Properties

Label 702.2.bc.a.305.10
Level $702$
Weight $2$
Character 702.305
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(305,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([2, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.305");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bc (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 305.10
Character \(\chi\) \(=\) 702.305
Dual form 702.2.bc.a.557.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.258819 - 0.965926i) q^{2} +(-0.866025 - 0.500000i) q^{4} +(-0.361873 + 1.35053i) q^{5} +(-0.715284 - 0.715284i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(1.21085 + 0.699086i) q^{10} +(-5.61718 - 1.50512i) q^{11} +(-0.218517 + 3.59892i) q^{13} +(-0.876041 + 0.505782i) q^{14} +(0.500000 + 0.866025i) q^{16} +(1.67305 + 2.89781i) q^{17} +(-7.07605 - 1.89602i) q^{19} +(0.988657 - 0.988657i) q^{20} +(-2.90767 + 5.03622i) q^{22} -0.580436 q^{23} +(2.63715 + 1.52256i) q^{25} +(3.41974 + 1.14254i) q^{26} +(0.261812 + 0.977097i) q^{28} +(0.892249 - 0.515140i) q^{29} +(-8.52714 - 2.28484i) q^{31} +(0.965926 - 0.258819i) q^{32} +(3.23209 - 0.866036i) q^{34} +(1.22486 - 0.707171i) q^{35} +(-7.82443 + 2.09655i) q^{37} +(-3.66283 + 6.34422i) q^{38} +(-0.699086 - 1.21085i) q^{40} +(-1.15731 - 1.15731i) q^{41} +8.38054i q^{43} +(4.11206 + 4.11206i) q^{44} +(-0.150228 + 0.560658i) q^{46} +(0.388741 + 1.45080i) q^{47} -5.97674i q^{49} +(2.15322 - 2.15322i) q^{50} +(1.98870 - 3.00750i) q^{52} +2.77082i q^{53} +(4.06542 - 7.04151i) q^{55} +1.01156 q^{56} +(-0.266656 - 0.995175i) q^{58} +(3.10182 + 11.5761i) q^{59} +2.82816 q^{61} +(-4.41397 + 7.64523i) q^{62} -1.00000i q^{64} +(-4.78138 - 1.59747i) q^{65} +(-0.802042 + 0.802042i) q^{67} -3.34611i q^{68} +(-0.366058 - 1.36615i) q^{70} +(2.71495 - 10.1323i) q^{71} +(0.788181 + 0.788181i) q^{73} +8.10045i q^{74} +(5.18003 + 5.18003i) q^{76} +(2.94129 + 5.09447i) q^{77} +(-0.827245 + 1.43283i) q^{79} +(-1.35053 + 0.361873i) q^{80} +(-1.41741 + 0.818343i) q^{82} +(15.7224 - 4.21280i) q^{83} +(-4.51902 + 1.21087i) q^{85} +(8.09498 + 2.16904i) q^{86} +(5.03622 - 2.90767i) q^{88} +(-0.783797 - 2.92517i) q^{89} +(2.73056 - 2.41795i) q^{91} +(0.502672 + 0.290218i) q^{92} +1.50198 q^{94} +(5.12127 - 8.87030i) q^{95} +(8.70487 - 8.70487i) q^{97} +(-5.77308 - 1.54689i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 8 q^{7} + 24 q^{11} + 28 q^{16} - 8 q^{19} - 4 q^{28} - 4 q^{31} + 24 q^{35} - 4 q^{37} - 36 q^{38} + 48 q^{41} + 36 q^{47} + 24 q^{50} + 8 q^{52} + 36 q^{65} + 28 q^{67} + 24 q^{71} + 28 q^{73}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.258819 0.965926i 0.183013 0.683013i
\(3\) 0 0
\(4\) −0.866025 0.500000i −0.433013 0.250000i
\(5\) −0.361873 + 1.35053i −0.161835 + 0.603975i 0.836588 + 0.547833i \(0.184547\pi\)
−0.998423 + 0.0561429i \(0.982120\pi\)
\(6\) 0 0
\(7\) −0.715284 0.715284i −0.270352 0.270352i 0.558890 0.829242i \(-0.311227\pi\)
−0.829242 + 0.558890i \(0.811227\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) 1.21085 + 0.699086i 0.382905 + 0.221070i
\(11\) −5.61718 1.50512i −1.69364 0.453810i −0.722317 0.691562i \(-0.756923\pi\)
−0.971326 + 0.237752i \(0.923589\pi\)
\(12\) 0 0
\(13\) −0.218517 + 3.59892i −0.0606058 + 0.998162i
\(14\) −0.876041 + 0.505782i −0.234132 + 0.135176i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) 1.67305 + 2.89781i 0.405775 + 0.702823i 0.994411 0.105575i \(-0.0336683\pi\)
−0.588636 + 0.808398i \(0.700335\pi\)
\(18\) 0 0
\(19\) −7.07605 1.89602i −1.62336 0.434977i −0.671372 0.741120i \(-0.734295\pi\)
−0.951986 + 0.306143i \(0.900961\pi\)
\(20\) 0.988657 0.988657i 0.221070 0.221070i
\(21\) 0 0
\(22\) −2.90767 + 5.03622i −0.619916 + 1.07373i
\(23\) −0.580436 −0.121029 −0.0605146 0.998167i \(-0.519274\pi\)
−0.0605146 + 0.998167i \(0.519274\pi\)
\(24\) 0 0
\(25\) 2.63715 + 1.52256i 0.527430 + 0.304512i
\(26\) 3.41974 + 1.14254i 0.670666 + 0.224071i
\(27\) 0 0
\(28\) 0.261812 + 0.977097i 0.0494779 + 0.184654i
\(29\) 0.892249 0.515140i 0.165687 0.0956592i −0.414864 0.909884i \(-0.636171\pi\)
0.580550 + 0.814224i \(0.302837\pi\)
\(30\) 0 0
\(31\) −8.52714 2.28484i −1.53152 0.410369i −0.608005 0.793933i \(-0.708030\pi\)
−0.923514 + 0.383564i \(0.874697\pi\)
\(32\) 0.965926 0.258819i 0.170753 0.0457532i
\(33\) 0 0
\(34\) 3.23209 0.866036i 0.554299 0.148524i
\(35\) 1.22486 0.707171i 0.207038 0.119534i
\(36\) 0 0
\(37\) −7.82443 + 2.09655i −1.28633 + 0.344671i −0.836265 0.548326i \(-0.815265\pi\)
−0.450064 + 0.892996i \(0.648599\pi\)
\(38\) −3.66283 + 6.34422i −0.594190 + 1.02917i
\(39\) 0 0
\(40\) −0.699086 1.21085i −0.110535 0.191453i
\(41\) −1.15731 1.15731i −0.180742 0.180742i 0.610937 0.791679i \(-0.290793\pi\)
−0.791679 + 0.610937i \(0.790793\pi\)
\(42\) 0 0
\(43\) 8.38054i 1.27802i 0.769198 + 0.639010i \(0.220656\pi\)
−0.769198 + 0.639010i \(0.779344\pi\)
\(44\) 4.11206 + 4.11206i 0.619916 + 0.619916i
\(45\) 0 0
\(46\) −0.150228 + 0.560658i −0.0221499 + 0.0826645i
\(47\) 0.388741 + 1.45080i 0.0567037 + 0.211621i 0.988465 0.151451i \(-0.0483945\pi\)
−0.931761 + 0.363072i \(0.881728\pi\)
\(48\) 0 0
\(49\) 5.97674i 0.853820i
\(50\) 2.15322 2.15322i 0.304512 0.304512i
\(51\) 0 0
\(52\) 1.98870 3.00750i 0.275784 0.417065i
\(53\) 2.77082i 0.380601i 0.981726 + 0.190300i \(0.0609462\pi\)
−0.981726 + 0.190300i \(0.939054\pi\)
\(54\) 0 0
\(55\) 4.06542 7.04151i 0.548180 0.949476i
\(56\) 1.01156 0.135176
\(57\) 0 0
\(58\) −0.266656 0.995175i −0.0350137 0.130673i
\(59\) 3.10182 + 11.5761i 0.403822 + 1.50708i 0.806218 + 0.591619i \(0.201511\pi\)
−0.402395 + 0.915466i \(0.631822\pi\)
\(60\) 0 0
\(61\) 2.82816 0.362108 0.181054 0.983473i \(-0.442049\pi\)
0.181054 + 0.983473i \(0.442049\pi\)
\(62\) −4.41397 + 7.64523i −0.560575 + 0.970945i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −4.78138 1.59747i −0.593057 0.198142i
\(66\) 0 0
\(67\) −0.802042 + 0.802042i −0.0979851 + 0.0979851i −0.754400 0.656415i \(-0.772072\pi\)
0.656415 + 0.754400i \(0.272072\pi\)
\(68\) 3.34611i 0.405775i
\(69\) 0 0
\(70\) −0.366058 1.36615i −0.0437524 0.163286i
\(71\) 2.71495 10.1323i 0.322205 1.20249i −0.594886 0.803810i \(-0.702803\pi\)
0.917091 0.398677i \(-0.130530\pi\)
\(72\) 0 0
\(73\) 0.788181 + 0.788181i 0.0922496 + 0.0922496i 0.751726 0.659476i \(-0.229222\pi\)
−0.659476 + 0.751726i \(0.729222\pi\)
\(74\) 8.10045i 0.941658i
\(75\) 0 0
\(76\) 5.18003 + 5.18003i 0.594190 + 0.594190i
\(77\) 2.94129 + 5.09447i 0.335191 + 0.580568i
\(78\) 0 0
\(79\) −0.827245 + 1.43283i −0.0930723 + 0.161206i −0.908802 0.417227i \(-0.863002\pi\)
0.815730 + 0.578433i \(0.196335\pi\)
\(80\) −1.35053 + 0.361873i −0.150994 + 0.0404587i
\(81\) 0 0
\(82\) −1.41741 + 0.818343i −0.156527 + 0.0903709i
\(83\) 15.7224 4.21280i 1.72576 0.462415i 0.746557 0.665321i \(-0.231705\pi\)
0.979198 + 0.202906i \(0.0650387\pi\)
\(84\) 0 0
\(85\) −4.51902 + 1.21087i −0.490156 + 0.131337i
\(86\) 8.09498 + 2.16904i 0.872904 + 0.233894i
\(87\) 0 0
\(88\) 5.03622 2.90767i 0.536863 0.309958i
\(89\) −0.783797 2.92517i −0.0830824 0.310068i 0.911862 0.410497i \(-0.134645\pi\)
−0.994944 + 0.100430i \(0.967978\pi\)
\(90\) 0 0
\(91\) 2.73056 2.41795i 0.286240 0.253470i
\(92\) 0.502672 + 0.290218i 0.0524072 + 0.0302573i
\(93\) 0 0
\(94\) 1.50198 0.154917
\(95\) 5.12127 8.87030i 0.525431 0.910074i
\(96\) 0 0
\(97\) 8.70487 8.70487i 0.883846 0.883846i −0.110077 0.993923i \(-0.535110\pi\)
0.993923 + 0.110077i \(0.0351099\pi\)
\(98\) −5.77308 1.54689i −0.583170 0.156260i
\(99\) 0 0
\(100\) −1.52256 2.63715i −0.152256 0.263715i
\(101\) −5.09573 8.82607i −0.507044 0.878227i −0.999967 0.00815327i \(-0.997405\pi\)
0.492922 0.870073i \(-0.335929\pi\)
\(102\) 0 0
\(103\) −8.54265 + 4.93210i −0.841732 + 0.485974i −0.857853 0.513896i \(-0.828202\pi\)
0.0161205 + 0.999870i \(0.494868\pi\)
\(104\) −2.39031 2.69934i −0.234389 0.264692i
\(105\) 0 0
\(106\) 2.67640 + 0.717140i 0.259955 + 0.0696548i
\(107\) −8.58323 4.95553i −0.829773 0.479069i 0.0240022 0.999712i \(-0.492359\pi\)
−0.853775 + 0.520642i \(0.825692\pi\)
\(108\) 0 0
\(109\) 6.99609 6.99609i 0.670103 0.670103i −0.287636 0.957740i \(-0.592869\pi\)
0.957740 + 0.287636i \(0.0928694\pi\)
\(110\) −5.74937 5.74937i −0.548180 0.548180i
\(111\) 0 0
\(112\) 0.261812 0.977097i 0.0247389 0.0923269i
\(113\) −8.78784 5.07366i −0.826691 0.477290i 0.0260276 0.999661i \(-0.491714\pi\)
−0.852718 + 0.522371i \(0.825048\pi\)
\(114\) 0 0
\(115\) 0.210044 0.783896i 0.0195867 0.0730987i
\(116\) −1.03028 −0.0956592
\(117\) 0 0
\(118\) 11.9845 1.10326
\(119\) 0.876052 3.26947i 0.0803075 0.299712i
\(120\) 0 0
\(121\) 19.7610 + 11.4090i 1.79646 + 1.03718i
\(122\) 0.731981 2.73179i 0.0662704 0.247325i
\(123\) 0 0
\(124\) 6.24230 + 6.24230i 0.560575 + 0.560575i
\(125\) −7.95386 + 7.95386i −0.711415 + 0.711415i
\(126\) 0 0
\(127\) −13.1106 7.56941i −1.16338 0.671677i −0.211267 0.977428i \(-0.567759\pi\)
−0.952111 + 0.305752i \(0.901092\pi\)
\(128\) −0.965926 0.258819i −0.0853766 0.0228766i
\(129\) 0 0
\(130\) −2.78055 + 4.20500i −0.243870 + 0.368803i
\(131\) −3.29059 + 1.89982i −0.287500 + 0.165988i −0.636814 0.771018i \(-0.719748\pi\)
0.349314 + 0.937006i \(0.386415\pi\)
\(132\) 0 0
\(133\) 3.70519 + 6.41758i 0.321281 + 0.556475i
\(134\) 0.567130 + 0.982297i 0.0489925 + 0.0848576i
\(135\) 0 0
\(136\) −3.23209 0.866036i −0.277149 0.0742620i
\(137\) −4.11536 + 4.11536i −0.351599 + 0.351599i −0.860704 0.509105i \(-0.829976\pi\)
0.509105 + 0.860704i \(0.329976\pi\)
\(138\) 0 0
\(139\) −1.13838 + 1.97173i −0.0965559 + 0.167240i −0.910257 0.414044i \(-0.864116\pi\)
0.813701 + 0.581284i \(0.197449\pi\)
\(140\) −1.41434 −0.119534
\(141\) 0 0
\(142\) −9.08440 5.24488i −0.762346 0.440141i
\(143\) 6.64426 19.8869i 0.555621 1.66303i
\(144\) 0 0
\(145\) 0.372831 + 1.39143i 0.0309620 + 0.115552i
\(146\) 0.965320 0.557328i 0.0798905 0.0461248i
\(147\) 0 0
\(148\) 7.82443 + 2.09655i 0.643164 + 0.172335i
\(149\) −13.8851 + 3.72050i −1.13751 + 0.304795i −0.777949 0.628327i \(-0.783740\pi\)
−0.359561 + 0.933122i \(0.617073\pi\)
\(150\) 0 0
\(151\) −2.72013 + 0.728858i −0.221361 + 0.0593136i −0.367795 0.929907i \(-0.619887\pi\)
0.146434 + 0.989220i \(0.453221\pi\)
\(152\) 6.34422 3.66283i 0.514584 0.297095i
\(153\) 0 0
\(154\) 5.68214 1.52252i 0.457880 0.122689i
\(155\) 6.17149 10.6893i 0.495706 0.858588i
\(156\) 0 0
\(157\) 3.93908 + 6.82268i 0.314372 + 0.544509i 0.979304 0.202395i \(-0.0648726\pi\)
−0.664931 + 0.746904i \(0.731539\pi\)
\(158\) 1.16990 + 1.16990i 0.0930723 + 0.0930723i
\(159\) 0 0
\(160\) 1.39817i 0.110535i
\(161\) 0.415177 + 0.415177i 0.0327205 + 0.0327205i
\(162\) 0 0
\(163\) −1.79021 + 6.68116i −0.140220 + 0.523309i 0.859701 + 0.510797i \(0.170650\pi\)
−0.999922 + 0.0125123i \(0.996017\pi\)
\(164\) 0.423606 + 1.58092i 0.0330780 + 0.123449i
\(165\) 0 0
\(166\) 16.2770i 1.26334i
\(167\) 11.2080 11.2080i 0.867298 0.867298i −0.124874 0.992173i \(-0.539853\pi\)
0.992173 + 0.124874i \(0.0398528\pi\)
\(168\) 0 0
\(169\) −12.9045 1.57285i −0.992654 0.120989i
\(170\) 4.67843i 0.358819i
\(171\) 0 0
\(172\) 4.19027 7.25776i 0.319505 0.553399i
\(173\) 2.60453 0.198018 0.0990092 0.995087i \(-0.468433\pi\)
0.0990092 + 0.995087i \(0.468433\pi\)
\(174\) 0 0
\(175\) −0.797249 2.97537i −0.0602663 0.224917i
\(176\) −1.50512 5.61718i −0.113453 0.423411i
\(177\) 0 0
\(178\) −3.02836 −0.226985
\(179\) −1.79612 + 3.11097i −0.134248 + 0.232525i −0.925310 0.379211i \(-0.876195\pi\)
0.791062 + 0.611736i \(0.209529\pi\)
\(180\) 0 0
\(181\) 16.3443i 1.21486i −0.794373 0.607430i \(-0.792201\pi\)
0.794373 0.607430i \(-0.207799\pi\)
\(182\) −1.62884 3.26333i −0.120738 0.241894i
\(183\) 0 0
\(184\) 0.410430 0.410430i 0.0302573 0.0302573i
\(185\) 11.3258i 0.832691i
\(186\) 0 0
\(187\) −5.03629 18.7957i −0.368290 1.37448i
\(188\) 0.388741 1.45080i 0.0283519 0.105811i
\(189\) 0 0
\(190\) −7.24257 7.24257i −0.525431 0.525431i
\(191\) 25.4377i 1.84061i 0.391202 + 0.920305i \(0.372059\pi\)
−0.391202 + 0.920305i \(0.627941\pi\)
\(192\) 0 0
\(193\) 8.92082 + 8.92082i 0.642134 + 0.642134i 0.951080 0.308945i \(-0.0999760\pi\)
−0.308945 + 0.951080i \(0.599976\pi\)
\(194\) −6.15527 10.6612i −0.441923 0.765433i
\(195\) 0 0
\(196\) −2.98837 + 5.17601i −0.213455 + 0.369715i
\(197\) −0.680083 + 0.182228i −0.0484539 + 0.0129832i −0.282965 0.959130i \(-0.591318\pi\)
0.234511 + 0.972114i \(0.424651\pi\)
\(198\) 0 0
\(199\) 8.58639 4.95735i 0.608673 0.351418i −0.163773 0.986498i \(-0.552366\pi\)
0.772446 + 0.635081i \(0.219033\pi\)
\(200\) −2.94136 + 0.788134i −0.207985 + 0.0557295i
\(201\) 0 0
\(202\) −9.84420 + 2.63775i −0.692635 + 0.185591i
\(203\) −1.00668 0.269740i −0.0706553 0.0189320i
\(204\) 0 0
\(205\) 1.98179 1.14418i 0.138414 0.0799133i
\(206\) 2.55304 + 9.52809i 0.177879 + 0.663853i
\(207\) 0 0
\(208\) −3.22602 + 1.61022i −0.223684 + 0.111649i
\(209\) 36.8937 + 21.3006i 2.55199 + 1.47339i
\(210\) 0 0
\(211\) −6.02887 −0.415045 −0.207522 0.978230i \(-0.566540\pi\)
−0.207522 + 0.978230i \(0.566540\pi\)
\(212\) 1.38541 2.39960i 0.0951502 0.164805i
\(213\) 0 0
\(214\) −7.00818 + 7.00818i −0.479069 + 0.479069i
\(215\) −11.3182 3.03269i −0.771893 0.206828i
\(216\) 0 0
\(217\) 4.46502 + 7.73364i 0.303105 + 0.524994i
\(218\) −4.94698 8.56842i −0.335052 0.580327i
\(219\) 0 0
\(220\) −7.04151 + 4.06542i −0.474738 + 0.274090i
\(221\) −10.7946 + 5.38797i −0.726123 + 0.362434i
\(222\) 0 0
\(223\) 28.1618 + 7.54594i 1.88586 + 0.505313i 0.999069 + 0.0431328i \(0.0137339\pi\)
0.886786 + 0.462181i \(0.152933\pi\)
\(224\) −0.876041 0.505782i −0.0585329 0.0337940i
\(225\) 0 0
\(226\) −7.17524 + 7.17524i −0.477290 + 0.477290i
\(227\) −10.2562 10.2562i −0.680729 0.680729i 0.279435 0.960165i \(-0.409853\pi\)
−0.960165 + 0.279435i \(0.909853\pi\)
\(228\) 0 0
\(229\) −2.55392 + 9.53135i −0.168768 + 0.629849i 0.828762 + 0.559601i \(0.189046\pi\)
−0.997530 + 0.0702479i \(0.977621\pi\)
\(230\) −0.702822 0.405774i −0.0463427 0.0267560i
\(231\) 0 0
\(232\) −0.266656 + 0.995175i −0.0175068 + 0.0653364i
\(233\) 2.06808 0.135484 0.0677421 0.997703i \(-0.478420\pi\)
0.0677421 + 0.997703i \(0.478420\pi\)
\(234\) 0 0
\(235\) −2.10003 −0.136991
\(236\) 3.10182 11.5761i 0.201911 0.753542i
\(237\) 0 0
\(238\) −2.93133 1.69240i −0.190010 0.109702i
\(239\) −5.10931 + 19.0682i −0.330494 + 1.23342i 0.578179 + 0.815910i \(0.303764\pi\)
−0.908672 + 0.417510i \(0.862903\pi\)
\(240\) 0 0
\(241\) −7.17107 7.17107i −0.461929 0.461929i 0.437358 0.899287i \(-0.355914\pi\)
−0.899287 + 0.437358i \(0.855914\pi\)
\(242\) 16.1348 16.1348i 1.03718 1.03718i
\(243\) 0 0
\(244\) −2.44926 1.41408i −0.156797 0.0905271i
\(245\) 8.07176 + 2.16282i 0.515686 + 0.138178i
\(246\) 0 0
\(247\) 8.36988 25.0519i 0.532563 1.59401i
\(248\) 7.64523 4.41397i 0.485472 0.280288i
\(249\) 0 0
\(250\) 5.62423 + 9.74145i 0.355707 + 0.616103i
\(251\) −4.78920 8.29514i −0.302292 0.523585i 0.674363 0.738400i \(-0.264418\pi\)
−0.976655 + 0.214815i \(0.931085\pi\)
\(252\) 0 0
\(253\) 3.26041 + 0.873624i 0.204980 + 0.0549243i
\(254\) −10.7048 + 10.7048i −0.671677 + 0.671677i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 5.77509 0.360240 0.180120 0.983645i \(-0.442351\pi\)
0.180120 + 0.983645i \(0.442351\pi\)
\(258\) 0 0
\(259\) 7.09632 + 4.09706i 0.440944 + 0.254579i
\(260\) 3.34206 + 3.77414i 0.207266 + 0.234062i
\(261\) 0 0
\(262\) 0.983420 + 3.67017i 0.0607559 + 0.226744i
\(263\) 3.86009 2.22862i 0.238023 0.137423i −0.376245 0.926520i \(-0.622785\pi\)
0.614268 + 0.789098i \(0.289451\pi\)
\(264\) 0 0
\(265\) −3.74207 1.00269i −0.229874 0.0615945i
\(266\) 7.15789 1.91795i 0.438878 0.117597i
\(267\) 0 0
\(268\) 1.09561 0.293568i 0.0669250 0.0179325i
\(269\) −11.4786 + 6.62715i −0.699860 + 0.404064i −0.807295 0.590148i \(-0.799069\pi\)
0.107435 + 0.994212i \(0.465736\pi\)
\(270\) 0 0
\(271\) −5.62562 + 1.50738i −0.341732 + 0.0915668i −0.425604 0.904910i \(-0.639938\pi\)
0.0838714 + 0.996477i \(0.473272\pi\)
\(272\) −1.67305 + 2.89781i −0.101444 + 0.175706i
\(273\) 0 0
\(274\) 2.91000 + 5.04027i 0.175799 + 0.304494i
\(275\) −12.5217 12.5217i −0.755087 0.755087i
\(276\) 0 0
\(277\) 19.4395i 1.16800i 0.811752 + 0.584002i \(0.198514\pi\)
−0.811752 + 0.584002i \(0.801486\pi\)
\(278\) 1.60991 + 1.60991i 0.0965559 + 0.0965559i
\(279\) 0 0
\(280\) −0.366058 + 1.36615i −0.0218762 + 0.0816430i
\(281\) 0.376063 + 1.40349i 0.0224340 + 0.0837250i 0.976235 0.216713i \(-0.0695337\pi\)
−0.953801 + 0.300438i \(0.902867\pi\)
\(282\) 0 0
\(283\) 20.7333i 1.23247i −0.787564 0.616233i \(-0.788658\pi\)
0.787564 0.616233i \(-0.211342\pi\)
\(284\) −7.41738 + 7.41738i −0.440141 + 0.440141i
\(285\) 0 0
\(286\) −17.4896 11.5650i −1.03418 0.683851i
\(287\) 1.65561i 0.0977278i
\(288\) 0 0
\(289\) 2.90179 5.02604i 0.170693 0.295649i
\(290\) 1.44051 0.0845896
\(291\) 0 0
\(292\) −0.288494 1.07667i −0.0168828 0.0630076i
\(293\) 6.14475 + 22.9325i 0.358980 + 1.33973i 0.875401 + 0.483398i \(0.160598\pi\)
−0.516420 + 0.856335i \(0.672736\pi\)
\(294\) 0 0
\(295\) −16.7564 −0.975595
\(296\) 4.05022 7.01519i 0.235414 0.407750i
\(297\) 0 0
\(298\) 14.3749i 0.832715i
\(299\) 0.126835 2.08894i 0.00733508 0.120807i
\(300\) 0 0
\(301\) 5.99447 5.99447i 0.345515 0.345515i
\(302\) 2.81609i 0.162048i
\(303\) 0 0
\(304\) −1.89602 7.07605i −0.108744 0.405839i
\(305\) −1.02343 + 3.81951i −0.0586017 + 0.218705i
\(306\) 0 0
\(307\) 14.7696 + 14.7696i 0.842947 + 0.842947i 0.989241 0.146294i \(-0.0467346\pi\)
−0.146294 + 0.989241i \(0.546735\pi\)
\(308\) 5.88258i 0.335191i
\(309\) 0 0
\(310\) −8.72781 8.72781i −0.495706 0.495706i
\(311\) 14.0548 + 24.3437i 0.796976 + 1.38040i 0.921577 + 0.388195i \(0.126901\pi\)
−0.124602 + 0.992207i \(0.539765\pi\)
\(312\) 0 0
\(313\) 8.76521 15.1818i 0.495439 0.858125i −0.504547 0.863384i \(-0.668341\pi\)
0.999986 + 0.00525876i \(0.00167392\pi\)
\(314\) 7.60971 2.03902i 0.429441 0.115068i
\(315\) 0 0
\(316\) 1.43283 0.827245i 0.0806030 0.0465362i
\(317\) −21.3692 + 5.72585i −1.20021 + 0.321596i −0.802915 0.596094i \(-0.796719\pi\)
−0.397298 + 0.917690i \(0.630052\pi\)
\(318\) 0 0
\(319\) −5.78727 + 1.55069i −0.324025 + 0.0868222i
\(320\) 1.35053 + 0.361873i 0.0754969 + 0.0202293i
\(321\) 0 0
\(322\) 0.508485 0.293574i 0.0283368 0.0163603i
\(323\) −6.34429 23.6772i −0.353006 1.31744i
\(324\) 0 0
\(325\) −6.05583 + 9.15819i −0.335917 + 0.508005i
\(326\) 5.99017 + 3.45843i 0.331765 + 0.191544i
\(327\) 0 0
\(328\) 1.63669 0.0903709
\(329\) 0.759675 1.31580i 0.0418822 0.0725422i
\(330\) 0 0
\(331\) 16.0059 16.0059i 0.879762 0.879762i −0.113748 0.993510i \(-0.536286\pi\)
0.993510 + 0.113748i \(0.0362856\pi\)
\(332\) −15.7224 4.21280i −0.862878 0.231207i
\(333\) 0 0
\(334\) −7.92523 13.7269i −0.433649 0.751102i
\(335\) −0.792945 1.37342i −0.0433232 0.0750380i
\(336\) 0 0
\(337\) −26.9968 + 15.5866i −1.47061 + 0.849058i −0.999456 0.0329922i \(-0.989496\pi\)
−0.471156 + 0.882050i \(0.656163\pi\)
\(338\) −4.85919 + 12.0577i −0.264305 + 0.655853i
\(339\) 0 0
\(340\) 4.51902 + 1.21087i 0.245078 + 0.0656685i
\(341\) 44.4595 + 25.6687i 2.40762 + 1.39004i
\(342\) 0 0
\(343\) −9.28206 + 9.28206i −0.501184 + 0.501184i
\(344\) −5.92594 5.92594i −0.319505 0.319505i
\(345\) 0 0
\(346\) 0.674101 2.51578i 0.0362399 0.135249i
\(347\) 17.6308 + 10.1791i 0.946468 + 0.546444i 0.891982 0.452071i \(-0.149315\pi\)
0.0544863 + 0.998515i \(0.482648\pi\)
\(348\) 0 0
\(349\) −7.61062 + 28.4032i −0.407387 + 1.52039i 0.392224 + 0.919870i \(0.371706\pi\)
−0.799611 + 0.600519i \(0.794961\pi\)
\(350\) −3.08033 −0.164651
\(351\) 0 0
\(352\) −5.81533 −0.309958
\(353\) 2.96995 11.0840i 0.158075 0.589943i −0.840748 0.541427i \(-0.817884\pi\)
0.998822 0.0485157i \(-0.0154491\pi\)
\(354\) 0 0
\(355\) 12.7016 + 7.33325i 0.674129 + 0.389208i
\(356\) −0.783797 + 2.92517i −0.0415412 + 0.155034i
\(357\) 0 0
\(358\) 2.54010 + 2.54010i 0.134248 + 0.134248i
\(359\) −25.9734 + 25.9734i −1.37083 + 1.37083i −0.511605 + 0.859221i \(0.670949\pi\)
−0.859221 + 0.511605i \(0.829051\pi\)
\(360\) 0 0
\(361\) 30.0211 + 17.3327i 1.58006 + 0.912248i
\(362\) −15.7873 4.23021i −0.829765 0.222335i
\(363\) 0 0
\(364\) −3.57371 + 0.728730i −0.187313 + 0.0381958i
\(365\) −1.34968 + 0.779240i −0.0706457 + 0.0407873i
\(366\) 0 0
\(367\) 2.78625 + 4.82592i 0.145441 + 0.251911i 0.929537 0.368728i \(-0.120207\pi\)
−0.784096 + 0.620639i \(0.786873\pi\)
\(368\) −0.290218 0.502672i −0.0151287 0.0262036i
\(369\) 0 0
\(370\) −10.9399 2.93134i −0.568738 0.152393i
\(371\) 1.98192 1.98192i 0.102896 0.102896i
\(372\) 0 0
\(373\) −1.43922 + 2.49280i −0.0745200 + 0.129072i −0.900877 0.434074i \(-0.857076\pi\)
0.826357 + 0.563146i \(0.190409\pi\)
\(374\) −19.4587 −1.00619
\(375\) 0 0
\(376\) −1.30075 0.750990i −0.0670812 0.0387294i
\(377\) 1.65898 + 3.32370i 0.0854418 + 0.171179i
\(378\) 0 0
\(379\) 5.51954 + 20.5992i 0.283520 + 1.05811i 0.949914 + 0.312511i \(0.101170\pi\)
−0.666394 + 0.745600i \(0.732163\pi\)
\(380\) −8.87030 + 5.12127i −0.455037 + 0.262716i
\(381\) 0 0
\(382\) 24.5710 + 6.58377i 1.25716 + 0.336855i
\(383\) −12.5372 + 3.35934i −0.640623 + 0.171654i −0.564486 0.825443i \(-0.690925\pi\)
−0.0761376 + 0.997097i \(0.524259\pi\)
\(384\) 0 0
\(385\) −7.94461 + 2.12875i −0.404895 + 0.108491i
\(386\) 10.9257 6.30797i 0.556105 0.321067i
\(387\) 0 0
\(388\) −11.8911 + 3.18620i −0.603678 + 0.161755i
\(389\) −15.6511 + 27.1085i −0.793543 + 1.37446i 0.130216 + 0.991486i \(0.458433\pi\)
−0.923760 + 0.382972i \(0.874901\pi\)
\(390\) 0 0
\(391\) −0.971100 1.68199i −0.0491106 0.0850621i
\(392\) 4.22619 + 4.22619i 0.213455 + 0.213455i
\(393\) 0 0
\(394\) 0.704074i 0.0354707i
\(395\) −1.63572 1.63572i −0.0823021 0.0823021i
\(396\) 0 0
\(397\) 0.644906 2.40682i 0.0323669 0.120795i −0.947852 0.318710i \(-0.896750\pi\)
0.980219 + 0.197915i \(0.0634170\pi\)
\(398\) −2.56612 9.57687i −0.128628 0.480045i
\(399\) 0 0
\(400\) 3.04512i 0.152256i
\(401\) −14.5050 + 14.5050i −0.724345 + 0.724345i −0.969487 0.245142i \(-0.921165\pi\)
0.245142 + 0.969487i \(0.421165\pi\)
\(402\) 0 0
\(403\) 10.0863 30.1893i 0.502434 1.50383i
\(404\) 10.1915i 0.507044i
\(405\) 0 0
\(406\) −0.521098 + 0.902568i −0.0258617 + 0.0447937i
\(407\) 47.1068 2.33500
\(408\) 0 0
\(409\) −2.53544 9.46239i −0.125369 0.467885i 0.874483 0.485056i \(-0.161201\pi\)
−0.999853 + 0.0171708i \(0.994534\pi\)
\(410\) −0.592273 2.21039i −0.0292503 0.109164i
\(411\) 0 0
\(412\) 9.86420 0.485974
\(413\) 6.06155 10.4989i 0.298269 0.516618i
\(414\) 0 0
\(415\) 22.7581i 1.11715i
\(416\) 0.720398 + 3.53285i 0.0353204 + 0.173212i
\(417\) 0 0
\(418\) 30.1236 30.1236i 1.47339 1.47339i
\(419\) 1.73191i 0.0846094i 0.999105 + 0.0423047i \(0.0134700\pi\)
−0.999105 + 0.0423047i \(0.986530\pi\)
\(420\) 0 0
\(421\) 0.920185 + 3.43418i 0.0448471 + 0.167372i 0.984717 0.174160i \(-0.0557210\pi\)
−0.939870 + 0.341532i \(0.889054\pi\)
\(422\) −1.56039 + 5.82344i −0.0759584 + 0.283481i
\(423\) 0 0
\(424\) −1.95926 1.95926i −0.0951502 0.0951502i
\(425\) 10.1893i 0.494253i
\(426\) 0 0
\(427\) −2.02294 2.02294i −0.0978967 0.0978967i
\(428\) 4.95553 + 8.58323i 0.239535 + 0.414886i
\(429\) 0 0
\(430\) −5.85872 + 10.1476i −0.282532 + 0.489360i
\(431\) 14.3219 3.83753i 0.689860 0.184847i 0.103176 0.994663i \(-0.467100\pi\)
0.586684 + 0.809816i \(0.300433\pi\)
\(432\) 0 0
\(433\) −9.94854 + 5.74379i −0.478096 + 0.276029i −0.719623 0.694365i \(-0.755685\pi\)
0.241527 + 0.970394i \(0.422352\pi\)
\(434\) 8.62576 2.31126i 0.414050 0.110944i
\(435\) 0 0
\(436\) −9.55683 + 2.56075i −0.457689 + 0.122637i
\(437\) 4.10719 + 1.10052i 0.196474 + 0.0526450i
\(438\) 0 0
\(439\) −35.2492 + 20.3511i −1.68235 + 0.971306i −0.722259 + 0.691623i \(0.756896\pi\)
−0.960092 + 0.279683i \(0.909771\pi\)
\(440\) 2.10441 + 7.85378i 0.100324 + 0.374414i
\(441\) 0 0
\(442\) 2.41053 + 11.8213i 0.114657 + 0.562281i
\(443\) −10.6734 6.16232i −0.507111 0.292780i 0.224535 0.974466i \(-0.427914\pi\)
−0.731645 + 0.681686i \(0.761247\pi\)
\(444\) 0 0
\(445\) 4.23417 0.200719
\(446\) 14.5776 25.2492i 0.690271 1.19558i
\(447\) 0 0
\(448\) −0.715284 + 0.715284i −0.0337940 + 0.0337940i
\(449\) 27.3580 + 7.33055i 1.29110 + 0.345950i 0.838080 0.545548i \(-0.183678\pi\)
0.453024 + 0.891498i \(0.350345\pi\)
\(450\) 0 0
\(451\) 4.75894 + 8.24272i 0.224090 + 0.388134i
\(452\) 5.07366 + 8.78784i 0.238645 + 0.413345i
\(453\) 0 0
\(454\) −12.5613 + 7.25224i −0.589529 + 0.340365i
\(455\) 2.27740 + 4.56269i 0.106766 + 0.213902i
\(456\) 0 0
\(457\) −29.0998 7.79727i −1.36123 0.364741i −0.496963 0.867772i \(-0.665551\pi\)
−0.864268 + 0.503031i \(0.832218\pi\)
\(458\) 8.54557 + 4.93379i 0.399308 + 0.230541i
\(459\) 0 0
\(460\) −0.573852 + 0.573852i −0.0267560 + 0.0267560i
\(461\) −20.1337 20.1337i −0.937718 0.937718i 0.0604534 0.998171i \(-0.480745\pi\)
−0.998171 + 0.0604534i \(0.980745\pi\)
\(462\) 0 0
\(463\) 0.936943 3.49672i 0.0435434 0.162506i −0.940731 0.339155i \(-0.889859\pi\)
0.984274 + 0.176649i \(0.0565256\pi\)
\(464\) 0.892249 + 0.515140i 0.0414216 + 0.0239148i
\(465\) 0 0
\(466\) 0.535258 1.99761i 0.0247953 0.0925375i
\(467\) −36.6235 −1.69473 −0.847366 0.531010i \(-0.821813\pi\)
−0.847366 + 0.531010i \(0.821813\pi\)
\(468\) 0 0
\(469\) 1.14738 0.0529809
\(470\) −0.543527 + 2.02847i −0.0250710 + 0.0935663i
\(471\) 0 0
\(472\) −10.3789 5.99225i −0.477727 0.275816i
\(473\) 12.6137 47.0750i 0.579979 2.16451i
\(474\) 0 0
\(475\) −15.7738 15.7738i −0.723751 0.723751i
\(476\) −2.39342 + 2.39342i −0.109702 + 0.109702i
\(477\) 0 0
\(478\) 17.0961 + 9.87043i 0.781957 + 0.451463i
\(479\) 4.87703 + 1.30680i 0.222837 + 0.0597091i 0.368510 0.929624i \(-0.379868\pi\)
−0.145673 + 0.989333i \(0.546535\pi\)
\(480\) 0 0
\(481\) −5.83555 28.6177i −0.266078 1.30485i
\(482\) −8.78273 + 5.07071i −0.400043 + 0.230965i
\(483\) 0 0
\(484\) −11.4090 19.7610i −0.518592 0.898228i
\(485\) 8.60613 + 14.9063i 0.390784 + 0.676858i
\(486\) 0 0
\(487\) −28.6137 7.66702i −1.29661 0.347426i −0.456443 0.889753i \(-0.650877\pi\)
−0.840167 + 0.542327i \(0.817543\pi\)
\(488\) −1.99981 + 1.99981i −0.0905271 + 0.0905271i
\(489\) 0 0
\(490\) 4.17825 7.23695i 0.188754 0.326932i
\(491\) 1.97522 0.0891403 0.0445701 0.999006i \(-0.485808\pi\)
0.0445701 + 0.999006i \(0.485808\pi\)
\(492\) 0 0
\(493\) 2.98556 + 1.72371i 0.134463 + 0.0776322i
\(494\) −22.0320 14.5686i −0.991264 0.655471i
\(495\) 0 0
\(496\) −2.28484 8.52714i −0.102592 0.382880i
\(497\) −9.18946 + 5.30554i −0.412204 + 0.237986i
\(498\) 0 0
\(499\) −3.87214 1.03754i −0.173341 0.0464465i 0.171105 0.985253i \(-0.445266\pi\)
−0.344445 + 0.938806i \(0.611933\pi\)
\(500\) 10.8652 2.91131i 0.485905 0.130198i
\(501\) 0 0
\(502\) −9.25203 + 2.47907i −0.412938 + 0.110646i
\(503\) 6.37037 3.67794i 0.284041 0.163991i −0.351211 0.936297i \(-0.614230\pi\)
0.635251 + 0.772305i \(0.280897\pi\)
\(504\) 0 0
\(505\) 13.7639 3.68802i 0.612485 0.164115i
\(506\) 1.68771 2.92320i 0.0750280 0.129952i
\(507\) 0 0
\(508\) 7.56941 + 13.1106i 0.335838 + 0.581689i
\(509\) −10.0747 10.0747i −0.446552 0.446552i 0.447654 0.894207i \(-0.352260\pi\)
−0.894207 + 0.447654i \(0.852260\pi\)
\(510\) 0 0
\(511\) 1.12755i 0.0498797i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 1.49470 5.57831i 0.0659286 0.246049i
\(515\) −3.56959 13.3219i −0.157295 0.587033i
\(516\) 0 0
\(517\) 8.73451i 0.384143i
\(518\) 5.79412 5.79412i 0.254579 0.254579i
\(519\) 0 0
\(520\) 4.51053 2.25136i 0.197800 0.0987289i
\(521\) 28.5428i 1.25048i −0.780431 0.625242i \(-0.785000\pi\)
0.780431 0.625242i \(-0.215000\pi\)
\(522\) 0 0
\(523\) 7.95336 13.7756i 0.347776 0.602366i −0.638078 0.769972i \(-0.720270\pi\)
0.985854 + 0.167606i \(0.0536037\pi\)
\(524\) 3.79964 0.165988
\(525\) 0 0
\(526\) −1.15362 4.30537i −0.0503002 0.187723i
\(527\) −7.64532 28.5327i −0.333035 1.24290i
\(528\) 0 0
\(529\) −22.6631 −0.985352
\(530\) −1.93704 + 3.35505i −0.0841396 + 0.145734i
\(531\) 0 0
\(532\) 7.41039i 0.321281i
\(533\) 4.41797 3.91218i 0.191364 0.169456i
\(534\) 0 0
\(535\) 9.79864 9.79864i 0.423632 0.423632i
\(536\) 1.13426i 0.0489925i
\(537\) 0 0
\(538\) 3.43046 + 12.8027i 0.147898 + 0.551962i
\(539\) −8.99570 + 33.5724i −0.387472 + 1.44607i
\(540\) 0 0
\(541\) 20.5826 + 20.5826i 0.884913 + 0.884913i 0.994029 0.109116i \(-0.0348019\pi\)
−0.109116 + 0.994029i \(0.534802\pi\)
\(542\) 5.82407i 0.250165i
\(543\) 0 0
\(544\) 2.36605 + 2.36605i 0.101444 + 0.101444i
\(545\) 6.91673 + 11.9801i 0.296280 + 0.513172i
\(546\) 0 0
\(547\) −11.8581 + 20.5389i −0.507017 + 0.878180i 0.492950 + 0.870058i \(0.335919\pi\)
−0.999967 + 0.00812189i \(0.997415\pi\)
\(548\) 5.62169 1.50633i 0.240147 0.0643471i
\(549\) 0 0
\(550\) −15.3359 + 8.85418i −0.653924 + 0.377543i
\(551\) −7.29032 + 1.95344i −0.310578 + 0.0832191i
\(552\) 0 0
\(553\) 1.61660 0.433166i 0.0687447 0.0184201i
\(554\) 18.7771 + 5.03130i 0.797762 + 0.213760i
\(555\) 0 0
\(556\) 1.97173 1.13838i 0.0836199 0.0482779i
\(557\) 1.55296 + 5.79572i 0.0658010 + 0.245573i 0.990990 0.133933i \(-0.0427607\pi\)
−0.925189 + 0.379506i \(0.876094\pi\)
\(558\) 0 0
\(559\) −30.1609 1.83129i −1.27567 0.0774555i
\(560\) 1.22486 + 0.707171i 0.0517596 + 0.0298834i
\(561\) 0 0
\(562\) 1.45300 0.0612909
\(563\) −17.1469 + 29.6993i −0.722656 + 1.25168i 0.237275 + 0.971442i \(0.423746\pi\)
−0.959932 + 0.280235i \(0.909588\pi\)
\(564\) 0 0
\(565\) 10.0322 10.0322i 0.422059 0.422059i
\(566\) −20.0268 5.36617i −0.841790 0.225557i
\(567\) 0 0
\(568\) 5.24488 + 9.08440i 0.220070 + 0.381173i
\(569\) −17.8407 30.9009i −0.747919 1.29543i −0.948818 0.315822i \(-0.897720\pi\)
0.200899 0.979612i \(-0.435614\pi\)
\(570\) 0 0
\(571\) 25.3581 14.6405i 1.06121 0.612687i 0.135440 0.990786i \(-0.456755\pi\)
0.925765 + 0.378099i \(0.123422\pi\)
\(572\) −15.6975 + 13.9004i −0.656347 + 0.581206i
\(573\) 0 0
\(574\) 1.59920 + 0.428504i 0.0667493 + 0.0178854i
\(575\) −1.53069 0.883747i −0.0638344 0.0368548i
\(576\) 0 0
\(577\) −19.2968 + 19.2968i −0.803337 + 0.803337i −0.983616 0.180278i \(-0.942300\pi\)
0.180278 + 0.983616i \(0.442300\pi\)
\(578\) −4.10375 4.10375i −0.170693 0.170693i
\(579\) 0 0
\(580\) 0.372831 1.39143i 0.0154810 0.0577758i
\(581\) −14.2593 8.23262i −0.591576 0.341547i
\(582\) 0 0
\(583\) 4.17041 15.5642i 0.172721 0.644602i
\(584\) −1.11466 −0.0461248
\(585\) 0 0
\(586\) 23.7415 0.980753
\(587\) 5.15867 19.2524i 0.212921 0.794633i −0.773967 0.633226i \(-0.781730\pi\)
0.986888 0.161407i \(-0.0516030\pi\)
\(588\) 0 0
\(589\) 56.0064 + 32.3353i 2.30770 + 1.33235i
\(590\) −4.33687 + 16.1854i −0.178546 + 0.666344i
\(591\) 0 0
\(592\) −5.72788 5.72788i −0.235414 0.235414i
\(593\) −3.24522 + 3.24522i −0.133265 + 0.133265i −0.770593 0.637328i \(-0.780040\pi\)
0.637328 + 0.770593i \(0.280040\pi\)
\(594\) 0 0
\(595\) 4.09850 + 2.36627i 0.168022 + 0.0970075i
\(596\) 13.8851 + 3.72050i 0.568755 + 0.152397i
\(597\) 0 0
\(598\) −1.98494 0.663172i −0.0811701 0.0271191i
\(599\) 36.4947 21.0702i 1.49113 0.860906i 0.491185 0.871055i \(-0.336564\pi\)
0.999949 + 0.0101486i \(0.00323046\pi\)
\(600\) 0 0
\(601\) −2.31955 4.01758i −0.0946164 0.163880i 0.814832 0.579697i \(-0.196829\pi\)
−0.909448 + 0.415817i \(0.863496\pi\)
\(602\) −4.23873 7.34169i −0.172758 0.299225i
\(603\) 0 0
\(604\) 2.72013 + 0.728858i 0.110681 + 0.0296568i
\(605\) −22.5592 + 22.5592i −0.917163 + 0.917163i
\(606\) 0 0
\(607\) −5.75071 + 9.96053i −0.233414 + 0.404285i −0.958811 0.284046i \(-0.908323\pi\)
0.725396 + 0.688331i \(0.241656\pi\)
\(608\) −7.32567 −0.297095
\(609\) 0 0
\(610\) 3.42448 + 1.97712i 0.138653 + 0.0800514i
\(611\) −5.30627 + 1.08202i −0.214669 + 0.0437740i
\(612\) 0 0
\(613\) −3.05394 11.3975i −0.123347 0.460339i 0.876428 0.481533i \(-0.159920\pi\)
−0.999775 + 0.0211942i \(0.993253\pi\)
\(614\) 18.0890 10.4437i 0.730014 0.421474i
\(615\) 0 0
\(616\) −5.68214 1.52252i −0.228940 0.0613443i
\(617\) 30.8124 8.25615i 1.24046 0.332380i 0.421815 0.906682i \(-0.361393\pi\)
0.818644 + 0.574302i \(0.194726\pi\)
\(618\) 0 0
\(619\) −22.3895 + 5.99924i −0.899909 + 0.241130i −0.678977 0.734160i \(-0.737576\pi\)
−0.220932 + 0.975289i \(0.570910\pi\)
\(620\) −10.6893 + 6.17149i −0.429294 + 0.247853i
\(621\) 0 0
\(622\) 27.1518 7.27531i 1.08869 0.291713i
\(623\) −1.53169 + 2.65297i −0.0613659 + 0.106289i
\(624\) 0 0
\(625\) −0.250846 0.434477i −0.0100338 0.0173791i
\(626\) −12.3959 12.3959i −0.495439 0.495439i
\(627\) 0 0
\(628\) 7.87815i 0.314372i
\(629\) −19.1661 19.1661i −0.764202 0.764202i
\(630\) 0 0
\(631\) 6.12810 22.8704i 0.243956 0.910456i −0.729949 0.683501i \(-0.760456\pi\)
0.973905 0.226955i \(-0.0728770\pi\)
\(632\) −0.428214 1.59811i −0.0170334 0.0635696i
\(633\) 0 0
\(634\) 22.1230i 0.878617i
\(635\) 14.9671 14.9671i 0.593951 0.593951i
\(636\) 0 0
\(637\) 21.5098 + 1.30602i 0.852250 + 0.0517464i
\(638\) 5.99142i 0.237203i
\(639\) 0 0
\(640\) 0.699086 1.21085i 0.0276338 0.0478631i
\(641\) 28.7047 1.13377 0.566884 0.823798i \(-0.308149\pi\)
0.566884 + 0.823798i \(0.308149\pi\)
\(642\) 0 0
\(643\) 5.90865 + 22.0514i 0.233014 + 0.869621i 0.979034 + 0.203697i \(0.0652959\pi\)
−0.746020 + 0.665924i \(0.768037\pi\)
\(644\) −0.151965 0.567142i −0.00598827 0.0223485i
\(645\) 0 0
\(646\) −24.5125 −0.964430
\(647\) 18.5692 32.1627i 0.730029 1.26445i −0.226841 0.973932i \(-0.572840\pi\)
0.956870 0.290516i \(-0.0938270\pi\)
\(648\) 0 0
\(649\) 69.6938i 2.73572i
\(650\) 7.27876 + 8.21980i 0.285497 + 0.322407i
\(651\) 0 0
\(652\) 4.89095 4.89095i 0.191544 0.191544i
\(653\) 44.4676i 1.74015i −0.492917 0.870076i \(-0.664069\pi\)
0.492917 0.870076i \(-0.335931\pi\)
\(654\) 0 0
\(655\) −1.37499 5.13153i −0.0537253 0.200506i
\(656\) 0.423606 1.58092i 0.0165390 0.0617245i
\(657\) 0 0
\(658\) −1.07434 1.07434i −0.0418822 0.0418822i
\(659\) 0.414343i 0.0161405i −0.999967 0.00807026i \(-0.997431\pi\)
0.999967 0.00807026i \(-0.00256887\pi\)
\(660\) 0 0
\(661\) −20.1566 20.1566i −0.784000 0.784000i 0.196503 0.980503i \(-0.437042\pi\)
−0.980503 + 0.196503i \(0.937042\pi\)
\(662\) −11.3179 19.6031i −0.439881 0.761896i
\(663\) 0 0
\(664\) −8.13850 + 14.0963i −0.315835 + 0.547043i
\(665\) −10.0080 + 2.68162i −0.388092 + 0.103989i
\(666\) 0 0
\(667\) −0.517893 + 0.299006i −0.0200529 + 0.0115776i
\(668\) −15.3104 + 4.10240i −0.592376 + 0.158727i
\(669\) 0 0
\(670\) −1.53185 + 0.410458i −0.0591806 + 0.0158574i
\(671\) −15.8863 4.25671i −0.613282 0.164328i
\(672\) 0 0
\(673\) 3.60027 2.07862i 0.138780 0.0801248i −0.429002 0.903303i \(-0.641135\pi\)
0.567783 + 0.823179i \(0.307801\pi\)
\(674\) 8.06823 + 30.1111i 0.310777 + 1.15983i
\(675\) 0 0
\(676\) 10.3892 + 7.81438i 0.399585 + 0.300553i
\(677\) −17.6062 10.1649i −0.676659 0.390669i 0.121936 0.992538i \(-0.461090\pi\)
−0.798595 + 0.601869i \(0.794423\pi\)
\(678\) 0 0
\(679\) −12.4529 −0.477899
\(680\) 2.33922 4.05164i 0.0897048 0.155373i
\(681\) 0 0
\(682\) 36.3010 36.3010i 1.39004 1.39004i
\(683\) 9.85750 + 2.64131i 0.377187 + 0.101067i 0.442431 0.896802i \(-0.354116\pi\)
−0.0652445 + 0.997869i \(0.520783\pi\)
\(684\) 0 0
\(685\) −4.06868 7.04716i −0.155456 0.269258i
\(686\) 6.56341 + 11.3682i 0.250592 + 0.434038i
\(687\) 0 0
\(688\) −7.25776 + 4.19027i −0.276699 + 0.159753i
\(689\) −9.97196 0.605472i −0.379901 0.0230666i
\(690\) 0 0
\(691\) 40.8703 + 10.9512i 1.55478 + 0.416602i 0.931006 0.365004i \(-0.118932\pi\)
0.623773 + 0.781606i \(0.285599\pi\)
\(692\) −2.25559 1.30226i −0.0857445 0.0495046i
\(693\) 0 0
\(694\) 14.3954 14.3954i 0.546444 0.546444i
\(695\) −2.25093 2.25093i −0.0853826 0.0853826i
\(696\) 0 0
\(697\) 1.41743 5.28992i 0.0536890 0.200370i
\(698\) 25.4656 + 14.7026i 0.963888 + 0.556501i
\(699\) 0 0
\(700\) −0.797249 + 2.97537i −0.0301332 + 0.112458i
\(701\) 16.7670 0.633280 0.316640 0.948546i \(-0.397445\pi\)
0.316640 + 0.948546i \(0.397445\pi\)
\(702\) 0 0
\(703\) 59.3412 2.23810
\(704\) −1.50512 + 5.61718i −0.0567263 + 0.211705i
\(705\) 0 0
\(706\) −9.93766 5.73751i −0.374009 0.215934i
\(707\) −2.66825 + 9.95805i −0.100350 + 0.374511i
\(708\) 0 0
\(709\) 9.05848 + 9.05848i 0.340198 + 0.340198i 0.856442 0.516244i \(-0.172670\pi\)
−0.516244 + 0.856442i \(0.672670\pi\)
\(710\) 10.3708 10.3708i 0.389208 0.389208i
\(711\) 0 0
\(712\) 2.62264 + 1.51418i 0.0982875 + 0.0567463i
\(713\) 4.94946 + 1.32620i 0.185359 + 0.0496667i
\(714\) 0 0
\(715\) 24.4535 + 16.1698i 0.914508 + 0.604717i
\(716\) 3.11097 1.79612i 0.116262 0.0671242i
\(717\) 0 0
\(718\) 18.3660 + 31.8108i 0.685413 + 1.18717i
\(719\) 8.63433 + 14.9551i 0.322006 + 0.557731i 0.980902 0.194503i \(-0.0623095\pi\)
−0.658896 + 0.752234i \(0.728976\pi\)
\(720\) 0 0
\(721\) 9.63828 + 2.58257i 0.358948 + 0.0961799i
\(722\) 24.5122 24.5122i 0.912248 0.912248i
\(723\) 0 0
\(724\) −8.17213 + 14.1545i −0.303715 + 0.526050i
\(725\) 3.13732 0.116517
\(726\) 0 0
\(727\) 12.1283 + 7.00226i 0.449813 + 0.259700i 0.707751 0.706462i \(-0.249710\pi\)
−0.257938 + 0.966161i \(0.583043\pi\)
\(728\) −0.221045 + 3.64054i −0.00819245 + 0.134928i
\(729\) 0 0
\(730\) 0.403364 + 1.50538i 0.0149292 + 0.0557165i
\(731\) −24.2852 + 14.0211i −0.898222 + 0.518589i
\(732\) 0 0
\(733\) 6.57489 + 1.76174i 0.242849 + 0.0650712i 0.378190 0.925728i \(-0.376546\pi\)
−0.135341 + 0.990799i \(0.543213\pi\)
\(734\) 5.38262 1.44227i 0.198676 0.0532351i
\(735\) 0 0
\(736\) −0.560658 + 0.150228i −0.0206661 + 0.00553747i
\(737\) 5.71238 3.29805i 0.210418 0.121485i
\(738\) 0 0
\(739\) −17.1161 + 4.58625i −0.629626 + 0.168708i −0.559500 0.828830i \(-0.689007\pi\)
−0.0701262 + 0.997538i \(0.522340\pi\)
\(740\) −5.66291 + 9.80845i −0.208173 + 0.360566i
\(741\) 0 0
\(742\) −1.40143 2.42735i −0.0514481 0.0891108i
\(743\) −21.9872 21.9872i −0.806631 0.806631i 0.177491 0.984122i \(-0.443202\pi\)
−0.984122 + 0.177491i \(0.943202\pi\)
\(744\) 0 0
\(745\) 20.0986i 0.736354i
\(746\) 2.03537 + 2.03537i 0.0745200 + 0.0745200i
\(747\) 0 0
\(748\) −5.03629 + 18.7957i −0.184145 + 0.687238i
\(749\) 2.59484 + 9.68407i 0.0948133 + 0.353848i
\(750\) 0 0
\(751\) 5.74389i 0.209598i −0.994493 0.104799i \(-0.966580\pi\)
0.994493 0.104799i \(-0.0334199\pi\)
\(752\) −1.06206 + 1.06206i −0.0387294 + 0.0387294i
\(753\) 0 0
\(754\) 3.63983 0.742213i 0.132555 0.0270298i
\(755\) 3.93738i 0.143296i
\(756\) 0 0
\(757\) −13.1210 + 22.7262i −0.476891 + 0.825999i −0.999649 0.0264817i \(-0.991570\pi\)
0.522759 + 0.852481i \(0.324903\pi\)
\(758\) 21.3259 0.774591
\(759\) 0 0
\(760\) 2.65097 + 9.89354i 0.0961606 + 0.358876i
\(761\) 0.967626 + 3.61123i 0.0350764 + 0.130907i 0.981244 0.192771i \(-0.0617473\pi\)
−0.946167 + 0.323678i \(0.895081\pi\)
\(762\) 0 0
\(763\) −10.0084 −0.362328
\(764\) 12.7189 22.0297i 0.460152 0.797007i
\(765\) 0 0
\(766\) 12.9795i 0.468969i
\(767\) −42.3394 + 8.63362i −1.52879 + 0.311742i
\(768\) 0 0
\(769\) 34.6441 34.6441i 1.24930 1.24930i 0.293266 0.956031i \(-0.405258\pi\)
0.956031 0.293266i \(-0.0947421\pi\)
\(770\) 8.22486i 0.296403i
\(771\) 0 0
\(772\) −3.26525 12.1861i −0.117519 0.438586i
\(773\) −1.60335 + 5.98377i −0.0576683 + 0.215221i −0.988747 0.149597i \(-0.952202\pi\)
0.931079 + 0.364818i \(0.118869\pi\)
\(774\) 0 0
\(775\) −19.0085 19.0085i −0.682806 0.682806i
\(776\) 12.3105i 0.441923i
\(777\) 0 0
\(778\) 22.1340 + 22.1340i 0.793543 + 0.793543i
\(779\) 5.99491 + 10.3835i 0.214790 + 0.372027i
\(780\) 0 0
\(781\) −30.5007 + 52.8288i −1.09140 + 1.89036i
\(782\) −1.87602 + 0.502678i −0.0670864 + 0.0179757i
\(783\) 0 0
\(784\) 5.17601 2.98837i 0.184857 0.106727i
\(785\) −10.6397 + 2.85089i −0.379746 + 0.101753i
\(786\) 0 0
\(787\) −19.0056 + 5.09254i −0.677477 + 0.181529i −0.581121 0.813817i \(-0.697386\pi\)
−0.0963566 + 0.995347i \(0.530719\pi\)
\(788\) 0.680083 + 0.182228i 0.0242270 + 0.00649159i
\(789\) 0 0
\(790\) −2.00334 + 1.15663i −0.0712757 + 0.0411511i
\(791\) 2.65669 + 9.91492i 0.0944612 + 0.352534i
\(792\) 0 0
\(793\) −0.618001 + 10.1783i −0.0219459 + 0.361443i
\(794\) −2.15790 1.24586i −0.0765809 0.0442140i
\(795\) 0 0
\(796\) −9.91471 −0.351418
\(797\) −2.20478 + 3.81880i −0.0780974 + 0.135269i −0.902429 0.430839i \(-0.858218\pi\)
0.824332 + 0.566107i \(0.191551\pi\)
\(798\) 0 0
\(799\) −3.55377 + 3.55377i −0.125723 + 0.125723i
\(800\) 2.94136 + 0.788134i 0.103993 + 0.0278647i
\(801\) 0 0
\(802\) 10.2566 + 17.7649i 0.362172 + 0.627301i
\(803\) −3.24105 5.61366i −0.114374 0.198102i
\(804\) 0 0
\(805\) −0.710950 + 0.410467i −0.0250577 + 0.0144671i
\(806\) −26.5501 17.5562i −0.935186 0.618390i
\(807\) 0 0
\(808\) 9.84420 + 2.63775i 0.346318 + 0.0927956i
\(809\) −17.1929 9.92632i −0.604470 0.348991i 0.166328 0.986070i \(-0.446809\pi\)
−0.770798 + 0.637080i \(0.780142\pi\)
\(810\) 0 0
\(811\) 6.11440 6.11440i 0.214706 0.214706i −0.591557 0.806263i \(-0.701487\pi\)
0.806263 + 0.591557i \(0.201487\pi\)
\(812\) 0.736944 + 0.736944i 0.0258617 + 0.0258617i
\(813\) 0 0
\(814\) 12.1921 45.5017i 0.427334 1.59483i
\(815\) −8.37528 4.83547i −0.293373 0.169379i
\(816\) 0 0
\(817\) 15.8897 59.3011i 0.555910 2.07468i
\(818\) −9.79619 −0.342516
\(819\) 0 0
\(820\) −2.28837 −0.0799133
\(821\) −8.40409 + 31.3645i −0.293305 + 1.09463i 0.649250 + 0.760575i \(0.275083\pi\)
−0.942554 + 0.334053i \(0.891584\pi\)
\(822\) 0 0
\(823\) 2.45985 + 1.42019i 0.0857448 + 0.0495048i 0.542259 0.840211i \(-0.317569\pi\)
−0.456515 + 0.889716i \(0.650902\pi\)
\(824\) 2.55304 9.52809i 0.0889395 0.331927i
\(825\) 0 0
\(826\) −8.57233 8.57233i −0.298269 0.298269i
\(827\) 0.354454 0.354454i 0.0123256 0.0123256i −0.700917 0.713243i \(-0.747226\pi\)
0.713243 + 0.700917i \(0.247226\pi\)
\(828\) 0 0
\(829\) −12.9034 7.44977i −0.448153 0.258741i 0.258897 0.965905i \(-0.416641\pi\)
−0.707050 + 0.707164i \(0.749974\pi\)
\(830\) 21.9826 + 5.89022i 0.763027 + 0.204452i
\(831\) 0 0
\(832\) 3.59892 + 0.218517i 0.124770 + 0.00757573i
\(833\) 17.3195 9.99940i 0.600084 0.346459i
\(834\) 0 0
\(835\) 11.0808 + 19.1926i 0.383468 + 0.664186i
\(836\) −21.3006 36.8937i −0.736696 1.27600i
\(837\) 0 0
\(838\) 1.67290 + 0.448252i 0.0577893 + 0.0154846i
\(839\) 8.50311 8.50311i 0.293560 0.293560i −0.544925 0.838485i \(-0.683442\pi\)
0.838485 + 0.544925i \(0.183442\pi\)
\(840\) 0 0
\(841\) −13.9693 + 24.1955i −0.481699 + 0.834327i
\(842\) 3.55532 0.122524
\(843\) 0 0
\(844\) 5.22116 + 3.01444i 0.179720 + 0.103761i
\(845\) 6.79398 16.8587i 0.233720 0.579958i
\(846\) 0 0
\(847\) −5.97405 22.2955i −0.205271 0.766081i
\(848\) −2.39960 + 1.38541i −0.0824025 + 0.0475751i
\(849\) 0 0
\(850\) 9.84209 + 2.63718i 0.337581 + 0.0904545i
\(851\) 4.54158 1.21691i 0.155683 0.0417152i
\(852\) 0 0
\(853\) −11.7087 + 3.13735i −0.400900 + 0.107421i −0.453635 0.891188i \(-0.649873\pi\)
0.0527349 + 0.998609i \(0.483206\pi\)
\(854\) −2.47758 + 1.43043i −0.0847811 + 0.0489484i
\(855\) 0 0
\(856\) 9.57335 2.56517i 0.327211 0.0876758i
\(857\) 23.9473 41.4780i 0.818025 1.41686i −0.0891105 0.996022i \(-0.528402\pi\)
0.907135 0.420839i \(-0.138264\pi\)
\(858\) 0 0
\(859\) −26.9704 46.7142i −0.920220 1.59387i −0.799074 0.601232i \(-0.794677\pi\)
−0.121145 0.992635i \(-0.538657\pi\)
\(860\) 8.28548 + 8.28548i 0.282532 + 0.282532i
\(861\) 0 0
\(862\) 14.8271i 0.505012i
\(863\) −23.3989 23.3989i −0.796508 0.796508i 0.186035 0.982543i \(-0.440436\pi\)
−0.982543 + 0.186035i \(0.940436\pi\)
\(864\) 0 0
\(865\) −0.942509 + 3.51749i −0.0320463 + 0.119598i
\(866\) 2.97320 + 11.0962i 0.101034 + 0.377063i
\(867\) 0 0
\(868\) 8.93004i 0.303105i
\(869\) 6.80336 6.80336i 0.230788 0.230788i
\(870\) 0 0
\(871\) −2.71123 3.06175i −0.0918665 0.103743i
\(872\) 9.89396i 0.335052i
\(873\) 0 0
\(874\) 2.12604 3.68241i 0.0719144 0.124559i
\(875\) 11.3785 0.384665
\(876\) 0 0
\(877\) 2.46001 + 9.18088i 0.0830686 + 0.310016i 0.994941 0.100456i \(-0.0320303\pi\)
−0.911873 + 0.410473i \(0.865364\pi\)
\(878\) 10.5345 + 39.3153i 0.355523 + 1.32683i
\(879\) 0 0
\(880\) 8.13083 0.274090
\(881\) −12.5122 + 21.6718i −0.421548 + 0.730143i −0.996091 0.0883317i \(-0.971846\pi\)
0.574543 + 0.818474i \(0.305180\pi\)
\(882\) 0 0
\(883\) 36.5915i 1.23140i −0.787980 0.615701i \(-0.788873\pi\)
0.787980 0.615701i \(-0.211127\pi\)
\(884\) 12.0424 + 0.731182i 0.405029 + 0.0245923i
\(885\) 0 0
\(886\) −8.71483 + 8.71483i −0.292780 + 0.292780i
\(887\) 48.8136i 1.63900i 0.573079 + 0.819500i \(0.305749\pi\)
−0.573079 + 0.819500i \(0.694251\pi\)
\(888\) 0 0
\(889\) 3.96353 + 14.7921i 0.132933 + 0.496111i
\(890\) 1.09588 4.08989i 0.0367341 0.137094i
\(891\) 0 0
\(892\) −20.6159 20.6159i −0.690271 0.690271i
\(893\) 11.0030i 0.368202i
\(894\) 0 0
\(895\) −3.55149 3.55149i −0.118713 0.118713i
\(896\) 0.505782 + 0.876041i 0.0168970 + 0.0292665i
\(897\) 0 0
\(898\) 14.1615 24.5285i 0.472577 0.818527i
\(899\) −8.78535 + 2.35403i −0.293008 + 0.0785112i
\(900\) 0 0
\(901\) −8.02931 + 4.63572i −0.267495 + 0.154438i
\(902\) 9.19356 2.46341i 0.306112 0.0820225i
\(903\) 0 0
\(904\) 9.80156 2.62632i 0.325995 0.0873501i
\(905\) 22.0734 + 5.91456i 0.733745 + 0.196606i
\(906\) 0 0
\(907\) 7.29873 4.21392i 0.242350 0.139921i −0.373906 0.927467i \(-0.621982\pi\)
0.616256 + 0.787546i \(0.288648\pi\)
\(908\) 3.75404 + 14.0103i 0.124582 + 0.464947i
\(909\) 0 0
\(910\) 4.99666 1.01889i 0.165638 0.0337758i
\(911\) −7.11409 4.10732i −0.235700 0.136082i 0.377499 0.926010i \(-0.376784\pi\)
−0.613199 + 0.789929i \(0.710118\pi\)
\(912\) 0 0
\(913\) −94.6562 −3.13266
\(914\) −15.0632 + 26.0902i −0.498245 + 0.862986i
\(915\) 0 0
\(916\) 6.97743 6.97743i 0.230541 0.230541i
\(917\) 3.71262 + 0.994793i 0.122601 + 0.0328510i
\(918\) 0 0
\(919\) 11.5951 + 20.0833i 0.382488 + 0.662488i 0.991417 0.130736i \(-0.0417341\pi\)
−0.608929 + 0.793224i \(0.708401\pi\)
\(920\) 0.405774 + 0.702822i 0.0133780 + 0.0231714i
\(921\) 0 0
\(922\) −24.6586 + 14.2366i −0.812087 + 0.468859i
\(923\) 35.8722 + 11.9850i 1.18075 + 0.394491i
\(924\) 0 0
\(925\) −23.8263 6.38424i −0.783404 0.209912i
\(926\) −3.13507 1.81003i −0.103025 0.0594814i
\(927\) 0 0
\(928\) 0.728518 0.728518i 0.0239148 0.0239148i
\(929\) 4.98880 + 4.98880i 0.163677 + 0.163677i 0.784194 0.620516i \(-0.213077\pi\)
−0.620516 + 0.784194i \(0.713077\pi\)
\(930\) 0 0
\(931\) −11.3320 + 42.2917i −0.371392 + 1.38605i
\(932\) −1.79101 1.03404i −0.0586664 0.0338711i
\(933\) 0 0
\(934\) −9.47885 + 35.3755i −0.310157 + 1.15752i
\(935\) 27.2066 0.889752
\(936\) 0 0
\(937\) −46.7071 −1.52585 −0.762927 0.646484i \(-0.776239\pi\)
−0.762927 + 0.646484i \(0.776239\pi\)
\(938\) 0.296963 1.10828i 0.00969618 0.0361867i
\(939\) 0 0
\(940\) 1.81868 + 1.05001i 0.0593187 + 0.0342476i
\(941\) −10.1255 + 37.7889i −0.330082 + 1.23188i 0.579022 + 0.815312i \(0.303435\pi\)
−0.909104 + 0.416570i \(0.863232\pi\)
\(942\) 0 0
\(943\) 0.671745 + 0.671745i 0.0218750 + 0.0218750i
\(944\) −8.47432 + 8.47432i −0.275816 + 0.275816i
\(945\) 0 0
\(946\) −42.2063 24.3678i −1.37224 0.792266i
\(947\) 49.7829 + 13.3393i 1.61773 + 0.433469i 0.950333 0.311236i \(-0.100743\pi\)
0.667394 + 0.744705i \(0.267410\pi\)
\(948\) 0 0
\(949\) −3.00883 + 2.66437i −0.0976708 + 0.0864891i
\(950\) −19.3189 + 11.1538i −0.626787 + 0.361876i
\(951\) 0 0
\(952\) 1.69240 + 2.93133i 0.0548511 + 0.0950048i
\(953\) 16.8331 + 29.1557i 0.545276 + 0.944446i 0.998589 + 0.0530947i \(0.0169085\pi\)
−0.453313 + 0.891351i \(0.649758\pi\)
\(954\) 0 0
\(955\) −34.3544 9.20524i −1.11168 0.297875i
\(956\) 13.9589 13.9589i 0.451463 0.451463i
\(957\) 0 0
\(958\) 2.52454 4.37263i 0.0815641 0.141273i
\(959\) 5.88730 0.190111
\(960\) 0 0
\(961\) 40.6449 + 23.4663i 1.31112 + 0.756978i
\(962\) −29.1529 1.77009i −0.939927 0.0570699i
\(963\) 0 0
\(964\) 2.62479 + 9.79587i 0.0845389 + 0.315504i
\(965\) −15.2760 + 8.81963i −0.491753 + 0.283914i
\(966\) 0 0
\(967\) 41.2138 + 11.0432i 1.32535 + 0.355126i 0.850979 0.525200i \(-0.176010\pi\)
0.474369 + 0.880326i \(0.342676\pi\)
\(968\) −22.0406 + 5.90575i −0.708410 + 0.189818i
\(969\) 0 0
\(970\) 16.6258 4.45486i 0.533821 0.143037i
\(971\) 19.5275 11.2742i 0.626666 0.361806i −0.152794 0.988258i \(-0.548827\pi\)
0.779460 + 0.626452i \(0.215494\pi\)
\(972\) 0 0
\(973\) 2.22461 0.596082i 0.0713177 0.0191095i
\(974\) −14.8115 + 25.6543i −0.474592 + 0.822018i
\(975\) 0 0
\(976\) 1.41408 + 2.44926i 0.0452635 + 0.0783987i
\(977\) −16.8832 16.8832i −0.540141 0.540141i 0.383429 0.923570i \(-0.374743\pi\)
−0.923570 + 0.383429i \(0.874743\pi\)
\(978\) 0 0
\(979\) 17.6109i 0.562847i
\(980\) −5.90894 5.90894i −0.188754 0.188754i
\(981\) 0 0
\(982\) 0.511224 1.90791i 0.0163138 0.0608839i
\(983\) −6.76555 25.2494i −0.215788 0.805330i −0.985888 0.167407i \(-0.946461\pi\)
0.770100 0.637923i \(-0.220206\pi\)
\(984\) 0 0
\(985\) 0.984416i 0.0313661i
\(986\) 2.43770 2.43770i 0.0776322 0.0776322i
\(987\) 0 0
\(988\) −19.7745 + 17.5106i −0.629109 + 0.557087i
\(989\) 4.86436i 0.154678i
\(990\) 0 0
\(991\) −5.16138 + 8.93977i −0.163957 + 0.283981i −0.936284 0.351243i \(-0.885759\pi\)
0.772328 + 0.635224i \(0.219092\pi\)
\(992\) −8.82795 −0.280288
\(993\) 0 0
\(994\) 2.74635 + 10.2495i 0.0871089 + 0.325095i
\(995\) 3.58787 + 13.3901i 0.113743 + 0.424495i
\(996\) 0 0
\(997\) 34.0368 1.07796 0.538978 0.842320i \(-0.318811\pi\)
0.538978 + 0.842320i \(0.318811\pi\)
\(998\) −2.00437 + 3.47166i −0.0634471 + 0.109894i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.bc.a.305.10 56
3.2 odd 2 234.2.z.a.227.7 yes 56
9.4 even 3 234.2.y.a.149.10 yes 56
9.5 odd 6 702.2.bb.a.71.3 56
13.11 odd 12 702.2.bb.a.89.3 56
39.11 even 12 234.2.y.a.11.10 56
117.50 even 12 inner 702.2.bc.a.557.10 56
117.76 odd 12 234.2.z.a.167.7 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.y.a.11.10 56 39.11 even 12
234.2.y.a.149.10 yes 56 9.4 even 3
234.2.z.a.167.7 yes 56 117.76 odd 12
234.2.z.a.227.7 yes 56 3.2 odd 2
702.2.bb.a.71.3 56 9.5 odd 6
702.2.bb.a.89.3 56 13.11 odd 12
702.2.bc.a.305.10 56 1.1 even 1 trivial
702.2.bc.a.557.10 56 117.50 even 12 inner