Properties

Label 702.2.bc.a.305.11
Level $702$
Weight $2$
Character 702.305
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(305,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([2, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.305");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bc (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 305.11
Character \(\chi\) \(=\) 702.305
Dual form 702.2.bc.a.557.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.258819 - 0.965926i) q^{2} +(-0.866025 - 0.500000i) q^{4} +(-0.174335 + 0.650628i) q^{5} +(1.26694 + 1.26694i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(0.583337 + 0.336790i) q^{10} +(-0.952090 - 0.255112i) q^{11} +(2.90807 + 2.13146i) q^{13} +(1.55168 - 0.895864i) q^{14} +(0.500000 + 0.866025i) q^{16} +(-1.20946 - 2.09485i) q^{17} +(6.33213 + 1.69669i) q^{19} +(0.476293 - 0.476293i) q^{20} +(-0.492838 + 0.853620i) q^{22} +6.32605 q^{23} +(3.93720 + 2.27315i) q^{25} +(2.81150 - 2.25732i) q^{26} +(-0.463733 - 1.73068i) q^{28} +(-3.71748 + 2.14629i) q^{29} +(-5.59289 - 1.49861i) q^{31} +(0.965926 - 0.258819i) q^{32} +(-2.33650 + 0.626062i) q^{34} +(-1.04518 + 0.603436i) q^{35} +(6.83094 - 1.83034i) q^{37} +(3.27775 - 5.67724i) q^{38} +(-0.336790 - 0.583337i) q^{40} +(3.51849 + 3.51849i) q^{41} +0.892279i q^{43} +(0.696978 + 0.696978i) q^{44} +(1.63730 - 6.11049i) q^{46} +(0.981707 + 3.66378i) q^{47} -3.78971i q^{49} +(3.21471 - 3.21471i) q^{50} +(-1.45273 - 3.29993i) q^{52} -9.00014i q^{53} +(0.331966 - 0.574981i) q^{55} -1.79173 q^{56} +(1.11100 + 4.14631i) q^{58} +(-1.22237 - 4.56196i) q^{59} +4.76398 q^{61} +(-2.89509 + 5.01445i) q^{62} -1.00000i q^{64} +(-1.89377 + 1.52048i) q^{65} +(-7.82927 + 7.82927i) q^{67} +2.41892i q^{68} +(0.312361 + 1.16575i) q^{70} +(-1.70900 + 6.37808i) q^{71} +(-8.01788 - 8.01788i) q^{73} -7.07190i q^{74} +(-4.63544 - 4.63544i) q^{76} +(-0.883031 - 1.52946i) q^{77} +(-0.807117 + 1.39797i) q^{79} +(-0.650628 + 0.174335i) q^{80} +(4.30925 - 2.48795i) q^{82} +(7.31055 - 1.95885i) q^{83} +(1.57382 - 0.421703i) q^{85} +(0.861875 + 0.230939i) q^{86} +(0.853620 - 0.492838i) q^{88} +(-0.440877 - 1.64537i) q^{89} +(0.983920 + 6.38480i) q^{91} +(-5.47852 - 3.16302i) q^{92} +3.79302 q^{94} +(-2.20783 + 3.82407i) q^{95} +(-1.35833 + 1.35833i) q^{97} +(-3.66058 - 0.980849i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 8 q^{7} + 24 q^{11} + 28 q^{16} - 8 q^{19} - 4 q^{28} - 4 q^{31} + 24 q^{35} - 4 q^{37} - 36 q^{38} + 48 q^{41} + 36 q^{47} + 24 q^{50} + 8 q^{52} + 36 q^{65} + 28 q^{67} + 24 q^{71} + 28 q^{73}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.258819 0.965926i 0.183013 0.683013i
\(3\) 0 0
\(4\) −0.866025 0.500000i −0.433013 0.250000i
\(5\) −0.174335 + 0.650628i −0.0779651 + 0.290970i −0.993889 0.110382i \(-0.964793\pi\)
0.915924 + 0.401351i \(0.131459\pi\)
\(6\) 0 0
\(7\) 1.26694 + 1.26694i 0.478859 + 0.478859i 0.904767 0.425907i \(-0.140045\pi\)
−0.425907 + 0.904767i \(0.640045\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) 0.583337 + 0.336790i 0.184467 + 0.106502i
\(11\) −0.952090 0.255112i −0.287066 0.0769190i 0.112413 0.993662i \(-0.464142\pi\)
−0.399479 + 0.916743i \(0.630809\pi\)
\(12\) 0 0
\(13\) 2.90807 + 2.13146i 0.806554 + 0.591161i
\(14\) 1.55168 0.895864i 0.414704 0.239430i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) −1.20946 2.09485i −0.293337 0.508075i 0.681260 0.732042i \(-0.261432\pi\)
−0.974597 + 0.223967i \(0.928099\pi\)
\(18\) 0 0
\(19\) 6.33213 + 1.69669i 1.45269 + 0.389247i 0.896959 0.442114i \(-0.145771\pi\)
0.555732 + 0.831361i \(0.312438\pi\)
\(20\) 0.476293 0.476293i 0.106502 0.106502i
\(21\) 0 0
\(22\) −0.492838 + 0.853620i −0.105073 + 0.181992i
\(23\) 6.32605 1.31907 0.659536 0.751673i \(-0.270753\pi\)
0.659536 + 0.751673i \(0.270753\pi\)
\(24\) 0 0
\(25\) 3.93720 + 2.27315i 0.787441 + 0.454629i
\(26\) 2.81150 2.25732i 0.551380 0.442696i
\(27\) 0 0
\(28\) −0.463733 1.73068i −0.0876374 0.327067i
\(29\) −3.71748 + 2.14629i −0.690318 + 0.398555i −0.803731 0.594993i \(-0.797155\pi\)
0.113413 + 0.993548i \(0.463822\pi\)
\(30\) 0 0
\(31\) −5.59289 1.49861i −1.00451 0.269158i −0.281178 0.959656i \(-0.590725\pi\)
−0.723335 + 0.690498i \(0.757392\pi\)
\(32\) 0.965926 0.258819i 0.170753 0.0457532i
\(33\) 0 0
\(34\) −2.33650 + 0.626062i −0.400706 + 0.107369i
\(35\) −1.04518 + 0.603436i −0.176668 + 0.101999i
\(36\) 0 0
\(37\) 6.83094 1.83034i 1.12300 0.300907i 0.350902 0.936412i \(-0.385875\pi\)
0.772096 + 0.635505i \(0.219208\pi\)
\(38\) 3.27775 5.67724i 0.531722 0.920969i
\(39\) 0 0
\(40\) −0.336790 0.583337i −0.0532512 0.0922337i
\(41\) 3.51849 + 3.51849i 0.549496 + 0.549496i 0.926295 0.376799i \(-0.122975\pi\)
−0.376799 + 0.926295i \(0.622975\pi\)
\(42\) 0 0
\(43\) 0.892279i 0.136071i 0.997683 + 0.0680356i \(0.0216731\pi\)
−0.997683 + 0.0680356i \(0.978327\pi\)
\(44\) 0.696978 + 0.696978i 0.105073 + 0.105073i
\(45\) 0 0
\(46\) 1.63730 6.11049i 0.241407 0.900943i
\(47\) 0.981707 + 3.66378i 0.143197 + 0.534417i 0.999829 + 0.0184899i \(0.00588585\pi\)
−0.856632 + 0.515927i \(0.827447\pi\)
\(48\) 0 0
\(49\) 3.78971i 0.541387i
\(50\) 3.21471 3.21471i 0.454629 0.454629i
\(51\) 0 0
\(52\) −1.45273 3.29993i −0.201458 0.457619i
\(53\) 9.00014i 1.23626i −0.786074 0.618132i \(-0.787890\pi\)
0.786074 0.618132i \(-0.212110\pi\)
\(54\) 0 0
\(55\) 0.331966 0.574981i 0.0447622 0.0775305i
\(56\) −1.79173 −0.239430
\(57\) 0 0
\(58\) 1.11100 + 4.14631i 0.145881 + 0.544437i
\(59\) −1.22237 4.56196i −0.159139 0.593917i −0.998715 0.0506741i \(-0.983863\pi\)
0.839576 0.543243i \(-0.182804\pi\)
\(60\) 0 0
\(61\) 4.76398 0.609965 0.304982 0.952358i \(-0.401349\pi\)
0.304982 + 0.952358i \(0.401349\pi\)
\(62\) −2.89509 + 5.01445i −0.367677 + 0.636835i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −1.89377 + 1.52048i −0.234893 + 0.188593i
\(66\) 0 0
\(67\) −7.82927 + 7.82927i −0.956498 + 0.956498i −0.999092 0.0425948i \(-0.986438\pi\)
0.0425948 + 0.999092i \(0.486438\pi\)
\(68\) 2.41892i 0.293337i
\(69\) 0 0
\(70\) 0.312361 + 1.16575i 0.0373343 + 0.139334i
\(71\) −1.70900 + 6.37808i −0.202821 + 0.756939i 0.787281 + 0.616594i \(0.211488\pi\)
−0.990103 + 0.140345i \(0.955179\pi\)
\(72\) 0 0
\(73\) −8.01788 8.01788i −0.938421 0.938421i 0.0597896 0.998211i \(-0.480957\pi\)
−0.998211 + 0.0597896i \(0.980957\pi\)
\(74\) 7.07190i 0.822092i
\(75\) 0 0
\(76\) −4.63544 4.63544i −0.531722 0.531722i
\(77\) −0.883031 1.52946i −0.100631 0.174298i
\(78\) 0 0
\(79\) −0.807117 + 1.39797i −0.0908078 + 0.157284i −0.907851 0.419292i \(-0.862278\pi\)
0.817043 + 0.576576i \(0.195612\pi\)
\(80\) −0.650628 + 0.174335i −0.0727424 + 0.0194913i
\(81\) 0 0
\(82\) 4.30925 2.48795i 0.475877 0.274748i
\(83\) 7.31055 1.95885i 0.802437 0.215012i 0.165783 0.986162i \(-0.446985\pi\)
0.636653 + 0.771150i \(0.280318\pi\)
\(84\) 0 0
\(85\) 1.57382 0.421703i 0.170704 0.0457401i
\(86\) 0.861875 + 0.230939i 0.0929384 + 0.0249028i
\(87\) 0 0
\(88\) 0.853620 0.492838i 0.0909962 0.0525367i
\(89\) −0.440877 1.64537i −0.0467329 0.174409i 0.938615 0.344967i \(-0.112110\pi\)
−0.985348 + 0.170557i \(0.945443\pi\)
\(90\) 0 0
\(91\) 0.983920 + 6.38480i 0.103143 + 0.669309i
\(92\) −5.47852 3.16302i −0.571175 0.329768i
\(93\) 0 0
\(94\) 3.79302 0.391220
\(95\) −2.20783 + 3.82407i −0.226518 + 0.392341i
\(96\) 0 0
\(97\) −1.35833 + 1.35833i −0.137917 + 0.137917i −0.772695 0.634778i \(-0.781092\pi\)
0.634778 + 0.772695i \(0.281092\pi\)
\(98\) −3.66058 0.980849i −0.369774 0.0990807i
\(99\) 0 0
\(100\) −2.27315 3.93720i −0.227315 0.393720i
\(101\) 7.44597 + 12.8968i 0.740902 + 1.28328i 0.952085 + 0.305833i \(0.0989349\pi\)
−0.211183 + 0.977446i \(0.567732\pi\)
\(102\) 0 0
\(103\) −9.08751 + 5.24668i −0.895419 + 0.516971i −0.875711 0.482835i \(-0.839607\pi\)
−0.0197081 + 0.999806i \(0.506274\pi\)
\(104\) −3.56349 + 0.549146i −0.349429 + 0.0538482i
\(105\) 0 0
\(106\) −8.69347 2.32941i −0.844384 0.226252i
\(107\) −1.87899 1.08484i −0.181649 0.104875i 0.406418 0.913687i \(-0.366778\pi\)
−0.588067 + 0.808812i \(0.700111\pi\)
\(108\) 0 0
\(109\) −8.28528 + 8.28528i −0.793586 + 0.793586i −0.982075 0.188489i \(-0.939641\pi\)
0.188489 + 0.982075i \(0.439641\pi\)
\(110\) −0.469470 0.469470i −0.0447622 0.0447622i
\(111\) 0 0
\(112\) −0.463733 + 1.73068i −0.0438187 + 0.163534i
\(113\) −9.60049 5.54284i −0.903138 0.521427i −0.0249209 0.999689i \(-0.507933\pi\)
−0.878217 + 0.478263i \(0.841267\pi\)
\(114\) 0 0
\(115\) −1.10285 + 4.11590i −0.102842 + 0.383810i
\(116\) 4.29257 0.398555
\(117\) 0 0
\(118\) −4.72289 −0.434777
\(119\) 1.12173 4.18637i 0.102829 0.383764i
\(120\) 0 0
\(121\) −8.68489 5.01422i −0.789535 0.455838i
\(122\) 1.23301 4.60165i 0.111631 0.416614i
\(123\) 0 0
\(124\) 4.09428 + 4.09428i 0.367677 + 0.367677i
\(125\) −4.54683 + 4.54683i −0.406681 + 0.406681i
\(126\) 0 0
\(127\) 4.33197 + 2.50106i 0.384400 + 0.221933i 0.679731 0.733462i \(-0.262097\pi\)
−0.295331 + 0.955395i \(0.595430\pi\)
\(128\) −0.965926 0.258819i −0.0853766 0.0228766i
\(129\) 0 0
\(130\) 0.978531 + 2.22277i 0.0858229 + 0.194950i
\(131\) −19.0361 + 10.9905i −1.66319 + 0.960242i −0.692010 + 0.721888i \(0.743275\pi\)
−0.971178 + 0.238354i \(0.923392\pi\)
\(132\) 0 0
\(133\) 5.87284 + 10.1721i 0.509240 + 0.882030i
\(134\) 5.53613 + 9.58886i 0.478249 + 0.828351i
\(135\) 0 0
\(136\) 2.33650 + 0.626062i 0.200353 + 0.0536844i
\(137\) 8.90180 8.90180i 0.760532 0.760532i −0.215886 0.976419i \(-0.569264\pi\)
0.976419 + 0.215886i \(0.0692641\pi\)
\(138\) 0 0
\(139\) 9.84823 17.0576i 0.835316 1.44681i −0.0584566 0.998290i \(-0.518618\pi\)
0.893773 0.448520i \(-0.148049\pi\)
\(140\) 1.20687 0.101999
\(141\) 0 0
\(142\) 5.71843 + 3.30154i 0.479880 + 0.277059i
\(143\) −2.22498 2.77122i −0.186062 0.231741i
\(144\) 0 0
\(145\) −0.748347 2.79287i −0.0621468 0.231935i
\(146\) −9.81985 + 5.66949i −0.812697 + 0.469211i
\(147\) 0 0
\(148\) −6.83094 1.83034i −0.561499 0.150453i
\(149\) 9.34027 2.50272i 0.765185 0.205031i 0.144942 0.989440i \(-0.453701\pi\)
0.620243 + 0.784410i \(0.287034\pi\)
\(150\) 0 0
\(151\) 4.80308 1.28698i 0.390869 0.104733i −0.0580316 0.998315i \(-0.518482\pi\)
0.448900 + 0.893582i \(0.351816\pi\)
\(152\) −5.67724 + 3.27775i −0.460485 + 0.265861i
\(153\) 0 0
\(154\) −1.70589 + 0.457091i −0.137464 + 0.0368334i
\(155\) 1.95008 3.37763i 0.156634 0.271298i
\(156\) 0 0
\(157\) −4.86181 8.42090i −0.388015 0.672061i 0.604168 0.796857i \(-0.293506\pi\)
−0.992182 + 0.124796i \(0.960172\pi\)
\(158\) 1.14144 + 1.14144i 0.0908078 + 0.0908078i
\(159\) 0 0
\(160\) 0.673580i 0.0532512i
\(161\) 8.01474 + 8.01474i 0.631650 + 0.631650i
\(162\) 0 0
\(163\) 1.24717 4.65451i 0.0976861 0.364570i −0.899727 0.436453i \(-0.856234\pi\)
0.997413 + 0.0718838i \(0.0229011\pi\)
\(164\) −1.28786 4.80634i −0.100565 0.375312i
\(165\) 0 0
\(166\) 7.56843i 0.587424i
\(167\) −10.0054 + 10.0054i −0.774242 + 0.774242i −0.978845 0.204603i \(-0.934410\pi\)
0.204603 + 0.978845i \(0.434410\pi\)
\(168\) 0 0
\(169\) 3.91375 + 12.3969i 0.301058 + 0.953606i
\(170\) 1.62934i 0.124964i
\(171\) 0 0
\(172\) 0.446139 0.772736i 0.0340178 0.0589206i
\(173\) −23.1979 −1.76370 −0.881852 0.471527i \(-0.843703\pi\)
−0.881852 + 0.471527i \(0.843703\pi\)
\(174\) 0 0
\(175\) 2.10827 + 7.86816i 0.159370 + 0.594777i
\(176\) −0.255112 0.952090i −0.0192298 0.0717664i
\(177\) 0 0
\(178\) −1.70342 −0.127677
\(179\) −2.78545 + 4.82455i −0.208194 + 0.360603i −0.951146 0.308742i \(-0.900092\pi\)
0.742951 + 0.669345i \(0.233425\pi\)
\(180\) 0 0
\(181\) 20.8410i 1.54910i −0.632514 0.774549i \(-0.717977\pi\)
0.632514 0.774549i \(-0.282023\pi\)
\(182\) 6.42190 + 0.702114i 0.476023 + 0.0520441i
\(183\) 0 0
\(184\) −4.47319 + 4.47319i −0.329768 + 0.329768i
\(185\) 4.76349i 0.350219i
\(186\) 0 0
\(187\) 0.617094 + 2.30303i 0.0451264 + 0.168414i
\(188\) 0.981707 3.66378i 0.0715983 0.267209i
\(189\) 0 0
\(190\) 3.12234 + 3.12234i 0.226518 + 0.226518i
\(191\) 18.0727i 1.30769i 0.756626 + 0.653847i \(0.226846\pi\)
−0.756626 + 0.653847i \(0.773154\pi\)
\(192\) 0 0
\(193\) 5.20610 + 5.20610i 0.374743 + 0.374743i 0.869201 0.494458i \(-0.164634\pi\)
−0.494458 + 0.869201i \(0.664634\pi\)
\(194\) 0.960483 + 1.66361i 0.0689587 + 0.119440i
\(195\) 0 0
\(196\) −1.89486 + 3.28199i −0.135347 + 0.234428i
\(197\) 23.6473 6.33628i 1.68480 0.451441i 0.715761 0.698345i \(-0.246080\pi\)
0.969040 + 0.246904i \(0.0794132\pi\)
\(198\) 0 0
\(199\) −6.97794 + 4.02871i −0.494653 + 0.285588i −0.726503 0.687164i \(-0.758856\pi\)
0.231850 + 0.972752i \(0.425522\pi\)
\(200\) −4.39138 + 1.17667i −0.310517 + 0.0832029i
\(201\) 0 0
\(202\) 14.3845 3.85432i 1.01209 0.271189i
\(203\) −7.42905 1.99061i −0.521417 0.139713i
\(204\) 0 0
\(205\) −2.90262 + 1.67583i −0.202728 + 0.117045i
\(206\) 2.71588 + 10.1358i 0.189224 + 0.706195i
\(207\) 0 0
\(208\) −0.391864 + 3.58419i −0.0271709 + 0.248519i
\(209\) −5.59591 3.23080i −0.387077 0.223479i
\(210\) 0 0
\(211\) −14.0818 −0.969432 −0.484716 0.874672i \(-0.661077\pi\)
−0.484716 + 0.874672i \(0.661077\pi\)
\(212\) −4.50007 + 7.79435i −0.309066 + 0.535318i
\(213\) 0 0
\(214\) −1.53419 + 1.53419i −0.104875 + 0.104875i
\(215\) −0.580542 0.155556i −0.0395926 0.0106088i
\(216\) 0 0
\(217\) −5.18722 8.98452i −0.352131 0.609909i
\(218\) 5.85858 + 10.1474i 0.396793 + 0.687265i
\(219\) 0 0
\(220\) −0.574981 + 0.331966i −0.0387652 + 0.0223811i
\(221\) 0.947887 8.66987i 0.0637618 0.583199i
\(222\) 0 0
\(223\) −22.9327 6.14479i −1.53568 0.411485i −0.610816 0.791773i \(-0.709158\pi\)
−0.924868 + 0.380287i \(0.875825\pi\)
\(224\) 1.55168 + 0.895864i 0.103676 + 0.0598574i
\(225\) 0 0
\(226\) −7.83876 + 7.83876i −0.521427 + 0.521427i
\(227\) 16.9292 + 16.9292i 1.12363 + 1.12363i 0.991191 + 0.132438i \(0.0422806\pi\)
0.132438 + 0.991191i \(0.457719\pi\)
\(228\) 0 0
\(229\) 5.31509 19.8362i 0.351231 1.31081i −0.533930 0.845529i \(-0.679286\pi\)
0.885161 0.465284i \(-0.154048\pi\)
\(230\) 3.69022 + 2.13055i 0.243326 + 0.140484i
\(231\) 0 0
\(232\) 1.11100 4.14631i 0.0729407 0.272218i
\(233\) 2.79071 0.182825 0.0914126 0.995813i \(-0.470862\pi\)
0.0914126 + 0.995813i \(0.470862\pi\)
\(234\) 0 0
\(235\) −2.55490 −0.166664
\(236\) −1.22237 + 4.56196i −0.0795697 + 0.296958i
\(237\) 0 0
\(238\) −3.75339 2.16702i −0.243296 0.140467i
\(239\) −2.03334 + 7.58852i −0.131526 + 0.490861i −0.999988 0.00489453i \(-0.998442\pi\)
0.868462 + 0.495755i \(0.165109\pi\)
\(240\) 0 0
\(241\) −16.4615 16.4615i −1.06038 1.06038i −0.998056 0.0623240i \(-0.980149\pi\)
−0.0623240 0.998056i \(-0.519851\pi\)
\(242\) −7.09118 + 7.09118i −0.455838 + 0.455838i
\(243\) 0 0
\(244\) −4.12572 2.38199i −0.264122 0.152491i
\(245\) 2.46569 + 0.660680i 0.157527 + 0.0422093i
\(246\) 0 0
\(247\) 14.7979 + 18.4308i 0.941566 + 1.17272i
\(248\) 5.01445 2.89509i 0.318418 0.183839i
\(249\) 0 0
\(250\) 3.21509 + 5.56871i 0.203340 + 0.352196i
\(251\) −13.0241 22.5583i −0.822071 1.42387i −0.904138 0.427241i \(-0.859485\pi\)
0.0820668 0.996627i \(-0.473848\pi\)
\(252\) 0 0
\(253\) −6.02296 1.61385i −0.378660 0.101462i
\(254\) 3.53704 3.53704i 0.221933 0.221933i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 7.20155 0.449220 0.224610 0.974449i \(-0.427889\pi\)
0.224610 + 0.974449i \(0.427889\pi\)
\(258\) 0 0
\(259\) 10.9733 + 6.33546i 0.681851 + 0.393667i
\(260\) 2.40029 0.369894i 0.148860 0.0229398i
\(261\) 0 0
\(262\) 5.68909 + 21.2320i 0.351473 + 1.31172i
\(263\) −9.92027 + 5.72747i −0.611710 + 0.353171i −0.773634 0.633632i \(-0.781563\pi\)
0.161924 + 0.986803i \(0.448230\pi\)
\(264\) 0 0
\(265\) 5.85574 + 1.56904i 0.359715 + 0.0963855i
\(266\) 11.3455 3.04001i 0.695635 0.186395i
\(267\) 0 0
\(268\) 10.6950 2.86571i 0.653300 0.175051i
\(269\) 21.7795 12.5744i 1.32792 0.766674i 0.342941 0.939357i \(-0.388577\pi\)
0.984977 + 0.172683i \(0.0552437\pi\)
\(270\) 0 0
\(271\) 6.17248 1.65391i 0.374952 0.100468i −0.0664215 0.997792i \(-0.521158\pi\)
0.441373 + 0.897324i \(0.354492\pi\)
\(272\) 1.20946 2.09485i 0.0733343 0.127019i
\(273\) 0 0
\(274\) −6.29452 10.9024i −0.380266 0.658640i
\(275\) −3.16866 3.16866i −0.191078 0.191078i
\(276\) 0 0
\(277\) 19.4429i 1.16821i −0.811679 0.584104i \(-0.801446\pi\)
0.811679 0.584104i \(-0.198554\pi\)
\(278\) −13.9275 13.9275i −0.835316 0.835316i
\(279\) 0 0
\(280\) 0.312361 1.16575i 0.0186672 0.0696668i
\(281\) −7.71478 28.7919i −0.460225 1.71758i −0.672255 0.740320i \(-0.734674\pi\)
0.212030 0.977263i \(-0.431993\pi\)
\(282\) 0 0
\(283\) 22.0759i 1.31228i 0.754640 + 0.656139i \(0.227812\pi\)
−0.754640 + 0.656139i \(0.772188\pi\)
\(284\) 4.66908 4.66908i 0.277059 0.277059i
\(285\) 0 0
\(286\) −3.25267 + 1.43192i −0.192334 + 0.0846714i
\(287\) 8.91545i 0.526262i
\(288\) 0 0
\(289\) 5.57442 9.65517i 0.327907 0.567951i
\(290\) −2.89139 −0.169788
\(291\) 0 0
\(292\) 2.93475 + 10.9526i 0.171743 + 0.640954i
\(293\) −2.45563 9.16452i −0.143459 0.535397i −0.999819 0.0190176i \(-0.993946\pi\)
0.856360 0.516379i \(-0.172721\pi\)
\(294\) 0 0
\(295\) 3.18124 0.185219
\(296\) −3.53595 + 6.12445i −0.205523 + 0.355976i
\(297\) 0 0
\(298\) 9.66976i 0.560154i
\(299\) 18.3966 + 13.4837i 1.06390 + 0.779784i
\(300\) 0 0
\(301\) −1.13047 + 1.13047i −0.0651590 + 0.0651590i
\(302\) 4.97251i 0.286136i
\(303\) 0 0
\(304\) 1.69669 + 6.33213i 0.0973119 + 0.363173i
\(305\) −0.830529 + 3.09958i −0.0475560 + 0.177481i
\(306\) 0 0
\(307\) 3.35703 + 3.35703i 0.191596 + 0.191596i 0.796385 0.604790i \(-0.206743\pi\)
−0.604790 + 0.796385i \(0.706743\pi\)
\(308\) 1.76606i 0.100631i
\(309\) 0 0
\(310\) −2.75782 2.75782i −0.156634 0.156634i
\(311\) −10.5634 18.2964i −0.598996 1.03749i −0.992970 0.118370i \(-0.962233\pi\)
0.393973 0.919122i \(-0.371100\pi\)
\(312\) 0 0
\(313\) −5.16590 + 8.94760i −0.291994 + 0.505748i −0.974281 0.225336i \(-0.927652\pi\)
0.682287 + 0.731084i \(0.260985\pi\)
\(314\) −9.39229 + 2.51666i −0.530038 + 0.142023i
\(315\) 0 0
\(316\) 1.39797 0.807117i 0.0786419 0.0454039i
\(317\) 16.1862 4.33708i 0.909108 0.243595i 0.226185 0.974084i \(-0.427375\pi\)
0.682924 + 0.730490i \(0.260708\pi\)
\(318\) 0 0
\(319\) 4.08691 1.09509i 0.228823 0.0613130i
\(320\) 0.650628 + 0.174335i 0.0363712 + 0.00974564i
\(321\) 0 0
\(322\) 9.81601 5.66728i 0.547025 0.315825i
\(323\) −4.10416 15.3169i −0.228361 0.852256i
\(324\) 0 0
\(325\) 6.60454 + 15.0025i 0.366354 + 0.832187i
\(326\) −4.17312 2.40935i −0.231128 0.133442i
\(327\) 0 0
\(328\) −4.97589 −0.274748
\(329\) −3.39803 + 5.88557i −0.187340 + 0.324482i
\(330\) 0 0
\(331\) 10.4331 10.4331i 0.573455 0.573455i −0.359637 0.933092i \(-0.617100\pi\)
0.933092 + 0.359637i \(0.117100\pi\)
\(332\) −7.31055 1.95885i −0.401218 0.107506i
\(333\) 0 0
\(334\) 7.07490 + 12.2541i 0.387121 + 0.670513i
\(335\) −3.72903 6.45886i −0.203738 0.352885i
\(336\) 0 0
\(337\) −3.36489 + 1.94272i −0.183297 + 0.105827i −0.588841 0.808249i \(-0.700416\pi\)
0.405544 + 0.914076i \(0.367082\pi\)
\(338\) 12.9874 0.571843i 0.706422 0.0311042i
\(339\) 0 0
\(340\) −1.57382 0.421703i −0.0853522 0.0228701i
\(341\) 4.94262 + 2.85362i 0.267658 + 0.154532i
\(342\) 0 0
\(343\) 13.6699 13.6699i 0.738108 0.738108i
\(344\) −0.630936 0.630936i −0.0340178 0.0340178i
\(345\) 0 0
\(346\) −6.00406 + 22.4074i −0.322780 + 1.20463i
\(347\) −27.9881 16.1590i −1.50248 0.867459i −0.999996 0.00287338i \(-0.999085\pi\)
−0.502486 0.864585i \(-0.667581\pi\)
\(348\) 0 0
\(349\) 4.90845 18.3186i 0.262743 0.980571i −0.700874 0.713285i \(-0.747207\pi\)
0.963617 0.267286i \(-0.0861268\pi\)
\(350\) 8.14572 0.435407
\(351\) 0 0
\(352\) −0.985676 −0.0525367
\(353\) −5.07215 + 18.9295i −0.269963 + 1.00752i 0.689178 + 0.724592i \(0.257972\pi\)
−0.959142 + 0.282926i \(0.908695\pi\)
\(354\) 0 0
\(355\) −3.85182 2.22385i −0.204433 0.118030i
\(356\) −0.440877 + 1.64537i −0.0233664 + 0.0872047i
\(357\) 0 0
\(358\) 3.93922 + 3.93922i 0.208194 + 0.208194i
\(359\) 19.2085 19.2085i 1.01379 1.01379i 0.0138835 0.999904i \(-0.495581\pi\)
0.999904 0.0138835i \(-0.00441940\pi\)
\(360\) 0 0
\(361\) 20.7627 + 11.9873i 1.09277 + 0.630913i
\(362\) −20.1308 5.39404i −1.05805 0.283504i
\(363\) 0 0
\(364\) 2.34030 6.02136i 0.122665 0.315605i
\(365\) 6.61445 3.81886i 0.346216 0.199888i
\(366\) 0 0
\(367\) −3.84715 6.66345i −0.200819 0.347829i 0.747973 0.663729i \(-0.231027\pi\)
−0.948793 + 0.315899i \(0.897694\pi\)
\(368\) 3.16302 + 5.47852i 0.164884 + 0.285587i
\(369\) 0 0
\(370\) 4.60118 + 1.23288i 0.239204 + 0.0640945i
\(371\) 11.4027 11.4027i 0.591997 0.591997i
\(372\) 0 0
\(373\) 8.04898 13.9412i 0.416760 0.721850i −0.578851 0.815433i \(-0.696499\pi\)
0.995611 + 0.0935830i \(0.0298321\pi\)
\(374\) 2.38427 0.123288
\(375\) 0 0
\(376\) −3.28485 1.89651i −0.169403 0.0978051i
\(377\) −15.3854 1.68210i −0.792389 0.0866328i
\(378\) 0 0
\(379\) 6.71919 + 25.0764i 0.345142 + 1.28809i 0.892446 + 0.451153i \(0.148987\pi\)
−0.547305 + 0.836933i \(0.684346\pi\)
\(380\) 3.82407 2.20783i 0.196171 0.113259i
\(381\) 0 0
\(382\) 17.4569 + 4.67756i 0.893172 + 0.239325i
\(383\) 30.3863 8.14198i 1.55267 0.416036i 0.622334 0.782752i \(-0.286185\pi\)
0.930333 + 0.366716i \(0.119518\pi\)
\(384\) 0 0
\(385\) 1.14905 0.307887i 0.0585610 0.0156914i
\(386\) 6.37614 3.68127i 0.324537 0.187372i
\(387\) 0 0
\(388\) 1.85551 0.497183i 0.0941993 0.0252406i
\(389\) 12.6984 21.9943i 0.643836 1.11516i −0.340733 0.940160i \(-0.610675\pi\)
0.984569 0.174997i \(-0.0559915\pi\)
\(390\) 0 0
\(391\) −7.65110 13.2521i −0.386933 0.670187i
\(392\) 2.67973 + 2.67973i 0.135347 + 0.135347i
\(393\) 0 0
\(394\) 24.4815i 1.23336i
\(395\) −0.768848 0.768848i −0.0386850 0.0386850i
\(396\) 0 0
\(397\) 0.337126 1.25817i 0.0169199 0.0631458i −0.956950 0.290254i \(-0.906260\pi\)
0.973870 + 0.227108i \(0.0729270\pi\)
\(398\) 2.08542 + 7.78288i 0.104532 + 0.390120i
\(399\) 0 0
\(400\) 4.54629i 0.227315i
\(401\) −1.01652 + 1.01652i −0.0507627 + 0.0507627i −0.732032 0.681270i \(-0.761428\pi\)
0.681270 + 0.732032i \(0.261428\pi\)
\(402\) 0 0
\(403\) −13.0703 16.2791i −0.651077 0.810919i
\(404\) 14.8919i 0.740902i
\(405\) 0 0
\(406\) −3.84556 + 6.66071i −0.190852 + 0.330565i
\(407\) −6.97060 −0.345520
\(408\) 0 0
\(409\) 5.94553 + 22.1890i 0.293987 + 1.09718i 0.942018 + 0.335562i \(0.108926\pi\)
−0.648031 + 0.761614i \(0.724407\pi\)
\(410\) 0.867474 + 3.23746i 0.0428415 + 0.159887i
\(411\) 0 0
\(412\) 10.4934 0.516971
\(413\) 4.23107 7.32842i 0.208197 0.360608i
\(414\) 0 0
\(415\) 5.09794i 0.250248i
\(416\) 3.36064 + 1.30617i 0.164769 + 0.0640402i
\(417\) 0 0
\(418\) −4.56904 + 4.56904i −0.223479 + 0.223479i
\(419\) 6.60549i 0.322699i −0.986897 0.161350i \(-0.948415\pi\)
0.986897 0.161350i \(-0.0515847\pi\)
\(420\) 0 0
\(421\) −2.43480 9.08681i −0.118665 0.442864i 0.880870 0.473359i \(-0.156958\pi\)
−0.999535 + 0.0304944i \(0.990292\pi\)
\(422\) −3.64464 + 13.6020i −0.177418 + 0.662134i
\(423\) 0 0
\(424\) 6.36406 + 6.36406i 0.309066 + 0.309066i
\(425\) 10.9971i 0.533438i
\(426\) 0 0
\(427\) 6.03569 + 6.03569i 0.292087 + 0.292087i
\(428\) 1.08484 + 1.87899i 0.0524376 + 0.0908246i
\(429\) 0 0
\(430\) −0.300510 + 0.520499i −0.0144919 + 0.0251007i
\(431\) −1.92865 + 0.516780i −0.0928998 + 0.0248924i −0.304970 0.952362i \(-0.598646\pi\)
0.212070 + 0.977255i \(0.431980\pi\)
\(432\) 0 0
\(433\) −27.7623 + 16.0286i −1.33417 + 0.770285i −0.985936 0.167122i \(-0.946553\pi\)
−0.348236 + 0.937407i \(0.613219\pi\)
\(434\) −10.0209 + 2.68510i −0.481020 + 0.128889i
\(435\) 0 0
\(436\) 11.3179 3.03262i 0.542029 0.145236i
\(437\) 40.0574 + 10.7333i 1.91620 + 0.513445i
\(438\) 0 0
\(439\) −22.6287 + 13.0647i −1.08001 + 0.623542i −0.930898 0.365278i \(-0.880974\pi\)
−0.149109 + 0.988821i \(0.547640\pi\)
\(440\) 0.171838 + 0.641308i 0.00819206 + 0.0305732i
\(441\) 0 0
\(442\) −8.12912 3.15952i −0.386663 0.150283i
\(443\) −9.85727 5.69110i −0.468333 0.270392i 0.247209 0.968962i \(-0.420487\pi\)
−0.715542 + 0.698570i \(0.753820\pi\)
\(444\) 0 0
\(445\) 1.14739 0.0543914
\(446\) −11.8708 + 20.5609i −0.562099 + 0.973585i
\(447\) 0 0
\(448\) 1.26694 1.26694i 0.0598574 0.0598574i
\(449\) 13.3760 + 3.58409i 0.631253 + 0.169144i 0.560238 0.828331i \(-0.310710\pi\)
0.0710148 + 0.997475i \(0.477376\pi\)
\(450\) 0 0
\(451\) −2.45231 4.24752i −0.115475 0.200008i
\(452\) 5.54284 + 9.60049i 0.260713 + 0.451569i
\(453\) 0 0
\(454\) 20.7339 11.9707i 0.973092 0.561815i
\(455\) −4.32566 0.472930i −0.202790 0.0221713i
\(456\) 0 0
\(457\) −32.5303 8.71648i −1.52171 0.407740i −0.601402 0.798946i \(-0.705391\pi\)
−0.920303 + 0.391207i \(0.872058\pi\)
\(458\) −17.7846 10.2680i −0.831022 0.479791i
\(459\) 0 0
\(460\) 3.01305 3.01305i 0.140484 0.140484i
\(461\) −6.35961 6.35961i −0.296196 0.296196i 0.543326 0.839522i \(-0.317165\pi\)
−0.839522 + 0.543326i \(0.817165\pi\)
\(462\) 0 0
\(463\) 4.90786 18.3164i 0.228087 0.851234i −0.753057 0.657956i \(-0.771421\pi\)
0.981144 0.193278i \(-0.0619120\pi\)
\(464\) −3.71748 2.14629i −0.172580 0.0996388i
\(465\) 0 0
\(466\) 0.722288 2.69562i 0.0334593 0.124872i
\(467\) −33.1417 −1.53362 −0.766808 0.641877i \(-0.778156\pi\)
−0.766808 + 0.641877i \(0.778156\pi\)
\(468\) 0 0
\(469\) −19.8385 −0.916056
\(470\) −0.661258 + 2.46785i −0.0305015 + 0.113833i
\(471\) 0 0
\(472\) 4.09014 + 2.36144i 0.188264 + 0.108694i
\(473\) 0.227631 0.849529i 0.0104665 0.0390614i
\(474\) 0 0
\(475\) 21.0741 + 21.0741i 0.966945 + 0.966945i
\(476\) −3.06463 + 3.06463i −0.140467 + 0.140467i
\(477\) 0 0
\(478\) 6.80368 + 3.92811i 0.311193 + 0.179667i
\(479\) 29.7832 + 7.98038i 1.36083 + 0.364633i 0.864120 0.503285i \(-0.167876\pi\)
0.496707 + 0.867918i \(0.334542\pi\)
\(480\) 0 0
\(481\) 23.7661 + 9.23710i 1.08364 + 0.421176i
\(482\) −20.1612 + 11.6401i −0.918316 + 0.530190i
\(483\) 0 0
\(484\) 5.01422 + 8.68489i 0.227919 + 0.394768i
\(485\) −0.646962 1.12057i −0.0293770 0.0508825i
\(486\) 0 0
\(487\) −19.5417 5.23619i −0.885520 0.237274i −0.212733 0.977110i \(-0.568236\pi\)
−0.672787 + 0.739836i \(0.734903\pi\)
\(488\) −3.36864 + 3.36864i −0.152491 + 0.152491i
\(489\) 0 0
\(490\) 1.27634 2.21068i 0.0576590 0.0998683i
\(491\) 15.1024 0.681562 0.340781 0.940143i \(-0.389309\pi\)
0.340781 + 0.940143i \(0.389309\pi\)
\(492\) 0 0
\(493\) 8.99228 + 5.19169i 0.404992 + 0.233822i
\(494\) 21.6327 9.52340i 0.973303 0.428478i
\(495\) 0 0
\(496\) −1.49861 5.59289i −0.0672896 0.251128i
\(497\) −10.2459 + 5.91546i −0.459590 + 0.265345i
\(498\) 0 0
\(499\) 40.4871 + 10.8485i 1.81245 + 0.485645i 0.995805 0.0914956i \(-0.0291647\pi\)
0.816645 + 0.577140i \(0.195831\pi\)
\(500\) 6.21109 1.66426i 0.277768 0.0744278i
\(501\) 0 0
\(502\) −25.1605 + 6.74174i −1.12297 + 0.300899i
\(503\) −10.9025 + 6.29458i −0.486120 + 0.280661i −0.722963 0.690886i \(-0.757220\pi\)
0.236843 + 0.971548i \(0.423887\pi\)
\(504\) 0 0
\(505\) −9.68912 + 2.59619i −0.431160 + 0.115529i
\(506\) −3.11771 + 5.40004i −0.138599 + 0.240061i
\(507\) 0 0
\(508\) −2.50106 4.33197i −0.110967 0.192200i
\(509\) 23.4868 + 23.4868i 1.04103 + 1.04103i 0.999121 + 0.0419113i \(0.0133447\pi\)
0.0419113 + 0.999121i \(0.486655\pi\)
\(510\) 0 0
\(511\) 20.3164i 0.898744i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 1.86390 6.95616i 0.0822130 0.306823i
\(515\) −1.82936 6.82727i −0.0806113 0.300846i
\(516\) 0 0
\(517\) 3.73869i 0.164427i
\(518\) 8.95970 8.95970i 0.393667 0.393667i
\(519\) 0 0
\(520\) 0.263952 2.41424i 0.0115750 0.105871i
\(521\) 17.5549i 0.769094i 0.923105 + 0.384547i \(0.125642\pi\)
−0.923105 + 0.384547i \(0.874358\pi\)
\(522\) 0 0
\(523\) −4.19432 + 7.26477i −0.183405 + 0.317666i −0.943038 0.332686i \(-0.892045\pi\)
0.759633 + 0.650352i \(0.225379\pi\)
\(524\) 21.9809 0.960242
\(525\) 0 0
\(526\) 2.96476 + 11.0646i 0.129270 + 0.482440i
\(527\) 3.62502 + 13.5287i 0.157908 + 0.589321i
\(528\) 0 0
\(529\) 17.0189 0.739951
\(530\) 3.03116 5.25012i 0.131665 0.228050i
\(531\) 0 0
\(532\) 11.7457i 0.509240i
\(533\) 2.73249 + 17.7315i 0.118357 + 0.768038i
\(534\) 0 0
\(535\) 1.03340 1.03340i 0.0446778 0.0446778i
\(536\) 11.0723i 0.478249i
\(537\) 0 0
\(538\) −6.50898 24.2918i −0.280622 1.04730i
\(539\) −0.966799 + 3.60814i −0.0416430 + 0.155414i
\(540\) 0 0
\(541\) 1.43745 + 1.43745i 0.0618007 + 0.0618007i 0.737332 0.675531i \(-0.236086\pi\)
−0.675531 + 0.737332i \(0.736086\pi\)
\(542\) 6.39022i 0.274484i
\(543\) 0 0
\(544\) −1.71043 1.71043i −0.0733343 0.0733343i
\(545\) −3.94622 6.83505i −0.169037 0.292781i
\(546\) 0 0
\(547\) 5.93332 10.2768i 0.253691 0.439405i −0.710848 0.703345i \(-0.751689\pi\)
0.964539 + 0.263940i \(0.0850222\pi\)
\(548\) −12.1601 + 3.25829i −0.519453 + 0.139187i
\(549\) 0 0
\(550\) −3.88080 + 2.24058i −0.165478 + 0.0955388i
\(551\) −27.1811 + 7.28317i −1.15796 + 0.310273i
\(552\) 0 0
\(553\) −2.79372 + 0.748574i −0.118801 + 0.0318326i
\(554\) −18.7804 5.03218i −0.797901 0.213797i
\(555\) 0 0
\(556\) −17.0576 + 9.84823i −0.723405 + 0.417658i
\(557\) 9.18337 + 34.2728i 0.389112 + 1.45219i 0.831582 + 0.555402i \(0.187436\pi\)
−0.442470 + 0.896783i \(0.645898\pi\)
\(558\) 0 0
\(559\) −1.90186 + 2.59481i −0.0804400 + 0.109749i
\(560\) −1.04518 0.603436i −0.0441670 0.0254998i
\(561\) 0 0
\(562\) −29.8076 −1.25736
\(563\) −18.4876 + 32.0214i −0.779159 + 1.34954i 0.153268 + 0.988185i \(0.451020\pi\)
−0.932427 + 0.361358i \(0.882313\pi\)
\(564\) 0 0
\(565\) 5.28003 5.28003i 0.222133 0.222133i
\(566\) 21.3237 + 5.71368i 0.896303 + 0.240164i
\(567\) 0 0
\(568\) −3.30154 5.71843i −0.138529 0.239940i
\(569\) −12.2655 21.2445i −0.514198 0.890616i −0.999864 0.0164722i \(-0.994756\pi\)
0.485667 0.874144i \(-0.338577\pi\)
\(570\) 0 0
\(571\) 7.42838 4.28878i 0.310868 0.179480i −0.336447 0.941702i \(-0.609225\pi\)
0.647315 + 0.762223i \(0.275892\pi\)
\(572\) 0.541280 + 3.51244i 0.0226320 + 0.146863i
\(573\) 0 0
\(574\) 8.61166 + 2.30749i 0.359444 + 0.0963127i
\(575\) 24.9069 + 14.3800i 1.03869 + 0.599688i
\(576\) 0 0
\(577\) −0.991168 + 0.991168i −0.0412629 + 0.0412629i −0.727437 0.686174i \(-0.759289\pi\)
0.686174 + 0.727437i \(0.259289\pi\)
\(578\) −7.88341 7.88341i −0.327907 0.327907i
\(579\) 0 0
\(580\) −0.748347 + 2.79287i −0.0310734 + 0.115968i
\(581\) 11.7438 + 6.78029i 0.487215 + 0.281294i
\(582\) 0 0
\(583\) −2.29604 + 8.56894i −0.0950923 + 0.354889i
\(584\) 11.3390 0.469211
\(585\) 0 0
\(586\) −9.48781 −0.391938
\(587\) −9.87397 + 36.8502i −0.407543 + 1.52097i 0.391775 + 0.920061i \(0.371861\pi\)
−0.799318 + 0.600908i \(0.794806\pi\)
\(588\) 0 0
\(589\) −32.8722 18.9788i −1.35448 0.782008i
\(590\) 0.823366 3.07284i 0.0338975 0.126507i
\(591\) 0 0
\(592\) 5.00059 + 5.00059i 0.205523 + 0.205523i
\(593\) −22.4411 + 22.4411i −0.921547 + 0.921547i −0.997139 0.0755923i \(-0.975915\pi\)
0.0755923 + 0.997139i \(0.475915\pi\)
\(594\) 0 0
\(595\) 2.52821 + 1.45966i 0.103647 + 0.0598403i
\(596\) −9.34027 2.50272i −0.382592 0.102515i
\(597\) 0 0
\(598\) 17.7857 14.2799i 0.727310 0.583948i
\(599\) −12.9383 + 7.46992i −0.528644 + 0.305213i −0.740464 0.672096i \(-0.765394\pi\)
0.211820 + 0.977309i \(0.432061\pi\)
\(600\) 0 0
\(601\) 4.71759 + 8.17110i 0.192434 + 0.333306i 0.946056 0.324002i \(-0.105028\pi\)
−0.753622 + 0.657308i \(0.771695\pi\)
\(602\) 0.799360 + 1.38453i 0.0325795 + 0.0564293i
\(603\) 0 0
\(604\) −4.80308 1.28698i −0.195434 0.0523665i
\(605\) 4.77648 4.77648i 0.194191 0.194191i
\(606\) 0 0
\(607\) −4.11465 + 7.12678i −0.167008 + 0.289267i −0.937367 0.348344i \(-0.886744\pi\)
0.770358 + 0.637611i \(0.220077\pi\)
\(608\) 6.55551 0.265861
\(609\) 0 0
\(610\) 2.77901 + 1.60446i 0.112519 + 0.0649627i
\(611\) −4.95433 + 12.7470i −0.200431 + 0.515688i
\(612\) 0 0
\(613\) −5.26589 19.6526i −0.212687 0.793760i −0.986968 0.160918i \(-0.948555\pi\)
0.774280 0.632843i \(-0.218112\pi\)
\(614\) 4.11150 2.37378i 0.165927 0.0957979i
\(615\) 0 0
\(616\) 1.70589 + 0.457091i 0.0687321 + 0.0184167i
\(617\) −31.6362 + 8.47690i −1.27363 + 0.341267i −0.831419 0.555646i \(-0.812471\pi\)
−0.442207 + 0.896913i \(0.645805\pi\)
\(618\) 0 0
\(619\) −9.36687 + 2.50985i −0.376486 + 0.100879i −0.442100 0.896966i \(-0.645766\pi\)
0.0656133 + 0.997845i \(0.479100\pi\)
\(620\) −3.37763 + 1.95008i −0.135649 + 0.0783169i
\(621\) 0 0
\(622\) −20.4069 + 5.46802i −0.818244 + 0.219248i
\(623\) 1.52603 2.64316i 0.0611391 0.105896i
\(624\) 0 0
\(625\) 9.20010 + 15.9350i 0.368004 + 0.637402i
\(626\) 7.30568 + 7.30568i 0.291994 + 0.291994i
\(627\) 0 0
\(628\) 9.72362i 0.388015i
\(629\) −12.0960 12.0960i −0.482300 0.482300i
\(630\) 0 0
\(631\) −5.85572 + 21.8539i −0.233113 + 0.869988i 0.745878 + 0.666083i \(0.232030\pi\)
−0.978991 + 0.203906i \(0.934636\pi\)
\(632\) −0.417795 1.55923i −0.0166190 0.0620229i
\(633\) 0 0
\(634\) 16.7572i 0.665514i
\(635\) −2.38248 + 2.38248i −0.0945457 + 0.0945457i
\(636\) 0 0
\(637\) 8.07762 11.0207i 0.320047 0.436658i
\(638\) 4.23108i 0.167510i
\(639\) 0 0
\(640\) 0.336790 0.583337i 0.0133128 0.0230584i
\(641\) −10.7880 −0.426100 −0.213050 0.977041i \(-0.568340\pi\)
−0.213050 + 0.977041i \(0.568340\pi\)
\(642\) 0 0
\(643\) 2.77540 + 10.3579i 0.109451 + 0.408477i 0.998812 0.0487289i \(-0.0155170\pi\)
−0.889361 + 0.457206i \(0.848850\pi\)
\(644\) −2.93360 10.9483i −0.115600 0.431425i
\(645\) 0 0
\(646\) −15.8572 −0.623895
\(647\) 2.44136 4.22856i 0.0959799 0.166242i −0.814037 0.580813i \(-0.802735\pi\)
0.910017 + 0.414571i \(0.136068\pi\)
\(648\) 0 0
\(649\) 4.65524i 0.182734i
\(650\) 16.2006 2.49658i 0.635442 0.0979238i
\(651\) 0 0
\(652\) −3.40734 + 3.40734i −0.133442 + 0.133442i
\(653\) 21.9436i 0.858719i −0.903134 0.429360i \(-0.858739\pi\)
0.903134 0.429360i \(-0.141261\pi\)
\(654\) 0 0
\(655\) −3.83206 14.3014i −0.149731 0.558803i
\(656\) −1.28786 + 4.80634i −0.0502823 + 0.187656i
\(657\) 0 0
\(658\) 4.80554 + 4.80554i 0.187340 + 0.187340i
\(659\) 42.3078i 1.64808i −0.566534 0.824038i \(-0.691716\pi\)
0.566534 0.824038i \(-0.308284\pi\)
\(660\) 0 0
\(661\) −22.1456 22.1456i −0.861363 0.861363i 0.130133 0.991497i \(-0.458460\pi\)
−0.991497 + 0.130133i \(0.958460\pi\)
\(662\) −7.37732 12.7779i −0.286728 0.496627i
\(663\) 0 0
\(664\) −3.78422 + 6.55446i −0.146856 + 0.254362i
\(665\) −7.64207 + 2.04769i −0.296347 + 0.0794059i
\(666\) 0 0
\(667\) −23.5169 + 13.5775i −0.910579 + 0.525723i
\(668\) 13.6676 3.66224i 0.528817 0.141696i
\(669\) 0 0
\(670\) −7.20392 + 1.93029i −0.278312 + 0.0745734i
\(671\) −4.53573 1.21535i −0.175100 0.0469179i
\(672\) 0 0
\(673\) −32.9394 + 19.0176i −1.26972 + 0.733075i −0.974935 0.222488i \(-0.928582\pi\)
−0.294787 + 0.955563i \(0.595249\pi\)
\(674\) 1.00563 + 3.75304i 0.0387352 + 0.144562i
\(675\) 0 0
\(676\) 2.80903 12.6929i 0.108040 0.488188i
\(677\) 4.73877 + 2.73593i 0.182126 + 0.105150i 0.588291 0.808649i \(-0.299801\pi\)
−0.406165 + 0.913800i \(0.633134\pi\)
\(678\) 0 0
\(679\) −3.44185 −0.132086
\(680\) −0.814668 + 1.41105i −0.0312411 + 0.0541111i
\(681\) 0 0
\(682\) 4.03563 4.03563i 0.154532 0.154532i
\(683\) −24.9699 6.69067i −0.955447 0.256011i −0.252775 0.967525i \(-0.581343\pi\)
−0.702672 + 0.711514i \(0.748010\pi\)
\(684\) 0 0
\(685\) 4.23986 + 7.34366i 0.161997 + 0.280587i
\(686\) −9.66611 16.7422i −0.369054 0.639220i
\(687\) 0 0
\(688\) −0.772736 + 0.446139i −0.0294603 + 0.0170089i
\(689\) 19.1834 26.1730i 0.730831 0.997113i
\(690\) 0 0
\(691\) 32.7059 + 8.76352i 1.24419 + 0.333380i 0.820090 0.572235i \(-0.193923\pi\)
0.424101 + 0.905615i \(0.360590\pi\)
\(692\) 20.0900 + 11.5989i 0.763706 + 0.440926i
\(693\) 0 0
\(694\) −22.8522 + 22.8522i −0.867459 + 0.867459i
\(695\) 9.38129 + 9.38129i 0.355852 + 0.355852i
\(696\) 0 0
\(697\) 3.11522 11.6262i 0.117997 0.440372i
\(698\) −16.4240 9.48239i −0.621657 0.358914i
\(699\) 0 0
\(700\) 2.10827 7.86816i 0.0796850 0.297388i
\(701\) −29.4689 −1.11303 −0.556513 0.830839i \(-0.687861\pi\)
−0.556513 + 0.830839i \(0.687861\pi\)
\(702\) 0 0
\(703\) 46.3599 1.74850
\(704\) −0.255112 + 0.952090i −0.00961488 + 0.0358832i
\(705\) 0 0
\(706\) 16.9718 + 9.79865i 0.638740 + 0.368777i
\(707\) −6.90589 + 25.7731i −0.259723 + 0.969298i
\(708\) 0 0
\(709\) 9.17695 + 9.17695i 0.344648 + 0.344648i 0.858111 0.513464i \(-0.171638\pi\)
−0.513464 + 0.858111i \(0.671638\pi\)
\(710\) −3.14500 + 3.14500i −0.118030 + 0.118030i
\(711\) 0 0
\(712\) 1.47520 + 0.851709i 0.0552856 + 0.0319191i
\(713\) −35.3809 9.48027i −1.32502 0.355039i
\(714\) 0 0
\(715\) 2.19093 0.964514i 0.0819361 0.0360708i
\(716\) 4.82455 2.78545i 0.180302 0.104097i
\(717\) 0 0
\(718\) −13.5825 23.5255i −0.506894 0.877965i
\(719\) 1.46802 + 2.54269i 0.0547480 + 0.0948263i 0.892101 0.451837i \(-0.149231\pi\)
−0.837353 + 0.546663i \(0.815898\pi\)
\(720\) 0 0
\(721\) −18.1606 4.86612i −0.676336 0.181224i
\(722\) 16.9527 16.9527i 0.630913 0.630913i
\(723\) 0 0
\(724\) −10.4205 + 18.0488i −0.387274 + 0.670779i
\(725\) −19.5153 −0.724779
\(726\) 0 0
\(727\) 34.7895 + 20.0857i 1.29027 + 0.744938i 0.978702 0.205285i \(-0.0658122\pi\)
0.311569 + 0.950224i \(0.399146\pi\)
\(728\) −5.21047 3.81900i −0.193113 0.141541i
\(729\) 0 0
\(730\) −1.97679 7.37746i −0.0731641 0.273052i
\(731\) 1.86919 1.07917i 0.0691343 0.0399147i
\(732\) 0 0
\(733\) 12.6590 + 3.39197i 0.467571 + 0.125285i 0.484909 0.874564i \(-0.338853\pi\)
−0.0173384 + 0.999850i \(0.505519\pi\)
\(734\) −7.43211 + 1.99143i −0.274324 + 0.0735050i
\(735\) 0 0
\(736\) 6.11049 1.63730i 0.225236 0.0603517i
\(737\) 9.45150 5.45683i 0.348151 0.201005i
\(738\) 0 0
\(739\) −20.2177 + 5.41732i −0.743721 + 0.199279i −0.610731 0.791838i \(-0.709124\pi\)
−0.132990 + 0.991117i \(0.542458\pi\)
\(740\) 2.38175 4.12531i 0.0875547 0.151649i
\(741\) 0 0
\(742\) −8.06290 13.9654i −0.295998 0.512684i
\(743\) −11.8437 11.8437i −0.434502 0.434502i 0.455655 0.890157i \(-0.349405\pi\)
−0.890157 + 0.455655i \(0.849405\pi\)
\(744\) 0 0
\(745\) 6.51335i 0.238631i
\(746\) −11.3830 11.3830i −0.416760 0.416760i
\(747\) 0 0
\(748\) 0.617094 2.30303i 0.0225632 0.0842070i
\(749\) −1.00615 3.75500i −0.0367639 0.137205i
\(750\) 0 0
\(751\) 9.36886i 0.341875i −0.985282 0.170937i \(-0.945320\pi\)
0.985282 0.170937i \(-0.0546796\pi\)
\(752\) −2.68207 + 2.68207i −0.0978051 + 0.0978051i
\(753\) 0 0
\(754\) −5.60683 + 14.4258i −0.204189 + 0.525357i
\(755\) 3.34938i 0.121897i
\(756\) 0 0
\(757\) 1.46922 2.54477i 0.0533999 0.0924913i −0.838090 0.545532i \(-0.816328\pi\)
0.891490 + 0.453041i \(0.149661\pi\)
\(758\) 25.9610 0.942945
\(759\) 0 0
\(760\) −1.14286 4.26520i −0.0414558 0.154715i
\(761\) −2.67639 9.98843i −0.0970191 0.362080i 0.900299 0.435273i \(-0.143348\pi\)
−0.997318 + 0.0731923i \(0.976681\pi\)
\(762\) 0 0
\(763\) −20.9940 −0.760032
\(764\) 9.03635 15.6514i 0.326924 0.566248i
\(765\) 0 0
\(766\) 31.4582i 1.13663i
\(767\) 6.16889 15.8719i 0.222746 0.573103i
\(768\) 0 0
\(769\) 0.0494190 0.0494190i 0.00178210 0.00178210i −0.706215 0.707997i \(-0.749599\pi\)
0.707997 + 0.706215i \(0.249599\pi\)
\(770\) 1.18958i 0.0428696i
\(771\) 0 0
\(772\) −1.90556 7.11166i −0.0685827 0.255954i
\(773\) −6.52883 + 24.3659i −0.234826 + 0.876382i 0.743402 + 0.668845i \(0.233211\pi\)
−0.978227 + 0.207536i \(0.933456\pi\)
\(774\) 0 0
\(775\) −18.6138 18.6138i −0.668627 0.668627i
\(776\) 1.92097i 0.0689587i
\(777\) 0 0
\(778\) −17.9583 17.9583i −0.643836 0.643836i
\(779\) 16.3098 + 28.2493i 0.584358 + 1.01214i
\(780\) 0 0
\(781\) 3.25425 5.63652i 0.116446 0.201691i
\(782\) −14.7808 + 3.96050i −0.528560 + 0.141627i
\(783\) 0 0
\(784\) 3.28199 1.89486i 0.117214 0.0676734i
\(785\) 6.32646 1.69517i 0.225801 0.0605032i
\(786\) 0 0
\(787\) −29.0692 + 7.78906i −1.03620 + 0.277650i −0.736539 0.676395i \(-0.763541\pi\)
−0.299664 + 0.954045i \(0.596875\pi\)
\(788\) −23.6473 6.33628i −0.842401 0.225721i
\(789\) 0 0
\(790\) −0.941643 + 0.543658i −0.0335022 + 0.0193425i
\(791\) −5.14080 19.1857i −0.182786 0.682166i
\(792\) 0 0
\(793\) 13.8540 + 10.1542i 0.491969 + 0.360587i
\(794\) −1.12805 0.651278i −0.0400329 0.0231130i
\(795\) 0 0
\(796\) 8.05743 0.285588
\(797\) 13.7961 23.8955i 0.488682 0.846422i −0.511233 0.859442i \(-0.670811\pi\)
0.999915 + 0.0130203i \(0.00414459\pi\)
\(798\) 0 0
\(799\) 6.48772 6.48772i 0.229519 0.229519i
\(800\) 4.39138 + 1.17667i 0.155259 + 0.0416014i
\(801\) 0 0
\(802\) 0.718789 + 1.24498i 0.0253813 + 0.0439618i
\(803\) 5.58828 + 9.67919i 0.197206 + 0.341571i
\(804\) 0 0
\(805\) −6.61187 + 3.81736i −0.233038 + 0.134544i
\(806\) −19.1072 + 8.41159i −0.673023 + 0.296286i
\(807\) 0 0
\(808\) −14.3845 3.85432i −0.506045 0.135594i
\(809\) 31.3309 + 18.0889i 1.10154 + 0.635972i 0.936624 0.350336i \(-0.113933\pi\)
0.164912 + 0.986308i \(0.447266\pi\)
\(810\) 0 0
\(811\) 0.803239 0.803239i 0.0282055 0.0282055i −0.692863 0.721069i \(-0.743651\pi\)
0.721069 + 0.692863i \(0.243651\pi\)
\(812\) 5.43845 + 5.43845i 0.190852 + 0.190852i
\(813\) 0 0
\(814\) −1.80412 + 6.73309i −0.0632345 + 0.235995i
\(815\) 2.81093 + 1.62289i 0.0984626 + 0.0568474i
\(816\) 0 0
\(817\) −1.51392 + 5.65003i −0.0529654 + 0.197669i
\(818\) 22.9718 0.803189
\(819\) 0 0
\(820\) 3.35166 0.117045
\(821\) −12.5434 + 46.8128i −0.437769 + 1.63378i 0.296582 + 0.955007i \(0.404153\pi\)
−0.734351 + 0.678770i \(0.762514\pi\)
\(822\) 0 0
\(823\) −24.4935 14.1414i −0.853791 0.492937i 0.00813687 0.999967i \(-0.497410\pi\)
−0.861928 + 0.507030i \(0.830743\pi\)
\(824\) 2.71588 10.1358i 0.0946122 0.353098i
\(825\) 0 0
\(826\) −5.98363 5.98363i −0.208197 0.208197i
\(827\) 13.1080 13.1080i 0.455810 0.455810i −0.441467 0.897277i \(-0.645542\pi\)
0.897277 + 0.441467i \(0.145542\pi\)
\(828\) 0 0
\(829\) 46.5863 + 26.8966i 1.61801 + 0.934159i 0.987434 + 0.158032i \(0.0505148\pi\)
0.630577 + 0.776127i \(0.282818\pi\)
\(830\) 4.92424 + 1.31945i 0.170923 + 0.0457986i
\(831\) 0 0
\(832\) 2.13146 2.90807i 0.0738951 0.100819i
\(833\) −7.93886 + 4.58350i −0.275065 + 0.158809i
\(834\) 0 0
\(835\) −4.76551 8.25410i −0.164917 0.285645i
\(836\) 3.23080 + 5.59591i 0.111740 + 0.193539i
\(837\) 0 0
\(838\) −6.38041 1.70963i −0.220408 0.0590581i
\(839\) −3.08099 + 3.08099i −0.106368 + 0.106368i −0.758288 0.651920i \(-0.773964\pi\)
0.651920 + 0.758288i \(0.273964\pi\)
\(840\) 0 0
\(841\) −5.28691 + 9.15719i −0.182307 + 0.315765i
\(842\) −9.40736 −0.324199
\(843\) 0 0
\(844\) 12.1952 + 7.04091i 0.419776 + 0.242358i
\(845\) −8.74806 + 0.385182i −0.300942 + 0.0132507i
\(846\) 0 0
\(847\) −4.65052 17.3560i −0.159794 0.596359i
\(848\) 7.79435 4.50007i 0.267659 0.154533i
\(849\) 0 0
\(850\) −10.6224 2.84626i −0.364345 0.0976260i
\(851\) 43.2128 11.5788i 1.48132 0.396917i
\(852\) 0 0
\(853\) −10.9121 + 2.92390i −0.373625 + 0.100112i −0.440745 0.897632i \(-0.645286\pi\)
0.0671200 + 0.997745i \(0.478619\pi\)
\(854\) 7.39218 4.26788i 0.252955 0.146044i
\(855\) 0 0
\(856\) 2.09574 0.561553i 0.0716311 0.0191935i
\(857\) −8.91122 + 15.4347i −0.304401 + 0.527239i −0.977128 0.212653i \(-0.931790\pi\)
0.672726 + 0.739891i \(0.265123\pi\)
\(858\) 0 0
\(859\) −12.6436 21.8993i −0.431393 0.747194i 0.565601 0.824679i \(-0.308644\pi\)
−0.996994 + 0.0774851i \(0.975311\pi\)
\(860\) 0.424986 + 0.424986i 0.0144919 + 0.0144919i
\(861\) 0 0
\(862\) 1.99669i 0.0680074i
\(863\) 9.09474 + 9.09474i 0.309589 + 0.309589i 0.844750 0.535161i \(-0.179749\pi\)
−0.535161 + 0.844750i \(0.679749\pi\)
\(864\) 0 0
\(865\) 4.04421 15.0932i 0.137507 0.513184i
\(866\) 8.29701 + 30.9649i 0.281944 + 1.05223i
\(867\) 0 0
\(868\) 10.3744i 0.352131i
\(869\) 1.12509 1.12509i 0.0381659 0.0381659i
\(870\) 0 0
\(871\) −39.4559 + 6.08029i −1.33691 + 0.206023i
\(872\) 11.7172i 0.396793i
\(873\) 0 0
\(874\) 20.7352 35.9145i 0.701379 1.21482i
\(875\) −11.5211 −0.389486
\(876\) 0 0
\(877\) 13.3656 + 49.8810i 0.451323 + 1.68436i 0.698678 + 0.715436i \(0.253772\pi\)
−0.247355 + 0.968925i \(0.579561\pi\)
\(878\) 6.76277 + 25.2390i 0.228232 + 0.851775i
\(879\) 0 0
\(880\) 0.663931 0.0223811
\(881\) −21.3121 + 36.9136i −0.718023 + 1.24365i 0.243759 + 0.969836i \(0.421619\pi\)
−0.961782 + 0.273816i \(0.911714\pi\)
\(882\) 0 0
\(883\) 33.4740i 1.12649i −0.826290 0.563245i \(-0.809553\pi\)
0.826290 0.563245i \(-0.190447\pi\)
\(884\) −5.15583 + 7.03439i −0.173409 + 0.236592i
\(885\) 0 0
\(886\) −8.04843 + 8.04843i −0.270392 + 0.270392i
\(887\) 4.71119i 0.158186i −0.996867 0.0790931i \(-0.974798\pi\)
0.996867 0.0790931i \(-0.0252024\pi\)
\(888\) 0 0
\(889\) 2.31965 + 8.65706i 0.0777987 + 0.290349i
\(890\) 0.296966 1.10829i 0.00995431 0.0371500i
\(891\) 0 0
\(892\) 16.7879 + 16.7879i 0.562099 + 0.562099i
\(893\) 24.8652i 0.832082i
\(894\) 0 0
\(895\) −2.65338 2.65338i −0.0886928 0.0886928i
\(896\) −0.895864 1.55168i −0.0299287 0.0518381i
\(897\) 0 0
\(898\) 6.92393 11.9926i 0.231055 0.400198i
\(899\) 24.0079 6.43289i 0.800708 0.214549i
\(900\) 0 0
\(901\) −18.8539 + 10.8853i −0.628115 + 0.362642i
\(902\) −4.73750 + 1.26941i −0.157741 + 0.0422667i
\(903\) 0 0
\(904\) 10.7080 2.86919i 0.356141 0.0954277i
\(905\) 13.5597 + 3.63332i 0.450740 + 0.120776i
\(906\) 0 0
\(907\) 1.92854 1.11344i 0.0640360 0.0369712i −0.467640 0.883919i \(-0.654896\pi\)
0.531676 + 0.846948i \(0.321562\pi\)
\(908\) −6.19651 23.1257i −0.205638 0.767453i
\(909\) 0 0
\(910\) −1.57638 + 4.05587i −0.0522564 + 0.134451i
\(911\) 10.3509 + 5.97609i 0.342940 + 0.197997i 0.661571 0.749882i \(-0.269890\pi\)
−0.318631 + 0.947879i \(0.603223\pi\)
\(912\) 0 0
\(913\) −7.46002 −0.246891
\(914\) −16.8389 + 29.1659i −0.556983 + 0.964722i
\(915\) 0 0
\(916\) −14.5211 + 14.5211i −0.479791 + 0.479791i
\(917\) −38.0419 10.1933i −1.25625 0.336612i
\(918\) 0 0
\(919\) 2.28777 + 3.96254i 0.0754667 + 0.130712i 0.901289 0.433218i \(-0.142622\pi\)
−0.825822 + 0.563930i \(0.809289\pi\)
\(920\) −2.13055 3.69022i −0.0702421 0.121663i
\(921\) 0 0
\(922\) −7.78890 + 4.49692i −0.256514 + 0.148098i
\(923\) −18.5645 + 14.9052i −0.611059 + 0.490612i
\(924\) 0 0
\(925\) 31.0554 + 8.32127i 1.02110 + 0.273602i
\(926\) −16.4220 9.48125i −0.539661 0.311573i
\(927\) 0 0
\(928\) −3.03531 + 3.03531i −0.0996388 + 0.0996388i
\(929\) −33.3985 33.3985i −1.09577 1.09577i −0.994900 0.100868i \(-0.967838\pi\)
−0.100868 0.994900i \(-0.532162\pi\)
\(930\) 0 0
\(931\) 6.42997 23.9970i 0.210734 0.786469i
\(932\) −2.41682 1.39535i −0.0791657 0.0457063i
\(933\) 0 0
\(934\) −8.57771 + 32.0124i −0.280671 + 1.04748i
\(935\) −1.60600 −0.0525217
\(936\) 0 0
\(937\) 34.1939 1.11707 0.558533 0.829482i \(-0.311365\pi\)
0.558533 + 0.829482i \(0.311365\pi\)
\(938\) −5.13458 + 19.1625i −0.167650 + 0.625678i
\(939\) 0 0
\(940\) 2.21261 + 1.27745i 0.0721674 + 0.0416659i
\(941\) 7.56472 28.2319i 0.246603 0.920334i −0.725968 0.687728i \(-0.758608\pi\)
0.972571 0.232606i \(-0.0747253\pi\)
\(942\) 0 0
\(943\) 22.2581 + 22.2581i 0.724824 + 0.724824i
\(944\) 3.33959 3.33959i 0.108694 0.108694i
\(945\) 0 0
\(946\) −0.761667 0.439749i −0.0247639 0.0142975i
\(947\) 26.6581 + 7.14301i 0.866271 + 0.232117i 0.664474 0.747311i \(-0.268655\pi\)
0.201796 + 0.979428i \(0.435322\pi\)
\(948\) 0 0
\(949\) −6.22676 40.4063i −0.202129 1.31165i
\(950\) 25.8104 14.9016i 0.837399 0.483472i
\(951\) 0 0
\(952\) 2.16702 + 3.75339i 0.0702336 + 0.121648i
\(953\) −8.06765 13.9736i −0.261337 0.452649i 0.705261 0.708948i \(-0.250830\pi\)
−0.966597 + 0.256299i \(0.917497\pi\)
\(954\) 0 0
\(955\) −11.7586 3.15071i −0.380500 0.101955i
\(956\) 5.55518 5.55518i 0.179667 0.179667i
\(957\) 0 0
\(958\) 15.4169 26.7029i 0.498097 0.862730i
\(959\) 22.5561 0.728376
\(960\) 0 0
\(961\) 2.18777 + 1.26311i 0.0705733 + 0.0407455i
\(962\) 15.0735 20.5656i 0.485989 0.663061i
\(963\) 0 0
\(964\) 6.02534 + 22.4869i 0.194063 + 0.724253i
\(965\) −4.29484 + 2.47963i −0.138256 + 0.0798220i
\(966\) 0 0
\(967\) 31.3117 + 8.38995i 1.00692 + 0.269803i 0.724341 0.689442i \(-0.242144\pi\)
0.282576 + 0.959245i \(0.408811\pi\)
\(968\) 9.68673 2.59555i 0.311343 0.0834242i
\(969\) 0 0
\(970\) −1.24983 + 0.334892i −0.0401298 + 0.0107527i
\(971\) 23.3310 13.4701i 0.748727 0.432278i −0.0765068 0.997069i \(-0.524377\pi\)
0.825234 + 0.564791i \(0.191043\pi\)
\(972\) 0 0
\(973\) 34.0882 9.13391i 1.09282 0.292820i
\(974\) −10.1155 + 17.5206i −0.324123 + 0.561397i
\(975\) 0 0
\(976\) 2.38199 + 4.12572i 0.0762456 + 0.132061i
\(977\) 10.8073 + 10.8073i 0.345755 + 0.345755i 0.858526 0.512771i \(-0.171381\pi\)
−0.512771 + 0.858526i \(0.671381\pi\)
\(978\) 0 0
\(979\) 1.67902i 0.0536616i
\(980\) −1.80501 1.80501i −0.0576590 0.0576590i
\(981\) 0 0
\(982\) 3.90879 14.5878i 0.124735 0.465516i
\(983\) 0.756578 + 2.82359i 0.0241311 + 0.0900584i 0.976941 0.213508i \(-0.0684891\pi\)
−0.952810 + 0.303567i \(0.901822\pi\)
\(984\) 0 0
\(985\) 16.4902i 0.525423i
\(986\) 7.34216 7.34216i 0.233822 0.233822i
\(987\) 0 0
\(988\) −3.59993 23.3605i −0.114529 0.743195i
\(989\) 5.64460i 0.179488i
\(990\) 0 0
\(991\) 20.0775 34.7753i 0.637784 1.10467i −0.348134 0.937445i \(-0.613185\pi\)
0.985918 0.167229i \(-0.0534821\pi\)
\(992\) −5.79018 −0.183839
\(993\) 0 0
\(994\) 3.06207 + 11.4278i 0.0971229 + 0.362467i
\(995\) −1.40469 5.24239i −0.0445318 0.166195i
\(996\) 0 0
\(997\) 15.6393 0.495303 0.247651 0.968849i \(-0.420341\pi\)
0.247651 + 0.968849i \(0.420341\pi\)
\(998\) 20.9577 36.2997i 0.663403 1.14905i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.bc.a.305.11 56
3.2 odd 2 234.2.z.a.227.1 yes 56
9.4 even 3 234.2.y.a.149.13 yes 56
9.5 odd 6 702.2.bb.a.71.4 56
13.11 odd 12 702.2.bb.a.89.4 56
39.11 even 12 234.2.y.a.11.13 56
117.50 even 12 inner 702.2.bc.a.557.11 56
117.76 odd 12 234.2.z.a.167.1 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.y.a.11.13 56 39.11 even 12
234.2.y.a.149.13 yes 56 9.4 even 3
234.2.z.a.167.1 yes 56 117.76 odd 12
234.2.z.a.227.1 yes 56 3.2 odd 2
702.2.bb.a.71.4 56 9.5 odd 6
702.2.bb.a.89.4 56 13.11 odd 12
702.2.bc.a.305.11 56 1.1 even 1 trivial
702.2.bc.a.557.11 56 117.50 even 12 inner