Properties

Label 700.6.a.n.1.4
Level $700$
Weight $6$
Character 700.1
Self dual yes
Analytic conductor $112.269$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,6,Mod(1,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 700.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(112.268673869\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 393x^{2} - 1002x + 16596 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-14.8527\) of defining polynomial
Character \(\chi\) \(=\) 700.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+20.8527 q^{3} +49.0000 q^{7} +191.833 q^{9} -675.135 q^{11} +79.5620 q^{13} -1797.57 q^{17} +1956.46 q^{19} +1021.78 q^{21} +4124.37 q^{23} -1066.97 q^{27} -3120.39 q^{29} +2579.22 q^{31} -14078.4 q^{33} -8800.84 q^{37} +1659.08 q^{39} -13036.6 q^{41} -8688.18 q^{43} +5672.55 q^{47} +2401.00 q^{49} -37484.1 q^{51} -27344.8 q^{53} +40797.3 q^{57} -19904.8 q^{59} +46440.9 q^{61} +9399.82 q^{63} -27926.4 q^{67} +86004.0 q^{69} -23386.9 q^{71} -85638.7 q^{73} -33081.6 q^{77} +16596.9 q^{79} -68864.5 q^{81} -107606. q^{83} -65068.5 q^{87} +69441.9 q^{89} +3898.54 q^{91} +53783.5 q^{93} -39228.8 q^{97} -129513. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 22 q^{3} + 196 q^{7} - 62 q^{9} + 48 q^{11} - 430 q^{13} - 1286 q^{17} - 384 q^{19} + 1078 q^{21} + 1256 q^{23} - 1196 q^{27} - 4994 q^{29} + 4618 q^{31} - 15268 q^{33} - 16922 q^{37} + 3200 q^{39}+ \cdots - 170416 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 20.8527 1.33770 0.668849 0.743398i \(-0.266787\pi\)
0.668849 + 0.743398i \(0.266787\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 49.0000 0.377964
\(8\) 0 0
\(9\) 191.833 0.789436
\(10\) 0 0
\(11\) −675.135 −1.68232 −0.841161 0.540785i \(-0.818127\pi\)
−0.841161 + 0.540785i \(0.818127\pi\)
\(12\) 0 0
\(13\) 79.5620 0.130571 0.0652856 0.997867i \(-0.479204\pi\)
0.0652856 + 0.997867i \(0.479204\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1797.57 −1.50856 −0.754282 0.656551i \(-0.772015\pi\)
−0.754282 + 0.656551i \(0.772015\pi\)
\(18\) 0 0
\(19\) 1956.46 1.24333 0.621664 0.783284i \(-0.286457\pi\)
0.621664 + 0.783284i \(0.286457\pi\)
\(20\) 0 0
\(21\) 1021.78 0.505602
\(22\) 0 0
\(23\) 4124.37 1.62569 0.812845 0.582480i \(-0.197918\pi\)
0.812845 + 0.582480i \(0.197918\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −1066.97 −0.281671
\(28\) 0 0
\(29\) −3120.39 −0.688993 −0.344496 0.938788i \(-0.611950\pi\)
−0.344496 + 0.938788i \(0.611950\pi\)
\(30\) 0 0
\(31\) 2579.22 0.482041 0.241020 0.970520i \(-0.422518\pi\)
0.241020 + 0.970520i \(0.422518\pi\)
\(32\) 0 0
\(33\) −14078.4 −2.25044
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −8800.84 −1.05687 −0.528433 0.848975i \(-0.677220\pi\)
−0.528433 + 0.848975i \(0.677220\pi\)
\(38\) 0 0
\(39\) 1659.08 0.174665
\(40\) 0 0
\(41\) −13036.6 −1.21117 −0.605586 0.795780i \(-0.707061\pi\)
−0.605586 + 0.795780i \(0.707061\pi\)
\(42\) 0 0
\(43\) −8688.18 −0.716569 −0.358284 0.933613i \(-0.616638\pi\)
−0.358284 + 0.933613i \(0.616638\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5672.55 0.374571 0.187285 0.982306i \(-0.440031\pi\)
0.187285 + 0.982306i \(0.440031\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) −37484.1 −2.01800
\(52\) 0 0
\(53\) −27344.8 −1.33717 −0.668583 0.743638i \(-0.733099\pi\)
−0.668583 + 0.743638i \(0.733099\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 40797.3 1.66320
\(58\) 0 0
\(59\) −19904.8 −0.744436 −0.372218 0.928145i \(-0.621403\pi\)
−0.372218 + 0.928145i \(0.621403\pi\)
\(60\) 0 0
\(61\) 46440.9 1.59800 0.798998 0.601333i \(-0.205364\pi\)
0.798998 + 0.601333i \(0.205364\pi\)
\(62\) 0 0
\(63\) 9399.82 0.298379
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −27926.4 −0.760026 −0.380013 0.924981i \(-0.624080\pi\)
−0.380013 + 0.924981i \(0.624080\pi\)
\(68\) 0 0
\(69\) 86004.0 2.17468
\(70\) 0 0
\(71\) −23386.9 −0.550588 −0.275294 0.961360i \(-0.588775\pi\)
−0.275294 + 0.961360i \(0.588775\pi\)
\(72\) 0 0
\(73\) −85638.7 −1.88089 −0.940444 0.339949i \(-0.889590\pi\)
−0.940444 + 0.339949i \(0.889590\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −33081.6 −0.635858
\(78\) 0 0
\(79\) 16596.9 0.299198 0.149599 0.988747i \(-0.452202\pi\)
0.149599 + 0.988747i \(0.452202\pi\)
\(80\) 0 0
\(81\) −68864.5 −1.16623
\(82\) 0 0
\(83\) −107606. −1.71452 −0.857258 0.514887i \(-0.827834\pi\)
−0.857258 + 0.514887i \(0.827834\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −65068.5 −0.921664
\(88\) 0 0
\(89\) 69441.9 0.929281 0.464640 0.885500i \(-0.346184\pi\)
0.464640 + 0.885500i \(0.346184\pi\)
\(90\) 0 0
\(91\) 3898.54 0.0493513
\(92\) 0 0
\(93\) 53783.5 0.644825
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −39228.8 −0.423326 −0.211663 0.977343i \(-0.567888\pi\)
−0.211663 + 0.977343i \(0.567888\pi\)
\(98\) 0 0
\(99\) −129513. −1.32809
\(100\) 0 0
\(101\) −119236. −1.16307 −0.581534 0.813522i \(-0.697547\pi\)
−0.581534 + 0.813522i \(0.697547\pi\)
\(102\) 0 0
\(103\) 102923. 0.955915 0.477957 0.878383i \(-0.341377\pi\)
0.477957 + 0.878383i \(0.341377\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 171298. 1.44641 0.723206 0.690632i \(-0.242668\pi\)
0.723206 + 0.690632i \(0.242668\pi\)
\(108\) 0 0
\(109\) −135653. −1.09361 −0.546805 0.837260i \(-0.684156\pi\)
−0.546805 + 0.837260i \(0.684156\pi\)
\(110\) 0 0
\(111\) −183521. −1.41377
\(112\) 0 0
\(113\) −102107. −0.752244 −0.376122 0.926570i \(-0.622743\pi\)
−0.376122 + 0.926570i \(0.622743\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 15262.6 0.103078
\(118\) 0 0
\(119\) −88080.9 −0.570183
\(120\) 0 0
\(121\) 294756. 1.83021
\(122\) 0 0
\(123\) −271848. −1.62018
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 278332. 1.53128 0.765639 0.643270i \(-0.222423\pi\)
0.765639 + 0.643270i \(0.222423\pi\)
\(128\) 0 0
\(129\) −181172. −0.958553
\(130\) 0 0
\(131\) −275429. −1.40227 −0.701134 0.713029i \(-0.747323\pi\)
−0.701134 + 0.713029i \(0.747323\pi\)
\(132\) 0 0
\(133\) 95866.3 0.469934
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −77939.7 −0.354778 −0.177389 0.984141i \(-0.556765\pi\)
−0.177389 + 0.984141i \(0.556765\pi\)
\(138\) 0 0
\(139\) 44711.5 0.196283 0.0981414 0.995172i \(-0.468710\pi\)
0.0981414 + 0.995172i \(0.468710\pi\)
\(140\) 0 0
\(141\) 118288. 0.501063
\(142\) 0 0
\(143\) −53715.1 −0.219663
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 50067.2 0.191100
\(148\) 0 0
\(149\) −479386. −1.76897 −0.884484 0.466570i \(-0.845490\pi\)
−0.884484 + 0.466570i \(0.845490\pi\)
\(150\) 0 0
\(151\) 251338. 0.897049 0.448525 0.893770i \(-0.351950\pi\)
0.448525 + 0.893770i \(0.351950\pi\)
\(152\) 0 0
\(153\) −344833. −1.19091
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 421795. 1.36569 0.682845 0.730563i \(-0.260742\pi\)
0.682845 + 0.730563i \(0.260742\pi\)
\(158\) 0 0
\(159\) −570212. −1.78872
\(160\) 0 0
\(161\) 202094. 0.614453
\(162\) 0 0
\(163\) 104613. 0.308401 0.154200 0.988040i \(-0.450720\pi\)
0.154200 + 0.988040i \(0.450720\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −11879.3 −0.0329608 −0.0164804 0.999864i \(-0.505246\pi\)
−0.0164804 + 0.999864i \(0.505246\pi\)
\(168\) 0 0
\(169\) −364963. −0.982951
\(170\) 0 0
\(171\) 375313. 0.981529
\(172\) 0 0
\(173\) 534748. 1.35842 0.679210 0.733944i \(-0.262322\pi\)
0.679210 + 0.733944i \(0.262322\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −415067. −0.995831
\(178\) 0 0
\(179\) 333077. 0.776984 0.388492 0.921452i \(-0.372996\pi\)
0.388492 + 0.921452i \(0.372996\pi\)
\(180\) 0 0
\(181\) −458322. −1.03986 −0.519929 0.854209i \(-0.674042\pi\)
−0.519929 + 0.854209i \(0.674042\pi\)
\(182\) 0 0
\(183\) 968415. 2.13764
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.21360e6 2.53789
\(188\) 0 0
\(189\) −52281.4 −0.106461
\(190\) 0 0
\(191\) −191262. −0.379354 −0.189677 0.981847i \(-0.560744\pi\)
−0.189677 + 0.981847i \(0.560744\pi\)
\(192\) 0 0
\(193\) −335390. −0.648122 −0.324061 0.946036i \(-0.605048\pi\)
−0.324061 + 0.946036i \(0.605048\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 133555. 0.245185 0.122592 0.992457i \(-0.460879\pi\)
0.122592 + 0.992457i \(0.460879\pi\)
\(198\) 0 0
\(199\) 133576. 0.239109 0.119555 0.992828i \(-0.461853\pi\)
0.119555 + 0.992828i \(0.461853\pi\)
\(200\) 0 0
\(201\) −582340. −1.01669
\(202\) 0 0
\(203\) −152899. −0.260415
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 791190. 1.28338
\(208\) 0 0
\(209\) −1.32087e6 −2.09168
\(210\) 0 0
\(211\) 413079. 0.638745 0.319372 0.947629i \(-0.396528\pi\)
0.319372 + 0.947629i \(0.396528\pi\)
\(212\) 0 0
\(213\) −487679. −0.736520
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 126382. 0.182194
\(218\) 0 0
\(219\) −1.78579e6 −2.51606
\(220\) 0 0
\(221\) −143018. −0.196975
\(222\) 0 0
\(223\) −125631. −0.169174 −0.0845869 0.996416i \(-0.526957\pi\)
−0.0845869 + 0.996416i \(0.526957\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −82682.0 −0.106499 −0.0532496 0.998581i \(-0.516958\pi\)
−0.0532496 + 0.998581i \(0.516958\pi\)
\(228\) 0 0
\(229\) −399678. −0.503642 −0.251821 0.967774i \(-0.581029\pi\)
−0.251821 + 0.967774i \(0.581029\pi\)
\(230\) 0 0
\(231\) −689840. −0.850586
\(232\) 0 0
\(233\) −213322. −0.257422 −0.128711 0.991682i \(-0.541084\pi\)
−0.128711 + 0.991682i \(0.541084\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 346089. 0.400237
\(238\) 0 0
\(239\) 1.04735e6 1.18603 0.593017 0.805190i \(-0.297937\pi\)
0.593017 + 0.805190i \(0.297937\pi\)
\(240\) 0 0
\(241\) 445975. 0.494615 0.247308 0.968937i \(-0.420454\pi\)
0.247308 + 0.968937i \(0.420454\pi\)
\(242\) 0 0
\(243\) −1.17673e6 −1.27839
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 155660. 0.162343
\(248\) 0 0
\(249\) −2.24387e6 −2.29351
\(250\) 0 0
\(251\) −1.23552e6 −1.23784 −0.618921 0.785453i \(-0.712430\pi\)
−0.618921 + 0.785453i \(0.712430\pi\)
\(252\) 0 0
\(253\) −2.78450e6 −2.73493
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −440385. −0.415910 −0.207955 0.978138i \(-0.566681\pi\)
−0.207955 + 0.978138i \(0.566681\pi\)
\(258\) 0 0
\(259\) −431241. −0.399458
\(260\) 0 0
\(261\) −598595. −0.543916
\(262\) 0 0
\(263\) 509080. 0.453834 0.226917 0.973914i \(-0.427135\pi\)
0.226917 + 0.973914i \(0.427135\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1.44805e6 1.24310
\(268\) 0 0
\(269\) −622366. −0.524403 −0.262201 0.965013i \(-0.584448\pi\)
−0.262201 + 0.965013i \(0.584448\pi\)
\(270\) 0 0
\(271\) −709244. −0.586641 −0.293321 0.956014i \(-0.594760\pi\)
−0.293321 + 0.956014i \(0.594760\pi\)
\(272\) 0 0
\(273\) 81294.9 0.0660171
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1.20740e6 −0.945478 −0.472739 0.881203i \(-0.656735\pi\)
−0.472739 + 0.881203i \(0.656735\pi\)
\(278\) 0 0
\(279\) 494779. 0.380541
\(280\) 0 0
\(281\) 1.64668e6 1.24406 0.622032 0.782992i \(-0.286307\pi\)
0.622032 + 0.782992i \(0.286307\pi\)
\(282\) 0 0
\(283\) 296298. 0.219919 0.109959 0.993936i \(-0.464928\pi\)
0.109959 + 0.993936i \(0.464928\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −638795. −0.457780
\(288\) 0 0
\(289\) 1.81140e6 1.27576
\(290\) 0 0
\(291\) −818023. −0.566283
\(292\) 0 0
\(293\) 389254. 0.264889 0.132445 0.991190i \(-0.457717\pi\)
0.132445 + 0.991190i \(0.457717\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 720347. 0.473861
\(298\) 0 0
\(299\) 328143. 0.212268
\(300\) 0 0
\(301\) −425721. −0.270838
\(302\) 0 0
\(303\) −2.48639e6 −1.55583
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 403571. 0.244385 0.122192 0.992506i \(-0.461007\pi\)
0.122192 + 0.992506i \(0.461007\pi\)
\(308\) 0 0
\(309\) 2.14622e6 1.27873
\(310\) 0 0
\(311\) −1.47942e6 −0.867344 −0.433672 0.901071i \(-0.642782\pi\)
−0.433672 + 0.901071i \(0.642782\pi\)
\(312\) 0 0
\(313\) −612825. −0.353570 −0.176785 0.984249i \(-0.556570\pi\)
−0.176785 + 0.984249i \(0.556570\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 705848. 0.394515 0.197257 0.980352i \(-0.436797\pi\)
0.197257 + 0.980352i \(0.436797\pi\)
\(318\) 0 0
\(319\) 2.10669e6 1.15911
\(320\) 0 0
\(321\) 3.57201e6 1.93486
\(322\) 0 0
\(323\) −3.51687e6 −1.87564
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −2.82872e6 −1.46292
\(328\) 0 0
\(329\) 277955. 0.141574
\(330\) 0 0
\(331\) −3.85632e6 −1.93466 −0.967328 0.253530i \(-0.918408\pi\)
−0.967328 + 0.253530i \(0.918408\pi\)
\(332\) 0 0
\(333\) −1.68829e6 −0.834328
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 28307.7 0.0135778 0.00678891 0.999977i \(-0.497839\pi\)
0.00678891 + 0.999977i \(0.497839\pi\)
\(338\) 0 0
\(339\) −2.12920e6 −1.00627
\(340\) 0 0
\(341\) −1.74132e6 −0.810948
\(342\) 0 0
\(343\) 117649. 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.31337e6 1.03139 0.515693 0.856774i \(-0.327535\pi\)
0.515693 + 0.856774i \(0.327535\pi\)
\(348\) 0 0
\(349\) −3.44482e6 −1.51392 −0.756961 0.653460i \(-0.773317\pi\)
−0.756961 + 0.653460i \(0.773317\pi\)
\(350\) 0 0
\(351\) −84890.1 −0.0367781
\(352\) 0 0
\(353\) −2.02337e6 −0.864250 −0.432125 0.901814i \(-0.642236\pi\)
−0.432125 + 0.901814i \(0.642236\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −1.83672e6 −0.762733
\(358\) 0 0
\(359\) 2.92497e6 1.19780 0.598901 0.800823i \(-0.295604\pi\)
0.598901 + 0.800823i \(0.295604\pi\)
\(360\) 0 0
\(361\) 1.35162e6 0.545866
\(362\) 0 0
\(363\) 6.14645e6 2.44826
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 1.31035e6 0.507836 0.253918 0.967226i \(-0.418281\pi\)
0.253918 + 0.967226i \(0.418281\pi\)
\(368\) 0 0
\(369\) −2.50086e6 −0.956143
\(370\) 0 0
\(371\) −1.33990e6 −0.505401
\(372\) 0 0
\(373\) 3.84239e6 1.42998 0.714989 0.699136i \(-0.246432\pi\)
0.714989 + 0.699136i \(0.246432\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −248265. −0.0899626
\(378\) 0 0
\(379\) −4.63179e6 −1.65635 −0.828173 0.560472i \(-0.810620\pi\)
−0.828173 + 0.560472i \(0.810620\pi\)
\(380\) 0 0
\(381\) 5.80396e6 2.04839
\(382\) 0 0
\(383\) 2.68186e6 0.934199 0.467100 0.884205i \(-0.345299\pi\)
0.467100 + 0.884205i \(0.345299\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.66668e6 −0.565685
\(388\) 0 0
\(389\) −169277. −0.0567183 −0.0283592 0.999598i \(-0.509028\pi\)
−0.0283592 + 0.999598i \(0.509028\pi\)
\(390\) 0 0
\(391\) −7.41384e6 −2.45246
\(392\) 0 0
\(393\) −5.74342e6 −1.87581
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −5.27555e6 −1.67993 −0.839965 0.542641i \(-0.817425\pi\)
−0.839965 + 0.542641i \(0.817425\pi\)
\(398\) 0 0
\(399\) 1.99907e6 0.628630
\(400\) 0 0
\(401\) −3.04252e6 −0.944870 −0.472435 0.881365i \(-0.656625\pi\)
−0.472435 + 0.881365i \(0.656625\pi\)
\(402\) 0 0
\(403\) 205208. 0.0629407
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.94175e6 1.77799
\(408\) 0 0
\(409\) 6.16440e6 1.82214 0.911071 0.412249i \(-0.135256\pi\)
0.911071 + 0.412249i \(0.135256\pi\)
\(410\) 0 0
\(411\) −1.62525e6 −0.474586
\(412\) 0 0
\(413\) −975334. −0.281370
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 932353. 0.262567
\(418\) 0 0
\(419\) 1.70863e6 0.475460 0.237730 0.971331i \(-0.423597\pi\)
0.237730 + 0.971331i \(0.423597\pi\)
\(420\) 0 0
\(421\) 5.96013e6 1.63889 0.819446 0.573156i \(-0.194281\pi\)
0.819446 + 0.573156i \(0.194281\pi\)
\(422\) 0 0
\(423\) 1.08818e6 0.295700
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 2.27560e6 0.603986
\(428\) 0 0
\(429\) −1.12010e6 −0.293843
\(430\) 0 0
\(431\) 6.36452e6 1.65034 0.825169 0.564886i \(-0.191080\pi\)
0.825169 + 0.564886i \(0.191080\pi\)
\(432\) 0 0
\(433\) 3.83046e6 0.981820 0.490910 0.871210i \(-0.336664\pi\)
0.490910 + 0.871210i \(0.336664\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.06914e6 2.02127
\(438\) 0 0
\(439\) 2.03749e6 0.504584 0.252292 0.967651i \(-0.418816\pi\)
0.252292 + 0.967651i \(0.418816\pi\)
\(440\) 0 0
\(441\) 460591. 0.112777
\(442\) 0 0
\(443\) 5.75256e6 1.39268 0.696340 0.717712i \(-0.254810\pi\)
0.696340 + 0.717712i \(0.254810\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −9.99648e6 −2.36635
\(448\) 0 0
\(449\) 6.69118e6 1.56634 0.783171 0.621806i \(-0.213601\pi\)
0.783171 + 0.621806i \(0.213601\pi\)
\(450\) 0 0
\(451\) 8.80149e6 2.03758
\(452\) 0 0
\(453\) 5.24107e6 1.19998
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.52836e6 −0.342322 −0.171161 0.985243i \(-0.554752\pi\)
−0.171161 + 0.985243i \(0.554752\pi\)
\(458\) 0 0
\(459\) 1.91795e6 0.424918
\(460\) 0 0
\(461\) 465889. 0.102101 0.0510505 0.998696i \(-0.483743\pi\)
0.0510505 + 0.998696i \(0.483743\pi\)
\(462\) 0 0
\(463\) 3.62236e6 0.785307 0.392653 0.919687i \(-0.371557\pi\)
0.392653 + 0.919687i \(0.371557\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6.38448e6 −1.35467 −0.677335 0.735675i \(-0.736865\pi\)
−0.677335 + 0.735675i \(0.736865\pi\)
\(468\) 0 0
\(469\) −1.36840e6 −0.287263
\(470\) 0 0
\(471\) 8.79554e6 1.82688
\(472\) 0 0
\(473\) 5.86570e6 1.20550
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −5.24564e6 −1.05561
\(478\) 0 0
\(479\) −4.72262e6 −0.940469 −0.470235 0.882541i \(-0.655831\pi\)
−0.470235 + 0.882541i \(0.655831\pi\)
\(480\) 0 0
\(481\) −700212. −0.137996
\(482\) 0 0
\(483\) 4.21419e6 0.821953
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 7.89067e6 1.50762 0.753809 0.657093i \(-0.228214\pi\)
0.753809 + 0.657093i \(0.228214\pi\)
\(488\) 0 0
\(489\) 2.18145e6 0.412547
\(490\) 0 0
\(491\) 8.17244e6 1.52985 0.764923 0.644121i \(-0.222777\pi\)
0.764923 + 0.644121i \(0.222777\pi\)
\(492\) 0 0
\(493\) 5.60913e6 1.03939
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.14596e6 −0.208103
\(498\) 0 0
\(499\) −5.29079e6 −0.951195 −0.475597 0.879663i \(-0.657768\pi\)
−0.475597 + 0.879663i \(0.657768\pi\)
\(500\) 0 0
\(501\) −247714. −0.0440916
\(502\) 0 0
\(503\) −4.59481e6 −0.809743 −0.404872 0.914374i \(-0.632684\pi\)
−0.404872 + 0.914374i \(0.632684\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −7.61044e6 −1.31489
\(508\) 0 0
\(509\) −3.70680e6 −0.634168 −0.317084 0.948397i \(-0.602704\pi\)
−0.317084 + 0.948397i \(0.602704\pi\)
\(510\) 0 0
\(511\) −4.19630e6 −0.710909
\(512\) 0 0
\(513\) −2.08747e6 −0.350209
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −3.82974e6 −0.630149
\(518\) 0 0
\(519\) 1.11509e7 1.81716
\(520\) 0 0
\(521\) −4.58202e6 −0.739542 −0.369771 0.929123i \(-0.620564\pi\)
−0.369771 + 0.929123i \(0.620564\pi\)
\(522\) 0 0
\(523\) 9.45246e6 1.51109 0.755545 0.655096i \(-0.227372\pi\)
0.755545 + 0.655096i \(0.227372\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.63632e6 −0.727189
\(528\) 0 0
\(529\) 1.05741e7 1.64287
\(530\) 0 0
\(531\) −3.81839e6 −0.587685
\(532\) 0 0
\(533\) −1.03722e6 −0.158144
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 6.94554e6 1.03937
\(538\) 0 0
\(539\) −1.62100e6 −0.240332
\(540\) 0 0
\(541\) −3.11444e6 −0.457496 −0.228748 0.973486i \(-0.573463\pi\)
−0.228748 + 0.973486i \(0.573463\pi\)
\(542\) 0 0
\(543\) −9.55723e6 −1.39102
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 6.73813e6 0.962878 0.481439 0.876480i \(-0.340114\pi\)
0.481439 + 0.876480i \(0.340114\pi\)
\(548\) 0 0
\(549\) 8.90889e6 1.26152
\(550\) 0 0
\(551\) −6.10491e6 −0.856644
\(552\) 0 0
\(553\) 813248. 0.113086
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9.55922e6 −1.30552 −0.652761 0.757564i \(-0.726390\pi\)
−0.652761 + 0.757564i \(0.726390\pi\)
\(558\) 0 0
\(559\) −691250. −0.0935633
\(560\) 0 0
\(561\) 2.53068e7 3.39493
\(562\) 0 0
\(563\) 854448. 0.113610 0.0568048 0.998385i \(-0.481909\pi\)
0.0568048 + 0.998385i \(0.481909\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −3.37436e6 −0.440792
\(568\) 0 0
\(569\) −1.99627e6 −0.258487 −0.129243 0.991613i \(-0.541255\pi\)
−0.129243 + 0.991613i \(0.541255\pi\)
\(570\) 0 0
\(571\) −1.44997e7 −1.86110 −0.930548 0.366170i \(-0.880669\pi\)
−0.930548 + 0.366170i \(0.880669\pi\)
\(572\) 0 0
\(573\) −3.98831e6 −0.507461
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 8.16304e6 1.02073 0.510367 0.859957i \(-0.329510\pi\)
0.510367 + 0.859957i \(0.329510\pi\)
\(578\) 0 0
\(579\) −6.99377e6 −0.866991
\(580\) 0 0
\(581\) −5.27270e6 −0.648026
\(582\) 0 0
\(583\) 1.84614e7 2.24954
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.08241e6 0.369229 0.184614 0.982811i \(-0.440896\pi\)
0.184614 + 0.982811i \(0.440896\pi\)
\(588\) 0 0
\(589\) 5.04613e6 0.599335
\(590\) 0 0
\(591\) 2.78497e6 0.327983
\(592\) 0 0
\(593\) 4.02090e6 0.469555 0.234777 0.972049i \(-0.424564\pi\)
0.234777 + 0.972049i \(0.424564\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2.78542e6 0.319856
\(598\) 0 0
\(599\) 1.01764e7 1.15885 0.579424 0.815026i \(-0.303278\pi\)
0.579424 + 0.815026i \(0.303278\pi\)
\(600\) 0 0
\(601\) −7.83641e6 −0.884974 −0.442487 0.896775i \(-0.645904\pi\)
−0.442487 + 0.896775i \(0.645904\pi\)
\(602\) 0 0
\(603\) −5.35721e6 −0.599992
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −5.52135e6 −0.608238 −0.304119 0.952634i \(-0.598362\pi\)
−0.304119 + 0.952634i \(0.598362\pi\)
\(608\) 0 0
\(609\) −3.18836e6 −0.348356
\(610\) 0 0
\(611\) 451320. 0.0489082
\(612\) 0 0
\(613\) −1.57387e7 −1.69168 −0.845840 0.533437i \(-0.820900\pi\)
−0.845840 + 0.533437i \(0.820900\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7.24585e6 0.766260 0.383130 0.923694i \(-0.374846\pi\)
0.383130 + 0.923694i \(0.374846\pi\)
\(618\) 0 0
\(619\) 1.24709e7 1.30819 0.654095 0.756412i \(-0.273050\pi\)
0.654095 + 0.756412i \(0.273050\pi\)
\(620\) 0 0
\(621\) −4.40056e6 −0.457909
\(622\) 0 0
\(623\) 3.40266e6 0.351235
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −2.75437e7 −2.79803
\(628\) 0 0
\(629\) 1.58201e7 1.59435
\(630\) 0 0
\(631\) 1.10646e6 0.110627 0.0553135 0.998469i \(-0.482384\pi\)
0.0553135 + 0.998469i \(0.482384\pi\)
\(632\) 0 0
\(633\) 8.61380e6 0.854447
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 191028. 0.0186530
\(638\) 0 0
\(639\) −4.48638e6 −0.434654
\(640\) 0 0
\(641\) 1.11794e7 1.07467 0.537334 0.843369i \(-0.319431\pi\)
0.537334 + 0.843369i \(0.319431\pi\)
\(642\) 0 0
\(643\) −1.62540e7 −1.55036 −0.775179 0.631742i \(-0.782340\pi\)
−0.775179 + 0.631742i \(0.782340\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.52553e7 −1.43272 −0.716360 0.697731i \(-0.754193\pi\)
−0.716360 + 0.697731i \(0.754193\pi\)
\(648\) 0 0
\(649\) 1.34384e7 1.25238
\(650\) 0 0
\(651\) 2.63539e6 0.243721
\(652\) 0 0
\(653\) −626612. −0.0575064 −0.0287532 0.999587i \(-0.509154\pi\)
−0.0287532 + 0.999587i \(0.509154\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1.64283e7 −1.48484
\(658\) 0 0
\(659\) 1.89918e7 1.70354 0.851770 0.523916i \(-0.175529\pi\)
0.851770 + 0.523916i \(0.175529\pi\)
\(660\) 0 0
\(661\) 1.86619e7 1.66132 0.830659 0.556781i \(-0.187964\pi\)
0.830659 + 0.556781i \(0.187964\pi\)
\(662\) 0 0
\(663\) −2.98231e6 −0.263493
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.28697e7 −1.12009
\(668\) 0 0
\(669\) −2.61973e6 −0.226304
\(670\) 0 0
\(671\) −3.13539e7 −2.68834
\(672\) 0 0
\(673\) −1.77800e7 −1.51319 −0.756597 0.653882i \(-0.773139\pi\)
−0.756597 + 0.653882i \(0.773139\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.74689e7 1.46485 0.732427 0.680845i \(-0.238387\pi\)
0.732427 + 0.680845i \(0.238387\pi\)
\(678\) 0 0
\(679\) −1.92221e6 −0.160002
\(680\) 0 0
\(681\) −1.72414e6 −0.142464
\(682\) 0 0
\(683\) 1.47841e7 1.21267 0.606336 0.795208i \(-0.292639\pi\)
0.606336 + 0.795208i \(0.292639\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −8.33435e6 −0.673721
\(688\) 0 0
\(689\) −2.17561e6 −0.174595
\(690\) 0 0
\(691\) 1.04037e7 0.828885 0.414443 0.910075i \(-0.363977\pi\)
0.414443 + 0.910075i \(0.363977\pi\)
\(692\) 0 0
\(693\) −6.34615e6 −0.501969
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.34343e7 1.82713
\(698\) 0 0
\(699\) −4.44832e6 −0.344353
\(700\) 0 0
\(701\) −1.41605e7 −1.08839 −0.544195 0.838959i \(-0.683165\pi\)
−0.544195 + 0.838959i \(0.683165\pi\)
\(702\) 0 0
\(703\) −1.72184e7 −1.31403
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.84258e6 −0.439598
\(708\) 0 0
\(709\) 1.14282e7 0.853815 0.426908 0.904295i \(-0.359603\pi\)
0.426908 + 0.904295i \(0.359603\pi\)
\(710\) 0 0
\(711\) 3.18383e6 0.236198
\(712\) 0 0
\(713\) 1.06376e7 0.783649
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 2.18400e7 1.58656
\(718\) 0 0
\(719\) −8.64651e6 −0.623761 −0.311881 0.950121i \(-0.600959\pi\)
−0.311881 + 0.950121i \(0.600959\pi\)
\(720\) 0 0
\(721\) 5.04323e6 0.361302
\(722\) 0 0
\(723\) 9.29975e6 0.661646
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −1.86324e6 −0.130747 −0.0653736 0.997861i \(-0.520824\pi\)
−0.0653736 + 0.997861i \(0.520824\pi\)
\(728\) 0 0
\(729\) −7.80396e6 −0.543871
\(730\) 0 0
\(731\) 1.56176e7 1.08099
\(732\) 0 0
\(733\) −9.79301e6 −0.673219 −0.336609 0.941644i \(-0.609280\pi\)
−0.336609 + 0.941644i \(0.609280\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.88541e7 1.27861
\(738\) 0 0
\(739\) −36632.6 −0.00246750 −0.00123375 0.999999i \(-0.500393\pi\)
−0.00123375 + 0.999999i \(0.500393\pi\)
\(740\) 0 0
\(741\) 3.24591e6 0.217166
\(742\) 0 0
\(743\) −3.64775e6 −0.242412 −0.121206 0.992627i \(-0.538676\pi\)
−0.121206 + 0.992627i \(0.538676\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −2.06424e7 −1.35350
\(748\) 0 0
\(749\) 8.39359e6 0.546693
\(750\) 0 0
\(751\) −2.62357e7 −1.69743 −0.848717 0.528847i \(-0.822624\pi\)
−0.848717 + 0.528847i \(0.822624\pi\)
\(752\) 0 0
\(753\) −2.57638e7 −1.65586
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 2.76939e7 1.75648 0.878241 0.478218i \(-0.158717\pi\)
0.878241 + 0.478218i \(0.158717\pi\)
\(758\) 0 0
\(759\) −5.80643e7 −3.65851
\(760\) 0 0
\(761\) −2.55677e7 −1.60040 −0.800202 0.599730i \(-0.795275\pi\)
−0.800202 + 0.599730i \(0.795275\pi\)
\(762\) 0 0
\(763\) −6.64699e6 −0.413346
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.58367e6 −0.0972019
\(768\) 0 0
\(769\) 2.88320e6 0.175816 0.0879080 0.996129i \(-0.471982\pi\)
0.0879080 + 0.996129i \(0.471982\pi\)
\(770\) 0 0
\(771\) −9.18320e6 −0.556363
\(772\) 0 0
\(773\) 1.45234e6 0.0874219 0.0437109 0.999044i \(-0.486082\pi\)
0.0437109 + 0.999044i \(0.486082\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −8.99252e6 −0.534354
\(778\) 0 0
\(779\) −2.55056e7 −1.50588
\(780\) 0 0
\(781\) 1.57893e7 0.926266
\(782\) 0 0
\(783\) 3.32936e6 0.194069
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1.08394e7 0.623834 0.311917 0.950109i \(-0.399029\pi\)
0.311917 + 0.950109i \(0.399029\pi\)
\(788\) 0 0
\(789\) 1.06157e7 0.607093
\(790\) 0 0
\(791\) −5.00323e6 −0.284321
\(792\) 0 0
\(793\) 3.69493e6 0.208652
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 8.99837e6 0.501785 0.250893 0.968015i \(-0.419276\pi\)
0.250893 + 0.968015i \(0.419276\pi\)
\(798\) 0 0
\(799\) −1.01968e7 −0.565064
\(800\) 0 0
\(801\) 1.33213e7 0.733608
\(802\) 0 0
\(803\) 5.78177e7 3.16426
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.29780e7 −0.701493
\(808\) 0 0
\(809\) −2.79190e7 −1.49978 −0.749892 0.661560i \(-0.769895\pi\)
−0.749892 + 0.661560i \(0.769895\pi\)
\(810\) 0 0
\(811\) 1.82994e7 0.976978 0.488489 0.872570i \(-0.337548\pi\)
0.488489 + 0.872570i \(0.337548\pi\)
\(812\) 0 0
\(813\) −1.47896e7 −0.784749
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −1.69980e7 −0.890930
\(818\) 0 0
\(819\) 747869. 0.0389597
\(820\) 0 0
\(821\) 2.96361e7 1.53449 0.767243 0.641357i \(-0.221628\pi\)
0.767243 + 0.641357i \(0.221628\pi\)
\(822\) 0 0
\(823\) −2.18772e7 −1.12588 −0.562940 0.826498i \(-0.690330\pi\)
−0.562940 + 0.826498i \(0.690330\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −4.39376e6 −0.223395 −0.111697 0.993742i \(-0.535629\pi\)
−0.111697 + 0.993742i \(0.535629\pi\)
\(828\) 0 0
\(829\) −1.89255e6 −0.0956449 −0.0478225 0.998856i \(-0.515228\pi\)
−0.0478225 + 0.998856i \(0.515228\pi\)
\(830\) 0 0
\(831\) −2.51775e7 −1.26476
\(832\) 0 0
\(833\) −4.31597e6 −0.215509
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −2.75194e6 −0.135777
\(838\) 0 0
\(839\) −8.64925e6 −0.424203 −0.212101 0.977248i \(-0.568031\pi\)
−0.212101 + 0.977248i \(0.568031\pi\)
\(840\) 0 0
\(841\) −1.07743e7 −0.525289
\(842\) 0 0
\(843\) 3.43376e7 1.66418
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1.44431e7 0.691753
\(848\) 0 0
\(849\) 6.17860e6 0.294185
\(850\) 0 0
\(851\) −3.62979e7 −1.71814
\(852\) 0 0
\(853\) 3.92341e7 1.84625 0.923127 0.384495i \(-0.125624\pi\)
0.923127 + 0.384495i \(0.125624\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.34282e6 −0.0624548 −0.0312274 0.999512i \(-0.509942\pi\)
−0.0312274 + 0.999512i \(0.509942\pi\)
\(858\) 0 0
\(859\) −2.85020e7 −1.31793 −0.658966 0.752173i \(-0.729006\pi\)
−0.658966 + 0.752173i \(0.729006\pi\)
\(860\) 0 0
\(861\) −1.33206e7 −0.612371
\(862\) 0 0
\(863\) −2.25694e7 −1.03156 −0.515778 0.856722i \(-0.672497\pi\)
−0.515778 + 0.856722i \(0.672497\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 3.77725e7 1.70658
\(868\) 0 0
\(869\) −1.12051e7 −0.503348
\(870\) 0 0
\(871\) −2.22188e6 −0.0992375
\(872\) 0 0
\(873\) −7.52537e6 −0.334189
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.01167e7 0.883199 0.441599 0.897212i \(-0.354411\pi\)
0.441599 + 0.897212i \(0.354411\pi\)
\(878\) 0 0
\(879\) 8.11698e6 0.354342
\(880\) 0 0
\(881\) 2.49283e7 1.08207 0.541033 0.841002i \(-0.318034\pi\)
0.541033 + 0.841002i \(0.318034\pi\)
\(882\) 0 0
\(883\) −2.56878e7 −1.10873 −0.554364 0.832274i \(-0.687038\pi\)
−0.554364 + 0.832274i \(0.687038\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.29320e7 1.40543 0.702716 0.711471i \(-0.251971\pi\)
0.702716 + 0.711471i \(0.251971\pi\)
\(888\) 0 0
\(889\) 1.36383e7 0.578769
\(890\) 0 0
\(891\) 4.64929e7 1.96197
\(892\) 0 0
\(893\) 1.10981e7 0.465715
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 6.84265e6 0.283951
\(898\) 0 0
\(899\) −8.04818e6 −0.332123
\(900\) 0 0
\(901\) 4.91542e7 2.01720
\(902\) 0 0
\(903\) −8.87741e6 −0.362299
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.54386e7 0.623144 0.311572 0.950223i \(-0.399145\pi\)
0.311572 + 0.950223i \(0.399145\pi\)
\(908\) 0 0
\(909\) −2.28734e7 −0.918167
\(910\) 0 0
\(911\) −3.32850e7 −1.32878 −0.664389 0.747387i \(-0.731308\pi\)
−0.664389 + 0.747387i \(0.731308\pi\)
\(912\) 0 0
\(913\) 7.26486e7 2.88437
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.34960e7 −0.530008
\(918\) 0 0
\(919\) 2.02686e6 0.0791653 0.0395827 0.999216i \(-0.487397\pi\)
0.0395827 + 0.999216i \(0.487397\pi\)
\(920\) 0 0
\(921\) 8.41553e6 0.326913
\(922\) 0 0
\(923\) −1.86071e6 −0.0718909
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1.97440e7 0.754634
\(928\) 0 0
\(929\) −696504. −0.0264779 −0.0132390 0.999912i \(-0.504214\pi\)
−0.0132390 + 0.999912i \(0.504214\pi\)
\(930\) 0 0
\(931\) 4.69745e6 0.177618
\(932\) 0 0
\(933\) −3.08499e7 −1.16024
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 4.24032e6 0.157779 0.0788896 0.996883i \(-0.474863\pi\)
0.0788896 + 0.996883i \(0.474863\pi\)
\(938\) 0 0
\(939\) −1.27790e7 −0.472970
\(940\) 0 0
\(941\) −9.27150e6 −0.341331 −0.170666 0.985329i \(-0.554592\pi\)
−0.170666 + 0.985329i \(0.554592\pi\)
\(942\) 0 0
\(943\) −5.37679e7 −1.96899
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.47822e7 0.535629 0.267814 0.963471i \(-0.413699\pi\)
0.267814 + 0.963471i \(0.413699\pi\)
\(948\) 0 0
\(949\) −6.81359e6 −0.245590
\(950\) 0 0
\(951\) 1.47188e7 0.527742
\(952\) 0 0
\(953\) −2.87437e7 −1.02520 −0.512602 0.858626i \(-0.671318\pi\)
−0.512602 + 0.858626i \(0.671318\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 4.39300e7 1.55054
\(958\) 0 0
\(959\) −3.81904e6 −0.134094
\(960\) 0 0
\(961\) −2.19768e7 −0.767637
\(962\) 0 0
\(963\) 3.28606e7 1.14185
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −4.49093e7 −1.54444 −0.772218 0.635358i \(-0.780853\pi\)
−0.772218 + 0.635358i \(0.780853\pi\)
\(968\) 0 0
\(969\) −7.33360e7 −2.50904
\(970\) 0 0
\(971\) −9.27531e6 −0.315704 −0.157852 0.987463i \(-0.550457\pi\)
−0.157852 + 0.987463i \(0.550457\pi\)
\(972\) 0 0
\(973\) 2.19086e6 0.0741879
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.75871e7 0.924632 0.462316 0.886715i \(-0.347019\pi\)
0.462316 + 0.886715i \(0.347019\pi\)
\(978\) 0 0
\(979\) −4.68827e7 −1.56335
\(980\) 0 0
\(981\) −2.60227e7 −0.863336
\(982\) 0 0
\(983\) 1.78897e7 0.590499 0.295249 0.955420i \(-0.404597\pi\)
0.295249 + 0.955420i \(0.404597\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 5.79610e6 0.189384
\(988\) 0 0
\(989\) −3.58333e7 −1.16492
\(990\) 0 0
\(991\) −4.35413e7 −1.40837 −0.704186 0.710015i \(-0.748688\pi\)
−0.704186 + 0.710015i \(0.748688\pi\)
\(992\) 0 0
\(993\) −8.04146e7 −2.58798
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 4.55376e7 1.45088 0.725442 0.688284i \(-0.241636\pi\)
0.725442 + 0.688284i \(0.241636\pi\)
\(998\) 0 0
\(999\) 9.39020e6 0.297688
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.6.a.n.1.4 yes 4
5.2 odd 4 700.6.e.j.449.1 8
5.3 odd 4 700.6.e.j.449.8 8
5.4 even 2 700.6.a.k.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
700.6.a.k.1.1 4 5.4 even 2
700.6.a.n.1.4 yes 4 1.1 even 1 trivial
700.6.e.j.449.1 8 5.2 odd 4
700.6.e.j.449.8 8 5.3 odd 4