Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [702,2,Mod(71,702)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(702, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([10, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("702.71");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 702 = 2 \cdot 3^{3} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 702.bb (of order \(12\), degree \(4\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.60549822189\) |
Analytic rank: | \(0\) |
Dimension: | \(56\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{12})\) |
Twist minimal: | no (minimal twist has level 234) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
71.1 | −0.707107 | − | 0.707107i | 0 | 1.00000i | −3.04921 | + | 0.817032i | 0 | 2.84235 | − | 0.761606i | 0.707107 | − | 0.707107i | 0 | 2.73384 | + | 1.57838i | ||||||||
71.2 | −0.707107 | − | 0.707107i | 0 | 1.00000i | −1.62665 | + | 0.435860i | 0 | 0.290365 | − | 0.0778030i | 0.707107 | − | 0.707107i | 0 | 1.45842 | + | 0.842018i | ||||||||
71.3 | −0.707107 | − | 0.707107i | 0 | 1.00000i | −1.35053 | + | 0.361873i | 0 | 0.977097 | − | 0.261812i | 0.707107 | − | 0.707107i | 0 | 1.21085 | + | 0.699086i | ||||||||
71.4 | −0.707107 | − | 0.707107i | 0 | 1.00000i | −0.650628 | + | 0.174335i | 0 | −1.73068 | + | 0.463733i | 0.707107 | − | 0.707107i | 0 | 0.583337 | + | 0.336790i | ||||||||
71.5 | −0.707107 | − | 0.707107i | 0 | 1.00000i | 0.670386 | − | 0.179629i | 0 | −4.43374 | + | 1.18802i | 0.707107 | − | 0.707107i | 0 | −0.601052 | − | 0.347017i | ||||||||
71.6 | −0.707107 | − | 0.707107i | 0 | 1.00000i | 2.64098 | − | 0.707650i | 0 | 3.36644 | − | 0.902034i | 0.707107 | − | 0.707107i | 0 | −2.36784 | − | 1.36707i | ||||||||
71.7 | −0.707107 | − | 0.707107i | 0 | 1.00000i | 3.36565 | − | 0.901822i | 0 | 0.0541850 | − | 0.0145188i | 0.707107 | − | 0.707107i | 0 | −3.01756 | − | 1.74219i | ||||||||
71.8 | 0.707107 | + | 0.707107i | 0 | 1.00000i | −3.83221 | + | 1.02684i | 0 | −1.55176 | + | 0.415793i | −0.707107 | + | 0.707107i | 0 | −3.43586 | − | 1.98370i | ||||||||
71.9 | 0.707107 | + | 0.707107i | 0 | 1.00000i | −1.51706 | + | 0.406496i | 0 | 4.52587 | − | 1.21270i | −0.707107 | + | 0.707107i | 0 | −1.36016 | − | 0.785290i | ||||||||
71.10 | 0.707107 | + | 0.707107i | 0 | 1.00000i | −0.994452 | + | 0.266463i | 0 | 0.339163 | − | 0.0908784i | −0.707107 | + | 0.707107i | 0 | −0.891601 | − | 0.514766i | ||||||||
71.11 | 0.707107 | + | 0.707107i | 0 | 1.00000i | −0.653109 | + | 0.175000i | 0 | −3.90017 | + | 1.04505i | −0.707107 | + | 0.707107i | 0 | −0.585562 | − | 0.338074i | ||||||||
71.12 | 0.707107 | + | 0.707107i | 0 | 1.00000i | −0.339151 | + | 0.0908752i | 0 | 2.97685 | − | 0.797644i | −0.707107 | + | 0.707107i | 0 | −0.304074 | − | 0.175557i | ||||||||
71.13 | 0.707107 | + | 0.707107i | 0 | 1.00000i | 3.62177 | − | 0.970449i | 0 | −3.13748 | + | 0.840685i | −0.707107 | + | 0.707107i | 0 | 3.24719 | + | 1.87476i | ||||||||
71.14 | 0.707107 | + | 0.707107i | 0 | 1.00000i | 3.71422 | − | 0.995221i | 0 | 2.11355 | − | 0.566325i | −0.707107 | + | 0.707107i | 0 | 3.33007 | + | 1.92262i | ||||||||
89.1 | −0.707107 | + | 0.707107i | 0 | − | 1.00000i | −3.04921 | − | 0.817032i | 0 | 2.84235 | + | 0.761606i | 0.707107 | + | 0.707107i | 0 | 2.73384 | − | 1.57838i | |||||||
89.2 | −0.707107 | + | 0.707107i | 0 | − | 1.00000i | −1.62665 | − | 0.435860i | 0 | 0.290365 | + | 0.0778030i | 0.707107 | + | 0.707107i | 0 | 1.45842 | − | 0.842018i | |||||||
89.3 | −0.707107 | + | 0.707107i | 0 | − | 1.00000i | −1.35053 | − | 0.361873i | 0 | 0.977097 | + | 0.261812i | 0.707107 | + | 0.707107i | 0 | 1.21085 | − | 0.699086i | |||||||
89.4 | −0.707107 | + | 0.707107i | 0 | − | 1.00000i | −0.650628 | − | 0.174335i | 0 | −1.73068 | − | 0.463733i | 0.707107 | + | 0.707107i | 0 | 0.583337 | − | 0.336790i | |||||||
89.5 | −0.707107 | + | 0.707107i | 0 | − | 1.00000i | 0.670386 | + | 0.179629i | 0 | −4.43374 | − | 1.18802i | 0.707107 | + | 0.707107i | 0 | −0.601052 | + | 0.347017i | |||||||
89.6 | −0.707107 | + | 0.707107i | 0 | − | 1.00000i | 2.64098 | + | 0.707650i | 0 | 3.36644 | + | 0.902034i | 0.707107 | + | 0.707107i | 0 | −2.36784 | + | 1.36707i | |||||||
See all 56 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
117.x | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 702.2.bb.a | 56 | |
3.b | odd | 2 | 1 | 234.2.y.a | ✓ | 56 | |
9.c | even | 3 | 1 | 234.2.z.a | yes | 56 | |
9.d | odd | 6 | 1 | 702.2.bc.a | 56 | ||
13.f | odd | 12 | 1 | 702.2.bc.a | 56 | ||
39.k | even | 12 | 1 | 234.2.z.a | yes | 56 | |
117.w | odd | 12 | 1 | 234.2.y.a | ✓ | 56 | |
117.x | even | 12 | 1 | inner | 702.2.bb.a | 56 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
234.2.y.a | ✓ | 56 | 3.b | odd | 2 | 1 | |
234.2.y.a | ✓ | 56 | 117.w | odd | 12 | 1 | |
234.2.z.a | yes | 56 | 9.c | even | 3 | 1 | |
234.2.z.a | yes | 56 | 39.k | even | 12 | 1 | |
702.2.bb.a | 56 | 1.a | even | 1 | 1 | trivial | |
702.2.bb.a | 56 | 117.x | even | 12 | 1 | inner | |
702.2.bc.a | 56 | 9.d | odd | 6 | 1 | ||
702.2.bc.a | 56 | 13.f | odd | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(702, [\chi])\).