.0357499 + 0.999361i \(0.488618\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −1.01142e6 −1.16966
\(238\) 0 0
\(239\) −962045. −1.08943 −0.544717 0.838620i \(-0.683363\pi\)
−0.544717 + 0.838620i \(0.683363\pi\)
\(240\) 0 0
\(241\) −298605. −0.331172 −0.165586 0.986195i \(-0.552952\pi\)
−0.165586 + 0.986195i \(0.552952\pi\)
\(242\) 0 0
\(243\) 112220. 0.121914
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −596589. −0.622204
\(248\) 0 0
\(249\) −397032. −0.405815
\(250\) 0 0
\(251\) 943473. 0.945247 0.472624 0.881264i \(-0.343307\pi\)
0.472624 + 0.881264i \(0.343307\pi\)
\(252\) 0 0
\(253\) −1.05691e6 −1.03810
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −685001. −0.646931 −0.323466 0.946240i \(-0.604848\pi\)
−0.323466 + 0.946240i \(0.604848\pi\)
\(258\) 0 0
\(259\) −778632. −0.721245
\(260\) 0 0
\(261\) 66577.3 0.0604957
\(262\) 0 0
\(263\) 517012. 0.460905 0.230452 0.973084i \(-0.425979\pi\)
0.230452 + 0.973084i \(0.425979\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 613044. 0.526276
\(268\) 0 0
\(269\) −2.00093e6 −1.68597 −0.842987 0.537934i \(-0.819205\pi\)
−0.842987 + 0.537934i \(0.819205\pi\)
\(270\) 0 0
\(271\) 2.05219e6 1.69744 0.848720 0.528842i \(-0.177374\pi\)
0.848720 + 0.528842i \(0.177374\pi\)
\(272\) 0 0
\(273\) −292669. −0.237668
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1.03018e6 −0.806700 −0.403350 0.915046i \(-0.632154\pi\)
−0.403350 + 0.915046i \(0.632154\pi\)
\(278\) 0 0
\(279\) −46290.2 −0.0356023
\(280\) 0 0
\(281\) −348383. −0.263204 −0.131602 0.991303i \(-0.542012\pi\)
−0.131602 + 0.991303i \(0.542012\pi\)
\(282\) 0 0
\(283\) −777820. −0.577315 −0.288658 0.957432i \(-0.593209\pi\)
−0.288658 + 0.957432i \(0.593209\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −164881. −0.118159
\(288\) 0 0
\(289\) −1.41961e6 −0.999823
\(290\) 0 0
\(291\) −873078. −0.604395
\(292\) 0 0
\(293\) 1.57096e6 1.06905 0.534524 0.845153i \(-0.320491\pi\)
0.534524 + 0.845153i \(0.320491\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1.29504e6 −0.851904
\(298\) 0 0
\(299\) −1.25683e6 −0.813017
\(300\) 0 0
\(301\) 5018.82 0.00319290
\(302\) 0 0
\(303\) −331681. −0.207546
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 1.47525e6 0.893347 0.446673 0.894697i \(-0.352609\pi\)
0.446673 + 0.894697i \(0.352609\pi\)
\(308\) 0 0
\(309\) −597594. −0.356049
\(310\) 0 0
\(311\) −3.31797e6 −1.94523 −0.972617 0.232416i \(-0.925337\pi\)
−0.972617 + 0.232416i \(0.925337\pi\)
\(312\) 0 0
\(313\) 94950.8 0.0547820 0.0273910 0.999625i \(-0.491280\pi\)
0.0273910 + 0.999625i \(0.491280\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −392081. −0.219143 −0.109572 0.993979i \(-0.534948\pi\)
−0.109572 + 0.993979i \(0.534948\pi\)
\(318\) 0 0
\(319\) −1.49242e6 −0.821136
\(320\) 0 0
\(321\) −318760. −0.172664
\(322\) 0 0
\(323\) 23910.6 0.0127522
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −3.34170e6 −1.72822
\(328\) 0 0
\(329\) 779369. 0.396966
\(330\) 0 0
\(331\) 3.72431e6 1.86842 0.934212 0.356719i \(-0.116105\pi\)
0.934212 + 0.356719i \(0.116105\pi\)
\(332\) 0 0
\(333\) −235715. −0.116487
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 736373. 0.353202 0.176601 0.984283i \(-0.443490\pi\)
0.176601 + 0.984283i \(0.443490\pi\)
\(338\) 0 0
\(339\) 1.67626e6 0.792215
\(340\) 0 0
\(341\) 1.03766e6 0.483247
\(342\) 0 0
\(343\) −117649. −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.84485e6 0.822504 0.411252 0.911522i \(-0.365092\pi\)
0.411252 + 0.911522i \(0.365092\pi\)
\(348\) 0 0
\(349\) 795830. 0.349749 0.174875 0.984591i \(-0.444048\pi\)
0.174875 + 0.984591i \(0.444048\pi\)
\(350\) 0 0
\(351\) −1.54000e6 −0.667195
\(352\) 0 0
\(353\) −2.87945e6 −1.22991 −0.614954 0.788563i \(-0.710826\pi\)
−0.614954 + 0.788563i \(0.710826\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 11729.9 0.00487105
\(358\) 0 0
\(359\) −137690. −0.0563854 −0.0281927 0.999603i \(-0.508975\pi\)
−0.0281927 + 0.999603i \(0.508975\pi\)
\(360\) 0 0
\(361\) −199745. −0.0806694
\(362\) 0 0
\(363\) −762541. −0.303736
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 621992. 0.241057 0.120528 0.992710i \(-0.461541\pi\)
0.120528 + 0.992710i \(0.461541\pi\)
\(368\) 0 0
\(369\) −49914.4 −0.0190836
\(370\) 0 0
\(371\) 2.00240e6 0.755293
\(372\) 0 0
\(373\) 75865.9 0.0282341 0.0141171 0.999900i \(-0.495506\pi\)
0.0141171 + 0.999900i \(0.495506\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.77472e6 −0.643098
\(378\) 0 0
\(379\) −2.81997e6 −1.00843 −0.504216 0.863578i \(-0.668218\pi\)
−0.504216 + 0.863578i \(0.668218\pi\)
\(380\) 0 0
\(381\) 2.18103e6 0.769748
\(382\) 0 0
\(383\) 1.06476e6 0.370899 0.185449 0.982654i \(-0.440626\pi\)
0.185449 + 0.982654i \(0.440626\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1519.35 0.000515679 0
\(388\) 0 0
\(389\) 3.73180e6 1.25039 0.625194 0.780469i \(-0.285020\pi\)
0.625194 + 0.780469i \(0.285020\pi\)
\(390\) 0 0
\(391\) 50372.6 0.0166630
\(392\) 0 0
\(393\) −4.16664e6 −1.36083
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −826618. −0.263226 −0.131613 0.991301i \(-0.542016\pi\)
−0.131613 + 0.991301i \(0.542016\pi\)
\(398\) 0 0
\(399\) 1.11671e6 0.351164
\(400\) 0 0
\(401\) 542752. 0.168554 0.0842772 0.996442i \(-0.473142\pi\)
0.0842772 + 0.996442i \(0.473142\pi\)
\(402\) 0 0
\(403\) 1.23394e6 0.378470
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.28388e6 1.58113
\(408\) 0 0
\(409\) 3.01368e6 0.890819 0.445409 0.895327i \(-0.353058\pi\)
0.445409 + 0.895327i \(0.353058\pi\)
\(410\) 0 0
\(411\) −1.81555e6 −0.530156
\(412\) 0 0
\(413\) 1.10006e6 0.317353
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −1.66187e6 −0.468012
\(418\) 0 0
\(419\) 3.17741e6 0.884175 0.442088 0.896972i \(-0.354238\pi\)
0.442088 + 0.896972i \(0.354238\pi\)
\(420\) 0 0
\(421\) −5.99161e6 −1.64755 −0.823774 0.566919i \(-0.808135\pi\)
−0.823774 + 0.566919i \(0.808135\pi\)
\(422\) 0 0
\(423\) 235938. 0.0641131
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1.19736e6 −0.317801
\(428\) 0 0
\(429\) 1.98608e6 0.521020
\(430\) 0 0
\(431\) −934600. −0.242344 −0.121172 0.992632i \(-0.538665\pi\)
−0.121172 + 0.992632i \(0.538665\pi\)
\(432\) 0 0
\(433\) 7.40221e6 1.89733 0.948663 0.316289i \(-0.102437\pi\)
0.948663 + 0.316289i \(0.102437\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.79559e6 1.20126
\(438\) 0 0
\(439\) 3.34676e6 0.828827 0.414413 0.910089i \(-0.363987\pi\)
0.414413 + 0.910089i \(0.363987\pi\)
\(440\) 0 0
\(441\) −35615.8 −0.00872060
\(442\) 0 0
\(443\) −1.12131e6 −0.271467 −0.135734 0.990745i \(-0.543339\pi\)
−0.135734 + 0.990745i \(0.543339\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 2.08526e6 0.493619
\(448\) 0 0
\(449\) 2.30290e6 0.539088 0.269544 0.962988i \(-0.413127\pi\)
0.269544 + 0.962988i \(0.413127\pi\)
\(450\) 0 0
\(451\) 1.11890e6 0.259030
\(452\) 0 0
\(453\) −1.11340e6 −0.254921
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −33146.7 −0.00742420 −0.00371210 0.999993i \(-0.501182\pi\)
−0.00371210 + 0.999993i \(0.501182\pi\)
\(458\) 0 0
\(459\) 61721.6 0.0136743
\(460\) 0 0
\(461\) 6.51273e6 1.42729 0.713643 0.700510i \(-0.247044\pi\)
0.713643 + 0.700510i \(0.247044\pi\)
\(462\) 0 0
\(463\) −3.05694e6 −0.662726 −0.331363 0.943503i \(-0.607508\pi\)
−0.331363 + 0.943503i \(0.607508\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7.90495e6 1.67729 0.838643 0.544681i \(-0.183349\pi\)
0.838643 + 0.544681i \(0.183349\pi\)
\(468\) 0 0
\(469\) −110753. −0.0232501
\(470\) 0 0
\(471\) −2.36091e6 −0.490373
\(472\) 0 0
\(473\) −34058.2 −0.00699954
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 606184. 0.121986
\(478\) 0 0
\(479\) −8.46668e6 −1.68607 −0.843033 0.537862i \(-0.819232\pi\)
−0.843033 + 0.537862i \(0.819232\pi\)
\(480\) 0 0
\(481\) 6.28335e6 1.23831
\(482\) 0 0
\(483\) 2.35258e6 0.458856
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 7.59849e6 1.45179 0.725897 0.687803i \(-0.241425\pi\)
0.725897 + 0.687803i \(0.241425\pi\)
\(488\) 0 0
\(489\) 6.60888e6 1.24984
\(490\) 0 0
\(491\) −7.44368e6 −1.39343 −0.696713 0.717350i \(-0.745355\pi\)
−0.696713 + 0.717350i \(0.745355\pi\)
\(492\) 0 0
\(493\) 71129.0 0.0131804
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.25208e6 −0.227374
\(498\) 0 0
\(499\) 7.49430e6 1.34735 0.673674 0.739029i \(-0.264715\pi\)
0.673674 + 0.739029i \(0.264715\pi\)
\(500\) 0 0
\(501\) −3.46587e6 −0.616904
\(502\) 0 0
\(503\) −4.74622e6 −0.836427 −0.418213 0.908349i \(-0.637344\pi\)
−0.418213 + 0.908349i \(0.637344\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −3.24668e6 −0.560945
\(508\) 0 0
\(509\) 7.65723e6 1.31002 0.655009 0.755621i \(-0.272665\pi\)
0.655009 + 0.755621i \(0.272665\pi\)
\(510\) 0 0
\(511\) 1.25209e6 0.212121
\(512\) 0 0
\(513\) 5.87605e6 0.985807
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −5.28888e6 −0.870236
\(518\) 0 0
\(519\) 1.04264e7 1.69909
\(520\) 0 0
\(521\) 754861. 0.121835 0.0609176 0.998143i \(-0.480597\pi\)
0.0609176 + 0.998143i \(0.480597\pi\)
\(522\) 0 0
\(523\) 182962. 0.0292487 0.0146243 0.999893i \(-0.495345\pi\)
0.0146243 + 0.999893i \(0.495345\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −49455.0 −0.00775682
\(528\) 0 0
\(529\) 3.66653e6 0.569661
\(530\) 0 0
\(531\) 333022. 0.0512550
\(532\) 0 0
\(533\) 1.33055e6 0.202867
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −730135. −0.109262
\(538\) 0 0
\(539\) 798378. 0.118369
\(540\) 0 0
\(541\) 1.09713e7 1.61163 0.805813 0.592170i \(-0.201729\pi\)
0.805813 + 0.592170i \(0.201729\pi\)
\(542\) 0 0
\(543\) −9.74682e6 −1.41861
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 8.47830e6 1.21155 0.605773 0.795637i \(-0.292864\pi\)
0.605773 + 0.795637i \(0.292864\pi\)
\(548\) 0 0
\(549\) −362476. −0.0513273
\(550\) 0 0
\(551\) 6.77166e6 0.950202
\(552\) 0 0
\(553\) 3.28096e6 0.456234
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.00722e7 1.37558 0.687791 0.725909i \(-0.258581\pi\)
0.687791 + 0.725909i \(0.258581\pi\)
\(558\) 0 0
\(559\) −40500.6 −0.00548190
\(560\) 0 0
\(561\) −79600.1 −0.0106784
\(562\) 0 0
\(563\) −1.41582e7 −1.88251 −0.941254 0.337699i \(-0.890352\pi\)
−0.941254 + 0.337699i \(0.890352\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2.70599e6 0.353483
\(568\) 0 0
\(569\) 2.86677e6 0.371204 0.185602 0.982625i \(-0.440577\pi\)
0.185602 + 0.982625i \(0.440577\pi\)
\(570\) 0 0
\(571\) −4.30611e6 −0.552707 −0.276354 0.961056i \(-0.589126\pi\)
−0.276354 + 0.961056i \(0.589126\pi\)
\(572\) 0 0
\(573\) −5.45305e6 −0.693829
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1.38465e7 1.73141 0.865703 0.500558i \(-0.166872\pi\)
0.865703 + 0.500558i \(0.166872\pi\)
\(578\) 0 0
\(579\) 2.83432e6 0.351360
\(580\) 0 0
\(581\) 1.28794e6 0.158291
\(582\) 0 0
\(583\) −1.35885e7 −1.65577
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −3.82239e6 −0.457867 −0.228934 0.973442i \(-0.573524\pi\)
−0.228934 + 0.973442i \(0.573524\pi\)
\(588\) 0 0
\(589\) −4.70824e6 −0.559204
\(590\) 0 0
\(591\) −6.96521e6 −0.820286
\(592\) 0 0
\(593\) 4.69083e6 0.547789 0.273894 0.961760i \(-0.411688\pi\)
0.273894 + 0.961760i \(0.411688\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −8.57967e6 −0.985223
\(598\) 0 0
\(599\) −2.58012e6 −0.293814 −0.146907 0.989150i \(-0.546932\pi\)
−0.146907 + 0.989150i \(0.546932\pi\)
\(600\) 0 0
\(601\) 1.23938e7 1.39965 0.699825 0.714314i \(-0.253261\pi\)
0.699825 + 0.714314i \(0.253261\pi\)
\(602\) 0 0
\(603\) −33528.2 −0.00375506
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −1.42413e7 −1.56884 −0.784421 0.620229i \(-0.787040\pi\)
−0.784421 + 0.620229i \(0.787040\pi\)
\(608\) 0 0
\(609\) 3.32198e6 0.362956
\(610\) 0 0
\(611\) −6.28930e6 −0.681552
\(612\) 0 0
\(613\) −5.67108e6 −0.609557 −0.304779 0.952423i \(-0.598583\pi\)
−0.304779 + 0.952423i \(0.598583\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.62397e6 0.700495 0.350248 0.936657i \(-0.386097\pi\)
0.350248 + 0.936657i \(0.386097\pi\)
\(618\) 0 0
\(619\) 1.22073e7 1.28054 0.640269 0.768151i \(-0.278823\pi\)
0.640269 + 0.768151i \(0.278823\pi\)
\(620\) 0 0
\(621\) 1.23791e7 1.28813
\(622\) 0 0
\(623\) −1.98867e6 −0.205278
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −7.57813e6 −0.769827
\(628\) 0 0
\(629\) −251830. −0.0253794
\(630\) 0 0
\(631\) −1.02556e7 −1.02538 −0.512691 0.858573i \(-0.671351\pi\)
−0.512691 + 0.858573i \(0.671351\pi\)
\(632\) 0 0
\(633\) −1.34706e7 −1.33622
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 949396. 0.0927041
\(638\) 0 0
\(639\) −379041. −0.0367227
\(640\) 0 0
\(641\) 2.59811e6 0.249754 0.124877 0.992172i \(-0.460146\pi\)
0.124877 + 0.992172i \(0.460146\pi\)
\(642\) 0 0
\(643\) 8.91060e6 0.849923 0.424962 0.905211i \(-0.360288\pi\)
0.424962 + 0.905211i \(0.360288\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.22375e7 −1.14929 −0.574647 0.818402i \(-0.694860\pi\)
−0.574647 + 0.818402i \(0.694860\pi\)
\(648\) 0 0
\(649\) −7.46515e6 −0.695708
\(650\) 0 0
\(651\) −2.30972e6 −0.213603
\(652\) 0 0
\(653\) 3.70630e6 0.340140 0.170070 0.985432i \(-0.445601\pi\)
0.170070 + 0.985432i \(0.445601\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 379045. 0.0342592
\(658\) 0 0
\(659\) −9.92944e6 −0.890658 −0.445329 0.895367i \(-0.646913\pi\)
−0.445329 + 0.895367i \(0.646913\pi\)
\(660\) 0 0
\(661\) 1.22697e7 1.09227 0.546137 0.837696i \(-0.316098\pi\)
0.546137 + 0.837696i \(0.316098\pi\)
\(662\) 0 0
\(663\) −94656.9 −0.00836312
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.42659e7 1.24160
\(668\) 0 0
\(669\) 8.01420e6 0.692301
\(670\) 0 0
\(671\) 8.12540e6 0.696688
\(672\) 0 0
\(673\) 5.84674e6 0.497595 0.248798 0.968555i \(-0.419965\pi\)
0.248798 + 0.968555i \(0.419965\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −3.17692e6 −0.266400 −0.133200 0.991089i \(-0.542525\pi\)
−0.133200 + 0.991089i \(0.542525\pi\)
\(678\) 0 0
\(679\) 2.83220e6 0.235749
\(680\) 0 0
\(681\) 8.96718e6 0.740948
\(682\) 0 0
\(683\) 1.32512e7 1.08693 0.543467 0.839431i \(-0.317111\pi\)
0.543467 + 0.839431i \(0.317111\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1.14452e7 0.925188
\(688\) 0 0
\(689\) −1.61588e7 −1.29676
\(690\) 0 0
\(691\) −7.46243e6 −0.594546 −0.297273 0.954793i \(-0.596077\pi\)
−0.297273 + 0.954793i \(0.596077\pi\)
\(692\) 0 0
\(693\) 241692. 0.0191175
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −53326.9 −0.00415781
\(698\) 0 0
\(699\) 894995. 0.0692832
\(700\) 0 0
\(701\) −1.03333e7 −0.794224 −0.397112 0.917770i \(-0.629988\pi\)
−0.397112 + 0.917770i \(0.629988\pi\)
\(702\) 0 0
\(703\) −2.39749e7 −1.82965
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.07595e6 0.0809548
\(708\) 0 0
\(709\) −1.29564e7 −0.967988 −0.483994 0.875071i \(-0.660814\pi\)
−0.483994 + 0.875071i \(0.660814\pi\)
\(710\) 0 0
\(711\) 993243. 0.0736854
\(712\) 0 0
\(713\) −9.91884e6 −0.730697
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −1.45319e7 −1.05566
\(718\) 0 0
\(719\) 202068. 0.0145773 0.00728863 0.999973i \(-0.497680\pi\)
0.00728863 + 0.999973i \(0.497680\pi\)
\(720\) 0 0
\(721\) 1.93855e6 0.138880
\(722\) 0 0
\(723\) −4.51047e6 −0.320905
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 8.61730e6 0.604693 0.302347 0.953198i \(-0.402230\pi\)
0.302347 + 0.953198i \(0.402230\pi\)
\(728\) 0 0
\(729\) 1.51146e7 1.05336
\(730\) 0 0
\(731\) 1623.22 0.000112353 0
\(732\) 0 0
\(733\) −1.50161e6 −0.103228 −0.0516140 0.998667i \(-0.516437\pi\)
−0.0516140 + 0.998667i \(0.516437\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 751582. 0.0509692
\(738\) 0 0
\(739\) −1.26282e7 −0.850608 −0.425304 0.905051i \(-0.639833\pi\)
−0.425304 + 0.905051i \(0.639833\pi\)
\(740\) 0 0
\(741\) −9.01158e6 −0.602914
\(742\) 0 0
\(743\) −2.71651e7 −1.80526 −0.902630 0.430418i \(-0.858366\pi\)
−0.902630 + 0.430418i \(0.858366\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 389898. 0.0255652
\(748\) 0 0
\(749\) 1.03403e6 0.0673488
\(750\) 0 0
\(751\) 6.85890e6 0.443767 0.221883 0.975073i \(-0.428780\pi\)
0.221883 + 0.975073i \(0.428780\pi\)
\(752\) 0 0
\(753\) 1.42513e7 0.915942
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −5.02373e6 −0.318630 −0.159315 0.987228i \(-0.550929\pi\)
−0.159315 + 0.987228i \(0.550929\pi\)
\(758\) 0 0
\(759\) −1.59648e7 −1.00591
\(760\) 0 0
\(761\) 1.11417e7 0.697412 0.348706 0.937232i \(-0.386621\pi\)
0.348706 + 0.937232i \(0.386621\pi\)
\(762\) 0 0
\(763\) 1.08402e7 0.674104
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8.87723e6 −0.544865
\(768\) 0 0
\(769\) 3.94087e6 0.240312 0.120156 0.992755i \(-0.461660\pi\)
0.120156 + 0.992755i \(0.461660\pi\)
\(770\) 0 0
\(771\) −1.03471e7 −0.626875
\(772\) 0 0
\(773\) 1.57423e7 0.947588 0.473794 0.880636i \(-0.342884\pi\)
0.473794 + 0.880636i \(0.342884\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −1.17614e7 −0.698885
\(778\) 0 0
\(779\) −5.07686e6 −0.299744
\(780\) 0 0
\(781\) 8.49674e6 0.498454
\(782\) 0 0
\(783\) 1.74800e7 1.01891
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1.28875e7 0.741709 0.370854 0.928691i \(-0.379065\pi\)
0.370854 + 0.928691i \(0.379065\pi\)
\(788\) 0 0
\(789\) 7.80955e6 0.446615
\(790\) 0 0
\(791\) −5.43767e6 −0.309009
\(792\) 0 0
\(793\) 9.66236e6 0.545633
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.13128e7 1.18849 0.594243 0.804286i \(-0.297452\pi\)
0.594243 + 0.804286i \(0.297452\pi\)
\(798\) 0 0
\(799\) 252069. 0.0139686
\(800\) 0 0
\(801\) −602028. −0.0331540
\(802\) 0 0
\(803\) −8.49682e6 −0.465015
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −3.02244e7 −1.63370
\(808\) 0 0
\(809\) 1.59293e7 0.855709 0.427854 0.903848i \(-0.359270\pi\)
0.427854 + 0.903848i \(0.359270\pi\)
\(810\) 0 0
\(811\) −3.28642e7 −1.75457 −0.877286 0.479967i \(-0.840648\pi\)
−0.877286 + 0.479967i \(0.840648\pi\)
\(812\) 0 0
\(813\) 3.09987e7 1.64482
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 154535. 0.00809973
\(818\) 0 0
\(819\) 287410. 0.0149724
\(820\) 0 0
\(821\) 2.62592e7 1.35964 0.679820 0.733379i \(-0.262058\pi\)
0.679820 + 0.733379i \(0.262058\pi\)
\(822\) 0 0
\(823\) 2.10397e7 1.08278 0.541388 0.840773i \(-0.317899\pi\)
0.541388 + 0.840773i \(0.317899\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6.90340e6 0.350994 0.175497 0.984480i \(-0.443847\pi\)
0.175497 + 0.984480i \(0.443847\pi\)
\(828\) 0 0
\(829\) −2.14263e7 −1.08283 −0.541417 0.840754i \(-0.682112\pi\)
−0.541417 + 0.840754i \(0.682112\pi\)
\(830\) 0 0
\(831\) −1.55610e7 −0.781690
\(832\) 0 0
\(833\) −38050.8 −0.00189999
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −1.21536e7 −0.599640
\(838\) 0 0
\(839\) −4.08576e6 −0.200386 −0.100193 0.994968i \(-0.531946\pi\)
−0.100193 + 0.994968i \(0.531946\pi\)
\(840\) 0 0
\(841\) −366923. −0.0178890
\(842\) 0 0
\(843\) −5.26239e6 −0.255044
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2.47362e6 0.118475
\(848\) 0 0
\(849\) −1.17491e7 −0.559417
\(850\) 0 0
\(851\) −5.05079e7 −2.39075
\(852\) 0 0
\(853\) 3.80900e7 1.79242 0.896208 0.443634i \(-0.146311\pi\)
0.896208 + 0.443634i \(0.146311\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.83479e7 −0.853362 −0.426681 0.904402i \(-0.640317\pi\)
−0.426681 + 0.904402i \(0.640317\pi\)
\(858\) 0 0
\(859\) −1.26840e7 −0.586508 −0.293254 0.956035i \(-0.594738\pi\)
−0.293254 + 0.956035i \(0.594738\pi\)
\(860\) 0 0
\(861\) −2.49056e6 −0.114496
\(862\) 0 0
\(863\) 4.70445e6 0.215022 0.107511 0.994204i \(-0.465712\pi\)
0.107511 + 0.994204i \(0.465712\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −2.14434e7 −0.968826
\(868\) 0 0
\(869\) −2.22649e7 −1.00017
\(870\) 0 0
\(871\) 893748. 0.0399181
\(872\) 0 0
\(873\) 857390. 0.0380752
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −6.84823e6 −0.300663 −0.150331 0.988636i \(-0.548034\pi\)
−0.150331 + 0.988636i \(0.548034\pi\)
\(878\) 0 0
\(879\) 2.37297e7 1.03590
\(880\) 0 0
\(881\) −1.99909e7 −0.867748 −0.433874 0.900974i \(-0.642854\pi\)
−0.433874 + 0.900974i \(0.642854\pi\)
\(882\) 0 0
\(883\) 3.08647e7 1.33217 0.666087 0.745874i \(-0.267968\pi\)
0.666087 + 0.745874i \(0.267968\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.34136e7 0.572447 0.286224 0.958163i \(-0.407600\pi\)
0.286224 + 0.958163i \(0.407600\pi\)
\(888\) 0 0
\(889\) −7.07508e6 −0.300246
\(890\) 0 0
\(891\) −1.83631e7 −0.774913
\(892\) 0 0
\(893\) 2.39976e7 1.00702
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −1.89847e7 −0.787811
\(898\) 0 0
\(899\) −1.40060e7 −0.577982
\(900\) 0 0
\(901\) 647628. 0.0265775
\(902\) 0 0
\(903\) 75810.2 0.00309391
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 2.38108e7 0.961070 0.480535 0.876975i \(-0.340442\pi\)
0.480535 + 0.876975i \(0.340442\pi\)
\(908\) 0 0
\(909\) 325721. 0.0130748
\(910\) 0 0
\(911\) −1.99857e7 −0.797856 −0.398928 0.916982i \(-0.630618\pi\)
−0.398928 + 0.916982i \(0.630618\pi\)
\(912\) 0 0
\(913\) −8.74011e6 −0.347008
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.35163e7 0.530802
\(918\) 0 0
\(919\) −1.92392e7 −0.751446 −0.375723 0.926732i \(-0.622606\pi\)
−0.375723 + 0.926732i \(0.622606\pi\)
\(920\) 0 0
\(921\) 2.22839e7 0.865651
\(922\) 0 0
\(923\) 1.01039e7 0.390379
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 586855. 0.0224301
\(928\) 0 0
\(929\) −3.35236e7 −1.27442 −0.637208 0.770692i \(-0.719911\pi\)
−0.637208 + 0.770692i \(0.719911\pi\)
\(930\) 0 0
\(931\) −3.62253e6 −0.136974
\(932\) 0 0
\(933\) −5.01185e7 −1.88493
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −4.49418e7 −1.67225 −0.836125 0.548539i \(-0.815184\pi\)
−0.836125 + 0.548539i \(0.815184\pi\)
\(938\) 0 0
\(939\) 1.43425e6 0.0530836
\(940\) 0 0
\(941\) 3.75307e7 1.38170 0.690848 0.723000i \(-0.257238\pi\)
0.690848 + 0.723000i \(0.257238\pi\)
\(942\) 0 0
\(943\) −1.06954e7 −0.391668
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −5.77961e6 −0.209423 −0.104711 0.994503i \(-0.533392\pi\)
−0.104711 + 0.994503i \(0.533392\pi\)
\(948\) 0 0
\(949\) −1.01040e7 −0.364191
\(950\) 0 0
\(951\) −5.92245e6 −0.212349
\(952\) 0 0
\(953\) 4.60167e7 1.64128 0.820642 0.571443i \(-0.193616\pi\)
0.820642 + 0.571443i \(0.193616\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −2.25433e7 −0.795678
\(958\) 0 0
\(959\) 5.88950e6 0.206791
\(960\) 0 0
\(961\) −1.88910e7 −0.659852
\(962\) 0 0
\(963\) 313032. 0.0108774
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1.78796e7 −0.614883 −0.307441 0.951567i \(-0.599473\pi\)
−0.307441 + 0.951567i \(0.599473\pi\)
\(968\) 0 0
\(969\) 361175. 0.0123568
\(970\) 0 0
\(971\) −1.22974e7 −0.418568 −0.209284 0.977855i \(-0.567113\pi\)
−0.209284 + 0.977855i \(0.567113\pi\)
\(972\) 0 0
\(973\) 5.39097e6 0.182551
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.07260e7 1.02984 0.514920 0.857238i \(-0.327822\pi\)
0.514920 + 0.857238i \(0.327822\pi\)
\(978\) 0 0
\(979\) 1.34953e7 0.450014
\(980\) 0 0
\(981\) 3.28165e6 0.108873
\(982\) 0 0
\(983\) −3.81863e7 −1.26044 −0.630222 0.776415i \(-0.717036\pi\)
−0.630222 + 0.776415i \(0.717036\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 1.17725e7 0.384659
\(988\) 0 0
\(989\) 325558. 0.0105837
\(990\) 0 0
\(991\) −5.23079e6 −0.169193 −0.0845966 0.996415i \(-0.526960\pi\)
−0.0845966 + 0.996415i \(0.526960\pi\)
\(992\) 0 0
\(993\) 5.62563e7 1.81050
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −4.72487e7 −1.50540 −0.752700 0.658363i \(-0.771249\pi\)
−0.752700 + 0.658363i \(0.771249\pi\)
\(998\) 0 0
\(999\) −6.18874e7 −1.96195
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.6.a.k.1.4 4
5.2 odd 4 700.6.e.j.449.3 8
5.3 odd 4 700.6.e.j.449.6 8
5.4 even 2 700.6.a.n.1.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
700.6.a.k.1.4 4 1.1 even 1 trivial
700.6.a.n.1.1 yes 4 5.4 even 2
700.6.e.j.449.3 8 5.2 odd 4
700.6.e.j.449.6 8 5.3 odd 4